
Affine Determinant Programs:
A New Approach to Obfuscation
James Bartusek (Princeton → UC Berkeley)
Yuval Ishai (Technion)
Aayush Jain (UCLA)
Fermi Ma (Princeton)
Amit Sahai (UCLA)
Mark Zhandry (Princeton + NTT Research)

Program Obfuscation
[BGIRSVY01]

• scramble a program to hide
implementation details

• many possible security notions:
• virtual black box (VBB)
• indistinguishability

obfuscation (iO)

program

obfuscated
program

x

0/1

x

0/1

obfuscation

Why did obfuscation ever need multilinear maps?

iO for NC1 iO for all
circuits

(assuming FHE)

Bootstrapping Theorem [GGHRSW]

A crash course in GGHRSW-style obfuscation

Takeaway: it suffices to consider NC1.

Why did obfuscation ever need multilinear maps?

log-depth
circuit 𝐶

Barrington’s Thm. constant-width
deterministic branching

program 𝐵𝑃

How do we build iO for NC1?

log-depth
circuit 𝐶

Barrington’s Thm. constant-width
deterministic branching

program 𝐵𝑃

𝑀%,'

𝑥'

How do we build iO for NC1?

𝑀%,)

𝑀*,'

𝑥)

𝑀*,)

𝑀+,'

𝑥'

𝑀+,)

𝑀','

𝑥)

𝑀',)

matrix branching program

Barrington’s Thm. constant-width
deterministic branching

program 𝐵𝑃

𝑀%,'

𝑥'

𝑀%,)

𝑀*,'

𝑥)

𝑀*,)

𝑀+,'

𝑥'

𝑀+,)

𝑀','

𝑥)

𝑀',)
𝑥 = 01

log-depth
circuit 𝐶

How do we build iO for NC1?

Barrington’s Thm. constant-width
deterministic branching

program 𝐵𝑃

𝑀%,'

𝑥'

𝑀%,)

𝑀*,'

𝑥)

𝑀*,)

𝑀+,'

𝑥'

𝑀+,)

𝑀','

𝑥)

𝑀',)

Evaluation: 𝐶 𝑥 = 1 if 𝑀',) 𝑀%,' 𝑀*,) 𝑀+,'××× = 𝐹

𝑥 = 01

log-depth
circuit 𝐶

How do we build iO for NC1?

𝑀%,'

𝑥'

𝑀%,)

𝑀*,'

𝑥)

𝑀*,)

𝑀+,'

𝑥'

𝑀+,)

𝑀','

𝑥)

𝑀',)

Evaluation: 𝐶 𝑥 = 1 if 𝑀',) 𝑀%,' 𝑀*,) 𝑀+,'××× = 𝐹

𝑥 = 01

What does the matrix branching
program representation buy us?

“one-time” security by Kilian
randomization

𝑀%,'

𝑥'

𝑅'2' 3𝑀%,) 𝑅%3

𝑅'2' 3 𝑅%3 𝑀*,'

𝑥)

𝑅%2' 3𝑀*,) 𝑅*3

𝑅%2' 3 𝑅*3 𝑀+,'

𝑥'

𝑅*2' 3𝑀+,)

𝑅*2' 3𝑀','

𝑥)

𝑀',) 𝑅'3

𝑅'3

𝑅' 𝑅%, 𝑅*,

What does the matrix branching
program representation buy us?

“one-time” security by Kilian
randomization

Sample random matrices

Sample random matrices

𝑅' 𝑅%, 𝑅*,

What does the matrix branching
program representation buy us?

“one-time” security by Kilian
randomization

4𝑀%,'

𝑥'

4𝑀%,)

4𝑀*,)

𝑥)

4𝑀*,)

4𝑀+,'

𝑥'

4𝑀+,)

4𝑀','

𝑥)

4𝑀',)

(4𝑀 denotes 𝑀 after applying Kilian randomization)

4𝑀%,'

𝑥'

Kilian’s Statistical Simulation Lemma:

Can statistically simulate given their product.

