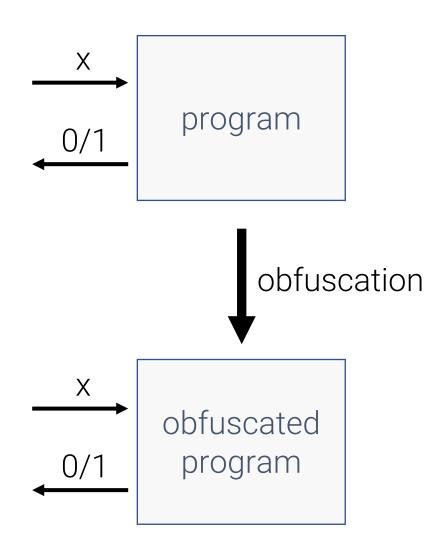
Affine Determinant Programs: A New Approach to Obfuscation

James Bartusek Yuval Ishai Aayush Jain Fermi Ma Amit Sahai Mark Zhandry (Princeton → UC Berkeley)
(Technion)
(UCLA)
(Princeton)
(UCLA)
(Princeton + NTT Research)

Program Obfuscation [BGIRSVY01]

- scramble a program to hide implementation details
- many possible security notions:
 - virtual black box (VBB)
 - indistinguishability obfuscation (iO)

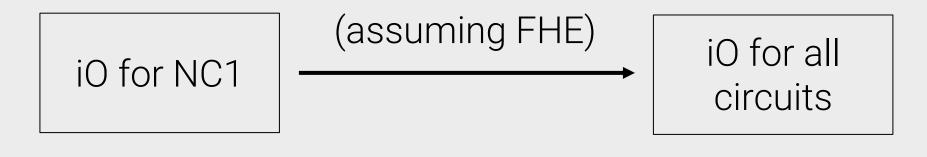


Why did obfuscation ever need multilinear maps?

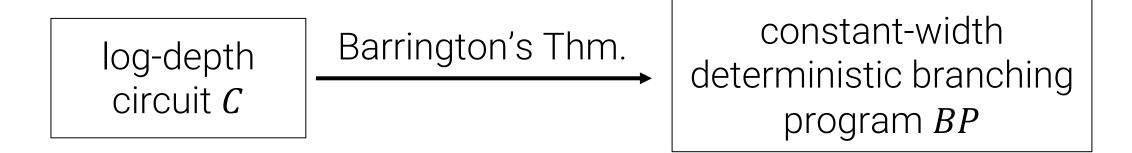
Why did obfuscation ever need multilinear maps?

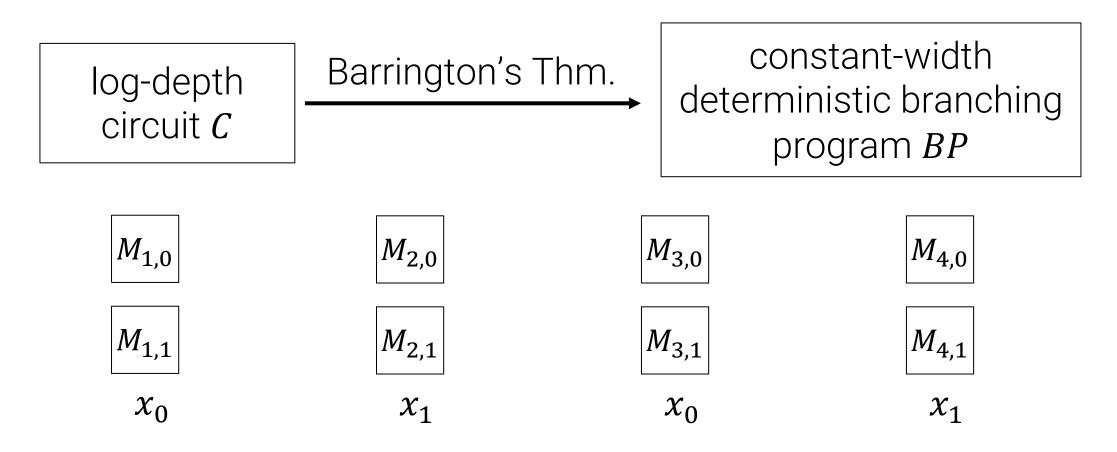
A crash course in GGHRSW-style obfuscation

Bootstrapping Theorem [GGHRSW]