4𝑀%,)

4𝑀*,)

𝑥)

4𝑀*,)

4𝑀+,'

𝑥'

4𝑀+,)

4𝑀','

𝑥)

4𝑀',)
𝑥 = 01

4𝑀%,' 4𝑀*,) 4𝑀+,'4𝑀',) , , ,

“grey matrices leak nothing beyond whether 𝐵𝑃 𝑥 = 0 or 1”

Kilian’s Statistical Simulation Lemma:

Can statistically simulate given their product. 4𝑀%,' 4𝑀*,) 4𝑀+,'4𝑀',) , , ,

Takeaway: Kilian-randomization yields “one-time” security.

Kilian’s Statistical Simulation Lemma:

Can statistically simulate given their product. 4𝑀%,' 4𝑀*,) 4𝑀+,'4𝑀',) , , ,

Takeaway: Kilian-randomization yields “one-time” security.

Kilian-randomized
matrix branching

program

encode each matrix in
multilinear map

𝑂𝑏𝑓(𝐶)

“one-time” secure “many-time” secure

4𝑀%,'

𝑥'

4𝑀%,)

4𝑀*,)

𝑥)

4𝑀*,)

4𝑀+,'

𝑥'

4𝑀+,)

4𝑀','

𝑥)

4𝑀',)

Multilinear maps enforce input consistency; without them,
“mixed-input” attacks can break security!

Example: is a mixed-input evaluation.4𝑀%,) 4𝑀*,) 4𝑀+,)4𝑀',) ×××

NC1 circuit 𝐶
Barrington’s Thm. constant-width

deterministic branching
program 𝐵𝑃

Kilian-randomized
matrix branching

program

encode in
multilinear map

𝑂𝑏𝑓(𝐶)

[GGHRSW] approach to
iO for NC1

NC1 circuit 𝐶
Barrington’s Thm. constant-width

deterministic branching
program 𝐵𝑃

Kilian-randomized
matrix branching

program

encode in
multilinear map

𝑂𝑏𝑓(𝐶)

Our goal: Avoid multilinear maps
by using an alternative

representation of 𝐶.

NC1 circuit 𝐶
Barrington’s Thm. constant-width

deterministic branching
program 𝐵𝑃

Kilian-randomized
matrix branching

program

encode in
multilinear map

𝑂𝑏𝑓(𝐶)

affine determinant
program* (ADP)

𝑂𝑏𝑓(𝐶)

??
*this notion appears
in [IK97, IK00, IK02,
AIK06].

[IK00]

Affine Determinant Programs (ADP)
Encode:

, … ,𝑓: 0,1 < → {0,1} 𝐴 𝐵' 𝐵<,

width 𝑤 matrices over ℤC

Affine Determinant Programs (ADP)
Encode:

Evaluate:

, … ,𝑓: 0,1 < → {0,1} 𝐴 𝐵' 𝐵<

≔ + F
G | IJ K '

𝑀I 𝐴 𝐵G

,

width 𝑤 matrices over ℤC

𝑑𝑒𝑡 ≠ 0

Affine Determinant Programs (ADP)
Encode:

Evaluate:

, … ,𝑓: 0,1 < → {0,1} 𝐴 𝐵' 𝐵<

≔ + F
G | IJ K '

𝑀I 𝐴 𝐵G

𝑓 𝑥 = 0

𝑓 𝑥 = 1

𝑀I

𝑑𝑒𝑡 = 0𝑀I

,

rank deficient by 1
when 𝑓(𝑥) = 1
𝑀I

width 𝑤 matrices over ℤC

𝑑𝑒𝑡 ≠ 0

Affine Determinant Programs (ADP)
Encode:

Evaluate:

, … ,𝑓: 0,1 < → {0,1} 𝐴 𝐵' 𝐵<

≔ + F
G | IJ K '

𝑀I 𝐴 𝐵G

𝑓 𝑥 = 0

𝑓 𝑥 = 1

𝑀I

𝑑𝑒𝑡 = 0𝑀I

,

rank deficient by 1
when 𝑓(𝑥) = 1
𝑀I

Lemma 1 [IK00]: Any
deterministic branching
program can be written
as a poly-size ADP.

width 𝑤 matrices over ℤC

𝑑𝑒𝑡 ≠ 0

Affine Determinant Programs (ADP)
Encode:

Evaluate:

, … ,𝑓: 0,1 < → {0,1} 𝐴 𝐵' 𝐵<

≔ + F
G | IJ K '

𝑀I 𝐴 𝐵G

𝑓 𝑥 = 0

𝑓 𝑥 = 1

𝑀I

𝑑𝑒𝑡 = 0𝑀I

,

rank deficient by 1
when 𝑓(𝑥) = 1
𝑀I

Lemma 1 [IK00]: Any
deterministic branching
program can be written
as a poly-size ADP.

Lemma 2 [IK00]: By left
and right re-randomizing,
ADPs can be made “one-
time” secure.

width 𝑤 matrices over ℤC

Affine Determinant Programs (ADPs)

, … ,𝐴 𝐵' 𝐵<,

Matrix Branching Programs (MBPs)

𝑀%,'

𝑀%,)

𝑀*,'

𝑀*,)

𝑀+,'

𝑀+,)

𝑀','

𝑀',)

ADPs are an “additive” analogue of MBPs

• MBPs require multilinear maps to enforce input consistency.

• ADPs only read each input bit once!

Affine Determinant Programs (ADPs)

, … ,𝐴 𝐵' 𝐵<,

Matrix Branching Programs (MBPs)

𝑀%,'

𝑀%,)

𝑀*,'

𝑀*,)

𝑀+,'

𝑀+,)

𝑀','

𝑀',)

ADPs are an “additive” analogue of MBPs

• MBPs require multilinear maps to enforce input consistency.

• ADPs only read each input bit once!

Takeaway: It seems plausible that we could build “many-time” secure
ADPs without multilinear maps.

Affine Determinant Programs (ADPs)

, … ,𝐴 𝐵' 𝐵<,

Matrix Branching Programs (MBPs)

𝑀%,'

𝑀%,)

𝑀*,'

𝑀*,)

𝑀+,'

𝑀+,)

𝑀','

𝑀',)

Until recently, all known ADPs were only “one-time” secure.

• “one-time” security: only release one evaluation of 𝐴 + ∑G | IJK'𝐵G.

• “many-time” security (obfuscation): 𝐴, 𝐵', … , 𝐵< can be public.

The rest of this talk:

• (if time permits) provably secure many-time secure ADP for
conjunctions [BLMZ19]

• candidate many-time secure ADPs for NC1.

Conjunctions
Program has a hard-coded string 𝑠 = 11*0*.
Accepts iff input matches on every 0/1 bits.

Example: 𝑠 = 11*0*

𝑓R 11000 = 1
𝑓R 11101 = 1
𝑓R 00010 = 0
𝑓R 01000 = 0

[BLMZ19] Obfuscation Construction:
On length 𝑛 string s = 11*0*, output

𝐵' 𝐵<𝐴

Evaluation: Input 𝑥 matches 𝑠 if

𝑑𝑒𝑡 + F
G|IJK'

= 0

…

𝐴 𝐵G

𝑈

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝑈

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵+

1 1 0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

𝑈

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()𝑈𝑈

𝑈

=𝐴 𝑈 𝐵G− F
G | RJK'

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()𝑈𝑈

𝑈

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()

=𝐴 𝑈 𝐵' 𝐵%− −

𝑈𝑈

𝑈

𝐴 𝐵' 𝐵%+ +

= 𝑈

𝐵++

𝐵++

(rank 3 w.h.p.)