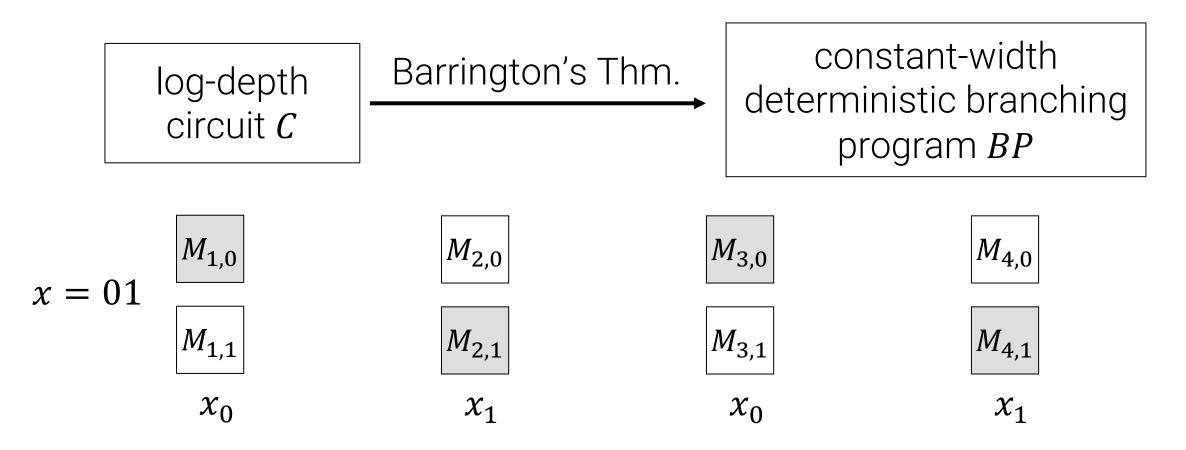


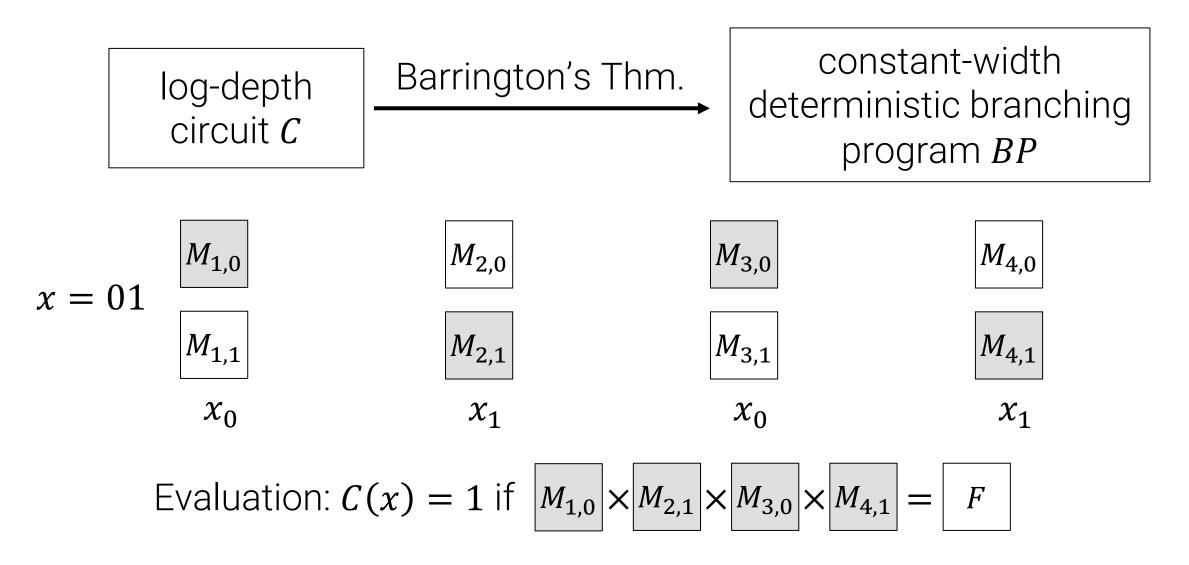
Takeaway: it suffices to consider NC1.





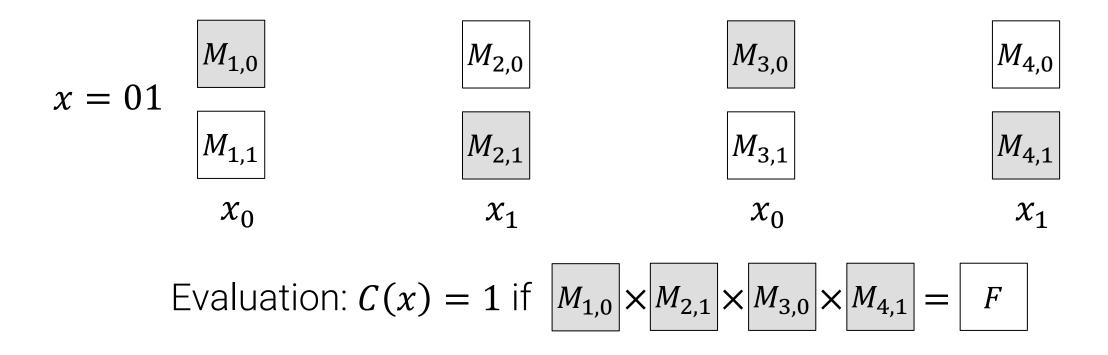
matrix branching program





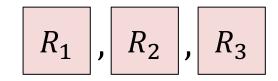
What does the matrix branching program representation buy us?

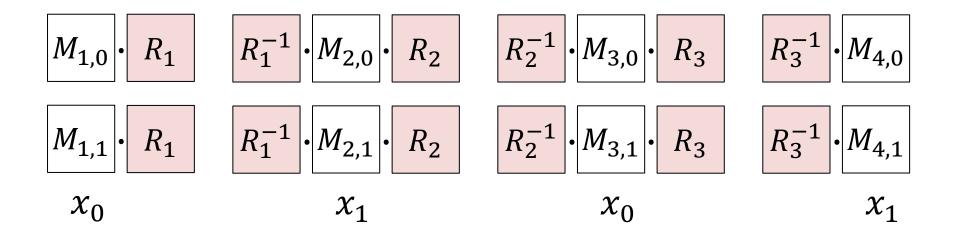
"one-time" security by Kilian randomization



What does the matrix branching program representation buy us?