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix Evaluation:
On input 𝑥 = 11010

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()

=𝐴 𝑈 𝐵' 𝐵%− −

𝑈𝑈

𝑈

𝐴 𝐵%+

= 𝑈 𝐵'−

(rank 3 w.h.p.)

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix Evaluation:
On input 𝑥 = 01000

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()

=𝐴 𝑈 𝐵' 𝐵%− −

𝑈𝑈

𝑈 Evaluation:
On input 𝑥 = 11000

𝐴 𝐵' 𝐵%+ +

= 𝑈

(rank 2)

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()

=𝐴 𝑈 𝐵' 𝐵%− −

𝑈𝑈

𝑈

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()

=𝐴 𝑈 𝐵' 𝐵%− − 𝐴 𝐵' 𝐵%+ +

= 𝑈

𝐵*+

𝐵*+

rank 2 since

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix Evaluation:
On input 𝑥 = 11100

𝐵*𝑐𝑜𝑙() ⊂ 𝑐𝑜𝑙()𝑈
𝑈𝑈

𝑈

Claim [BLMZ19]: 𝐴, 𝐵', … , 𝐵<
statistically hides 𝑠 if 𝑠 has
sufficient entropy on 0/1 bits.

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()

=𝐴 𝑈 𝐵' 𝐵%− −

𝑈𝑈

𝑈

=𝐴 𝑈 𝐵' 𝐵%− −

≈f uniformly random matrix

Claim [BLMZ19]: 𝐴, 𝐵', … , 𝐵<
statistically hides 𝑠 if 𝑠 has
sufficient entropy on 0/1 bits.

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()𝑈𝑈

𝑈

=𝐴 𝑈 𝐵' 𝐵%− −

≈f uniformly random matrix

𝑢*, 𝑢] from (hidden) random
2-dimensional subspace

Claim [BLMZ19]: 𝐴, 𝐵', … , 𝐵<
statistically hides 𝑠 if 𝑠 has
sufficient entropy on 0/1 bits.

𝑠 = 11*0* of length 𝑛 = 5, w = 2 wildcards,
width 𝑤 + 1 = 3 square matrices over ℤC.

secret random rank 𝑤 = 2 matrix

𝐵' 𝐵% 𝐵* 𝐵+ 𝐵]

1 1 * *0

random
𝑢'𝑣'\

random
𝑢%𝑣%\

random
𝑢+𝑣+\

random
𝑢*𝑣*\ with

𝑢* ← 𝑐𝑜𝑙()

random
𝑢]𝑣]\ with

𝑢] ← 𝑐𝑜𝑙()𝑈𝑈

𝐵G ≈f uniformly random rank 1
matrix for all 𝑖

Approach 1
(not today)

“one-time secure”

, … ,𝐴∗ 𝐵'∗ 𝐵<∗,
[IK00]branching program

𝐵𝑃(𝑥)

+ add determinant-
preserving noise

“many-time secure”

, … ,𝐴 𝐵' 𝐵<,

Obfuscated program

Candidate Many-Time Secure ADPs for NC1

log-depth
boolean formula

𝑓(𝑥)

“many-time secure”

, … ,𝐴 𝐵' 𝐵<,

encode 𝑓 𝑥
gate-by-gate

as ADP

Obfuscated program

Candidate Many-Time Secure ADPs for NC1

Approach 2

log-depth
boolean formula

𝑓(𝑥)

“many-time secure”

, … ,𝐴 𝐵' 𝐵<,

encode 𝑓 𝑥
gate-by-gate

as ADP

Obfuscated program

• Positive/Negative Input-wire ADPs
• AND Gates
• OR Gates

Candidate Many-Time Secure ADPs for NC1

𝑑𝑒𝑡 ≠ 0

Affine Determinant Programs (ADP)
Encode:

Evaluate:

, … ,𝑓: 0,1 < → {0,1} 𝐴 𝐵' 𝐵<

≔ + F
G | IJ K '

𝑀I 𝐴 𝐵G

𝑓 𝑥 = 0

𝑓 𝑥 = 1

𝑀I

𝑑𝑒𝑡 = 0𝑀I

,

rank deficient by 1
when 𝑓(𝑥) = 1
𝑀I

width 𝑤 matrices over ℤC

𝑓 𝑥', … , 𝑥< = 𝑥G
1) Draw random 𝑢 ← ℤC
2) Construct width-1 ADP:

= 𝑢,𝐴 𝐵G = −𝑢, 𝐵i = 0 (∀𝑗 ≠ 𝑖)

Positive Input Wire

𝑓 𝑥', … , 𝑥< = 𝑥G
1) Draw random 𝑢 ← ℤC
2) Construct width-1 ADP:

= 𝑢,𝐴 𝐵G = −𝑢, 𝐵i = 0 (∀𝑗 ≠ 𝑖)

Positive Input Wire

• If 𝑥G = 1, then

𝑀I ≔ 𝑑 + F
G|IJK'

𝐴 𝐵G

𝑀I = 0

• If 𝑥G = 0, then 𝑀I = 𝑢

Correctness

(determinant of a scalar is itself)

𝑓 𝑥', … , 𝑥< = ¬𝑥G
1) Draw random 𝑢 ← ℤC
2) Construct width-1 ADP:

= 0,𝐴 𝐵G = 𝑢, 𝐵i = 0 (∀𝑗 ≠ 𝑖)

Negative Input Wire

𝑓 𝑥', … , 𝑥< = ¬𝑥G
1) Draw random 𝑢 ← ℤC
2) Construct width-1 ADP:

= 0,𝐴 𝐵G = 𝑢, 𝐵i = 0 (∀𝑗 ≠ 𝑖)

Negative Input Wire

• If 𝑥G = 1, then

𝑀I ≔ 𝑑 + F
G|IJK'

𝐴 𝐵G

𝑀I = 𝑢

• If 𝑥G = 0, then 𝑀I = 0

Correctness

(determinant of a scalar is itself)

𝐵'
(m)𝐴(m)

𝐵'
(n)𝐴(n)

𝐵<
(m)

𝐵<
(n)

…

…

width 𝑘

width 𝑘

Candidate AND Gates

𝑀I
mEvaluation on 𝑥 is

𝑀I
nEvaluation on 𝑥 is

𝑀I
m

𝑀I
n

0

0
𝑆𝑅 × ×𝑀I

m∧n =

2𝑘 − 1 × (2𝑘 − 1) 2𝑘 − 1 × 2𝑘 2𝑘 × (2𝑘 − 1)2𝑘 × 2𝑘

𝐵'
(m)𝐴(m)

𝐵'
(n)𝐴(n)

𝐵<
(m)

𝐵<
(n)

…

…

width 𝑘

width 𝑘

random
random

Candidate AND Gates

𝑀I
mEvaluation on 𝑥 is

𝑀I
nEvaluation on 𝑥 is

𝑀I
m

𝑀I
n

0

0
𝑆𝑅 × ×𝑀I

m∧n =

2𝑘 − 1 × (2𝑘 − 1) 2𝑘 − 1 × 2𝑘 2𝑘 × (2𝑘 − 1)2𝑘 × 2𝑘

random
random

• If 𝑓 𝑥 and 𝑔(𝑥) are both 1, then 𝑀I
(m) and 𝑀I

(n)

are both rank 𝑘 − 1, so 𝑀I
m∧n is rank 2𝑘 − 2

(rank deficient)AND Gate
Correctness

𝑀I
m

𝑀I
n

0

0
𝑆𝑅 × ×𝑀I

m∧n =

2𝑘 − 1 × (2𝑘 − 1) 2𝑘 − 1 × 2𝑘 2𝑘 × (2𝑘 − 1)2𝑘 × 2𝑘

random
random

• If 𝑓 𝑥 and 𝑔(𝑥) are both 1, then 𝑀I
(m) and 𝑀I

(n)

are both rank 𝑘 − 1, so 𝑀I
m∧n is rank 2𝑘 − 2

(rank deficient)