Sample random matrices

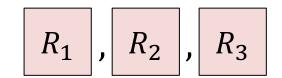


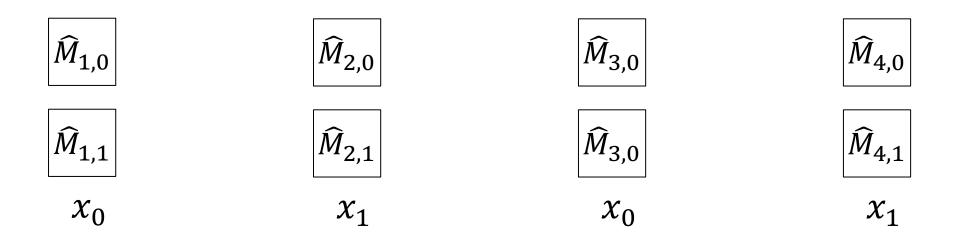


What does the matrix branching program representation buy us?

"one-time" security by Kilian randomization

Sample random matrices

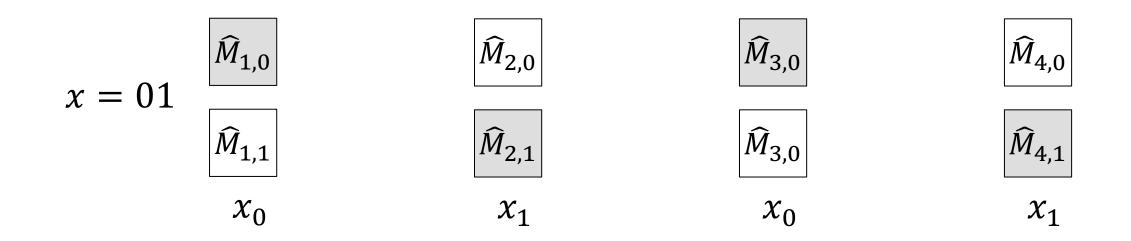




 $(\widehat{M} \text{ denotes } M \text{ after applying Kilian randomization})$

Kilian's Statistical Simulation Lemma:

Can statistically simulate
$$\widehat{M}_{1,0}$$
, $\widehat{M}_{2,1}$, $\widehat{M}_{3,0}$, $\widehat{M}_{4,1}$ given their product.



"grey matrices leak nothing beyond whether BP(x) = 0 or 1"

Kilian's Statistical Simulation Lemma:

Can statistically simulate
$$\widehat{M}_{1,0}$$
, $\widehat{M}_{2,1}$, $\widehat{M}_{3,0}$, $\widehat{M}_{4,1}$ given their product.

Takeaway: Kilian-randomization yields "one-time" security.

Kilian's Statistical Simulation Lemma:

Can statistically simulate
$$\widehat{M}_{1,0}$$
, $\widehat{M}_{2,1}$, $\widehat{M}_{3,0}$, $\widehat{M}_{4,1}$ given their product.

Takeaway: Kilian-randomization yields "one-time" security.

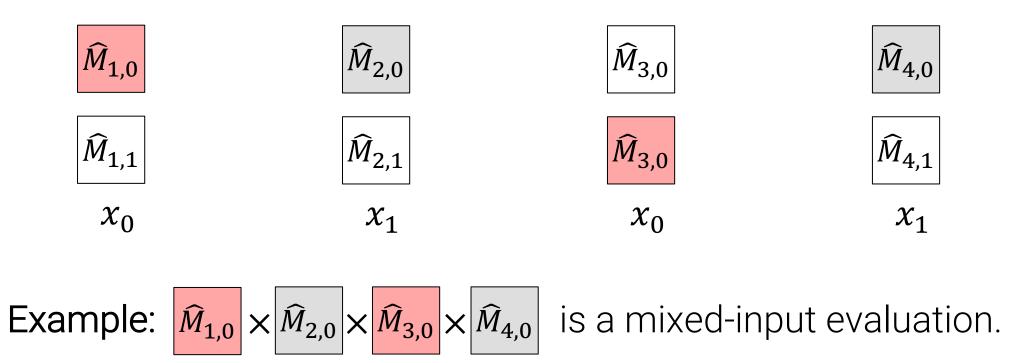
Kilian-randomized matrix branching program encode each matrix in multilinear map