• If at least one of 𝑓 𝑥 and 𝑔(𝑥) is 0, then at
least one of 𝑀I

(m) and 𝑀I
(n) is rank 𝑘, so 𝑀I

m∧n

is rank 2𝑘 − 1 (full rank)

AND Gate
Correctness

𝑀I
m

𝑀I
n

0

0
𝑆𝑅 × ×𝑀I

m∧n =

2𝑘 − 1 × (2𝑘 − 1) 2𝑘 − 1 × 2𝑘 2𝑘 × (2𝑘 − 1)2𝑘 × 2𝑘

random
random

Claim: For appropriately-designed “input wire ADPs”,
applying these AND gates recovers the [BLMZ19]
conjunction obfuscator.

𝐵'
(m)𝐴(m)

𝐵'
(n)𝐴(n)

𝐵<
(m)

𝐵<
(n)

…

…

width 𝑘

width 𝑘

Candidate OR Gates

𝑀I
mEvaluation on 𝑥 is

𝑀I
nEvaluation on 𝑥 is

𝑀I
m

𝑀I
n

𝑈I

0
𝑆𝑅 × ×𝑀I

m∨n =

2𝑘 × 2𝑘 2𝑘 × 2𝑘 2𝑘 × 2𝑘2𝑘 × 2𝑘

𝐵'
(m)𝐴(m)

𝐵'
(n)𝐴(n)

𝐵<
(m)

𝐵<
(n)

…

…

width 𝑘

width 𝑘

random random

random ADP

Candidate OR Gates

𝑀I
mEvaluation on 𝑥 is

𝑀I
nEvaluation on 𝑥 is

𝑀I
m

𝑀I
n

𝑈I

0
𝑆𝑅 × ×𝑀I

m∨n =

2𝑘 × 2𝑘 2𝑘 × 2𝑘 2𝑘 × 2𝑘2𝑘 × 2𝑘

random random

random ADP

• If at least one of 𝑓 𝑥 and 𝑔(𝑥) is 1, then
𝑀I

m∧n is rank 2𝑘 − 1 (rank deficient)
OR Gate
Correctness

𝑀I
m

𝑀I
n

𝑈I

0
𝑆𝑅 × ×𝑀I

m∨n =

2𝑘 × 2𝑘 2𝑘 × 2𝑘 2𝑘 × 2𝑘2𝑘 × 2𝑘

random random

random ADP

• If at least one of 𝑓 𝑥 and 𝑔(𝑥) is 1, then
𝑀I

m∧n is rank 2𝑘 − 1 (rank deficient)

• If neither 𝑓 𝑥 and 𝑔(𝑥) are 1, then 𝑀I
m∧n is

rank 2𝑘 (full rank)

OR Gate
Correctness

Attacks and Defenses
All attacks so far are “kernel attacks”, which exploit linear
relationships between kernels of 𝑀It,𝑀Iu, … ,𝑀Iv from
accepting inputs 𝑥', 𝑥%, … , 𝑥w .

Attacks and Defenses
All attacks so far are “kernel attacks”, which exploit linear
relationships between kernels of 𝑀It,𝑀Iu, … ,𝑀Iv from
accepting inputs 𝑥', 𝑥%, … , 𝑥w .

Future Directions:

1. Design new input wires to resist kernel attacks.

2. Security for null/evasive circuits?

3. Post-processing strategies, e.g., compute the AND of 𝑘
independent ADP obfuscations of 𝑓.

Thank you!
Questions?

slides available at cs.princeton.edu/~fermim/