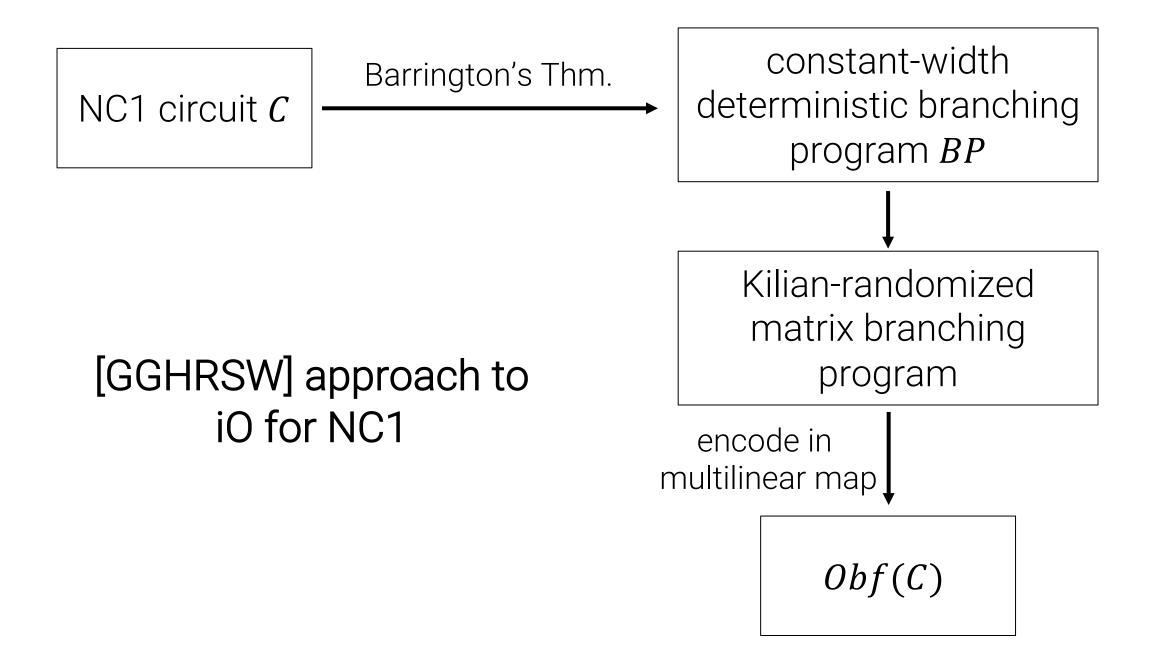
"one-time" secure

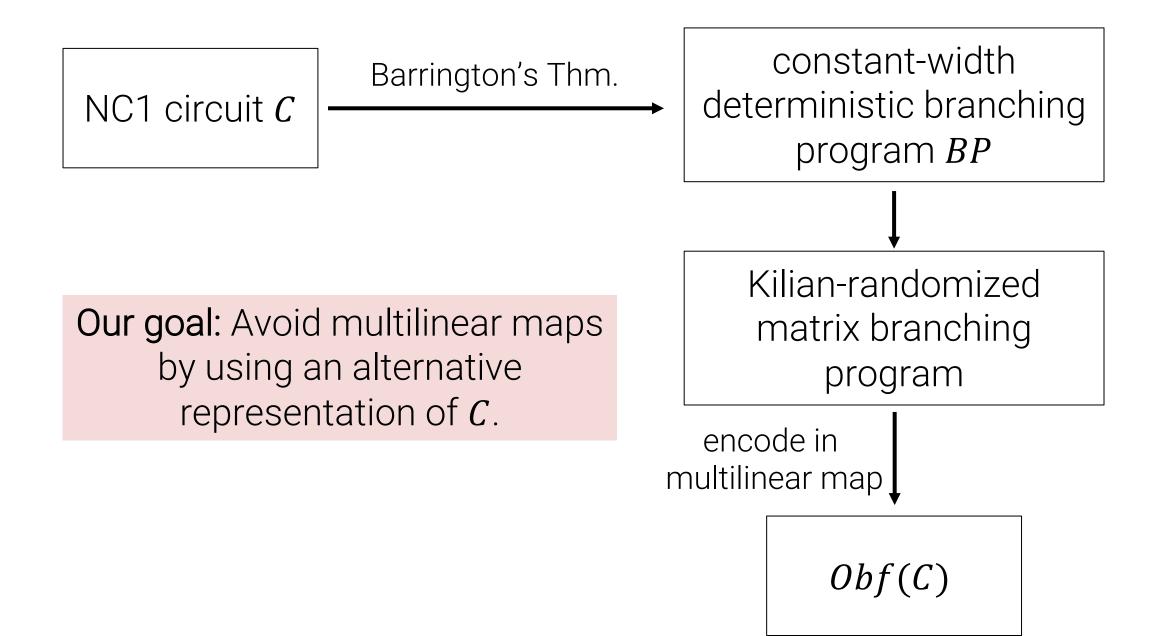
"many-time" secure

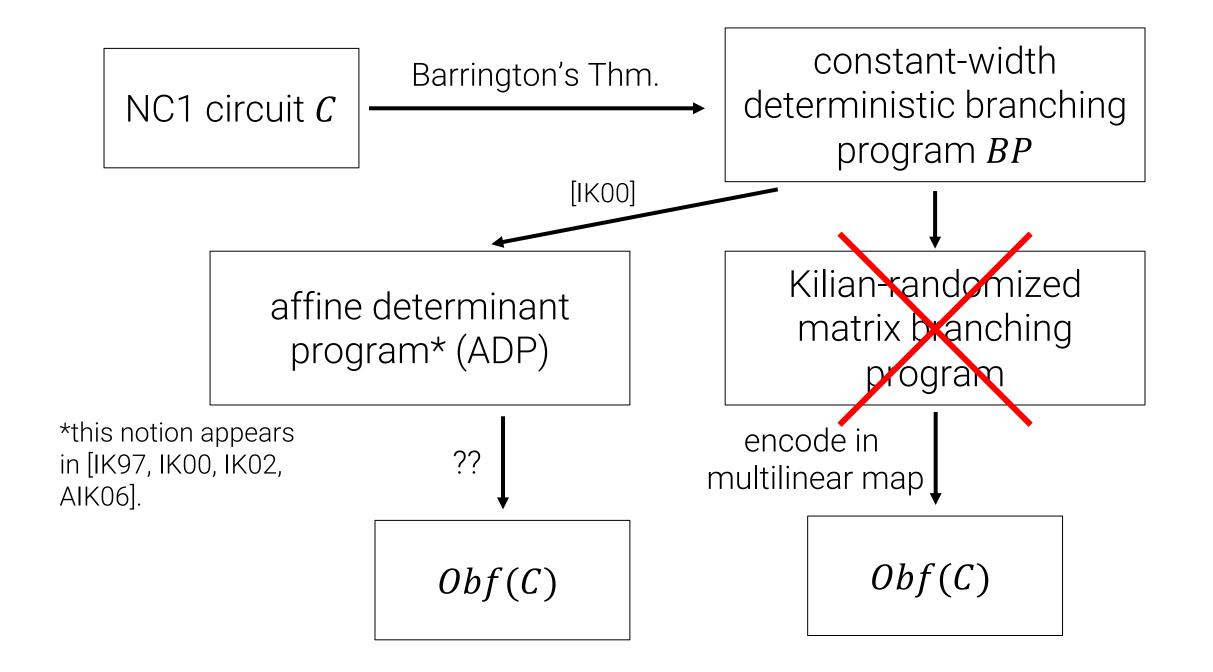
Obf(C)

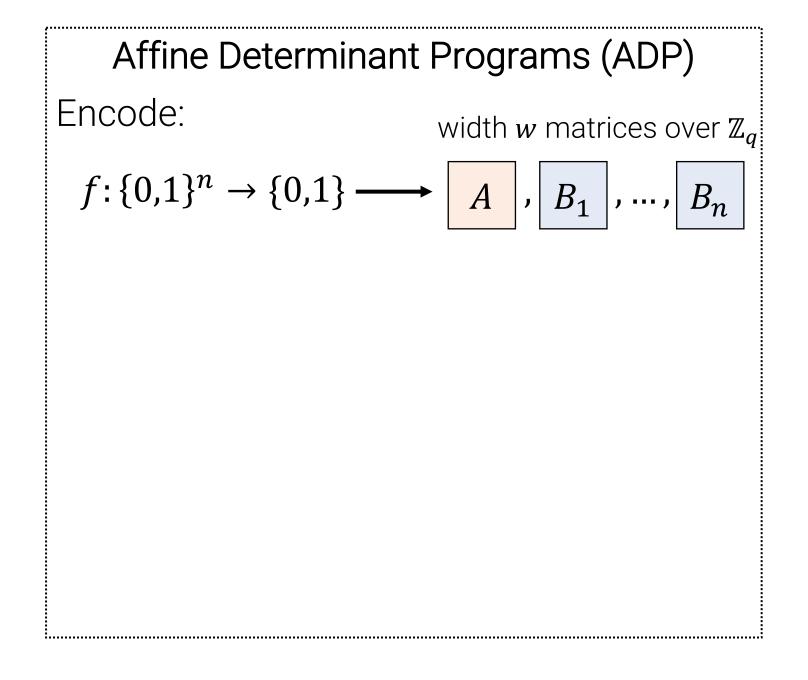
Multilinear maps enforce **input consistency**; without them, "mixed-input" attacks can break security!

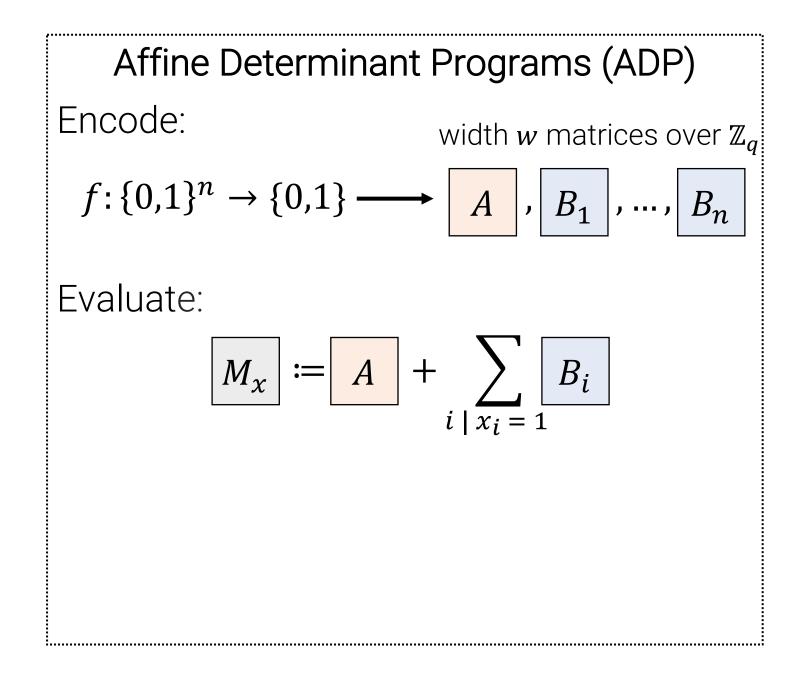


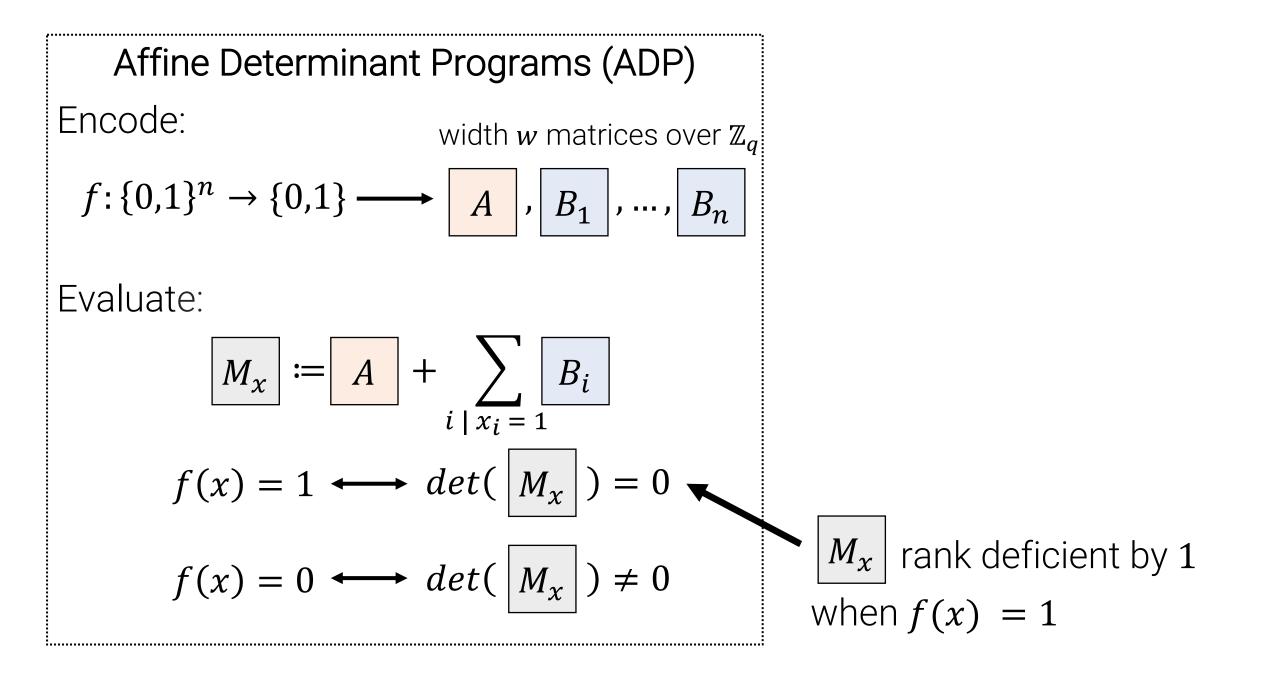


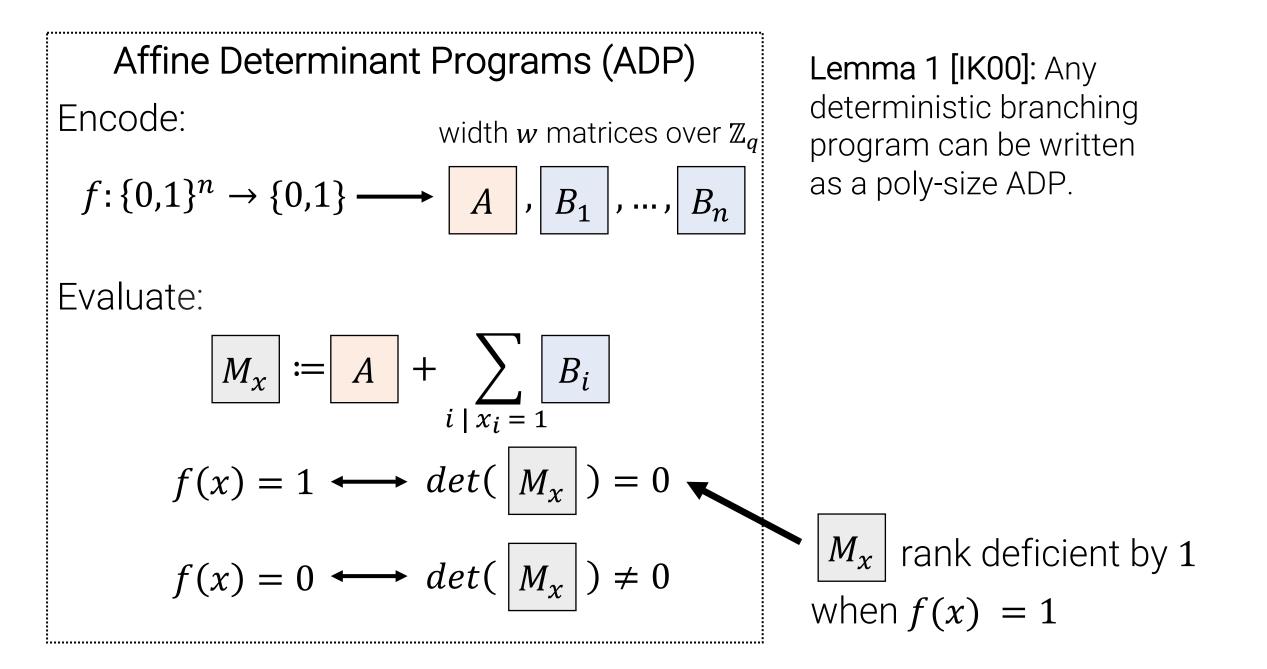


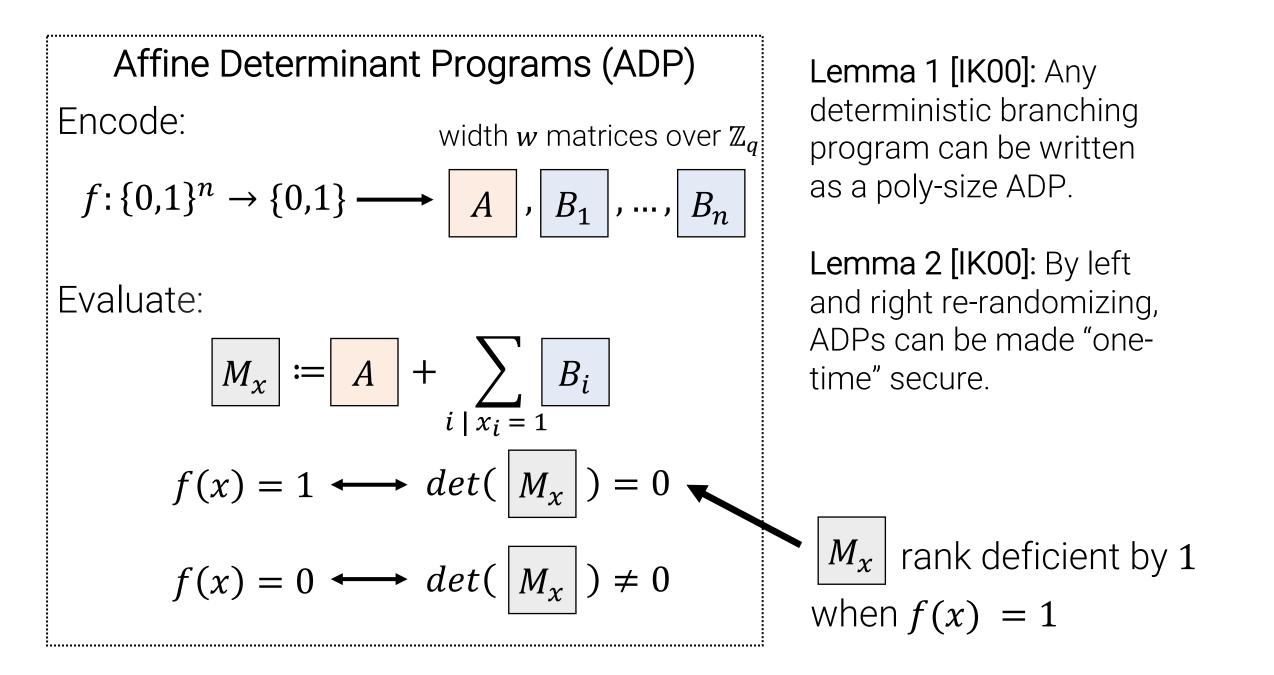






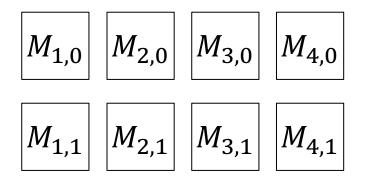






Affine Determinant Programs (ADPs)

Matrix Branching Programs (MBPs)



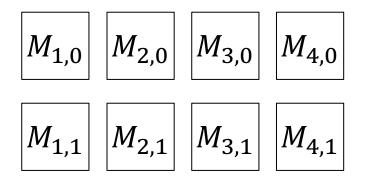
ADPs are an "additive" analogue of MBPs

- MBPs require multilinear maps to enforce input consistency.
- ADPs only read each input bit once!

Affine Determinant Programs (ADPs)

$$A$$
, B_1 , ..., B_n

Matrix Branching Programs (MBPs)



ADPs are an "additive" analogue of MBPs

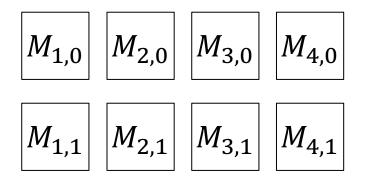
- MBPs require multilinear maps to enforce input consistency.
- ADPs only read each input bit once!

Takeaway: It seems *plausible* that we could build "many-time" secure ADPs without multilinear maps.

Affine Determinant Programs (ADPs)

$$A$$
, B_1 , ..., B_n

Matrix Branching Programs (MBPs)



Until recently, all known ADPs were only "one-time" secure.

- "one-time" security: only release one evaluation of $A + \sum_{i \mid x_i=1} B_i$.
- "many-time" security (obfuscation): A, B₁, ..., B_n can be public.

The rest of this talk:

- (if time permits) provably secure many-time secure ADP for conjunctions [BLMZ19]
- candidate many-time secure ADPs for NC1.

Conjunctions Program has a hard-coded string s = 11*0*. Accepts iff input matches on every 0/1 bits.

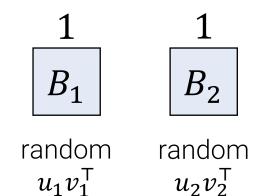
Example: s = 11*0*

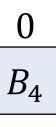
 $f_s(11000) = 1$ $f_s(11101) = 1$ $f_s(00010) = 0$ $f_s(01000) = 0$ [BLMZ19] Obfuscation Construction: On length n string s = 11*0*, output

Evaluation: Input *x* matches *s* if

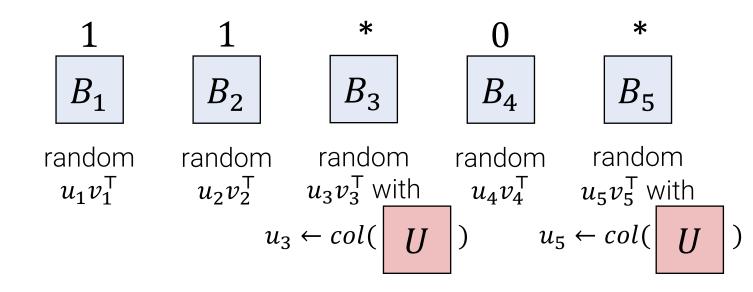
$$det\left(A + \sum_{i|x_i=1}^{n} B_i\right) = 0$$

secret random rank w = 2 matrix

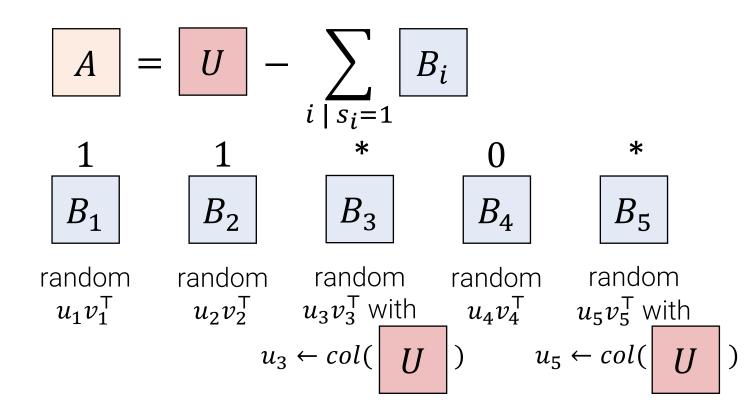




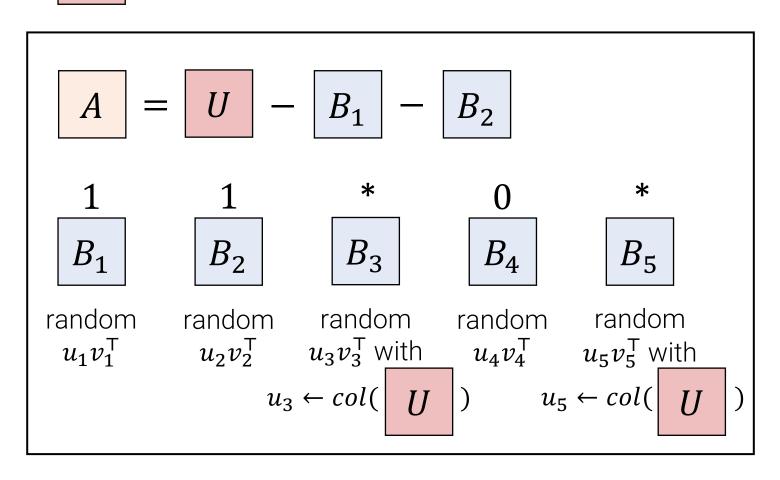
random $u_4 v_4^{\mathsf{T}}$



U



U



secret random rank w = 2 matrix

Evaluation: On input x = 11010

 B_1

+

(rank 3 w.h.p.)

+

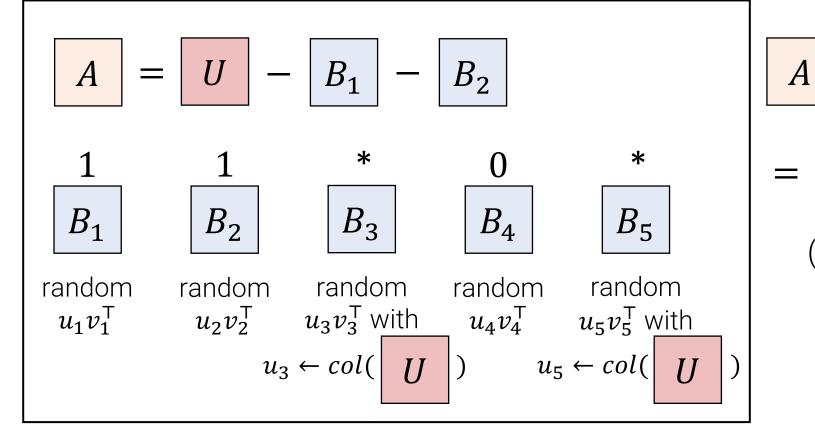
 B_2

+

 B_4

 B_4

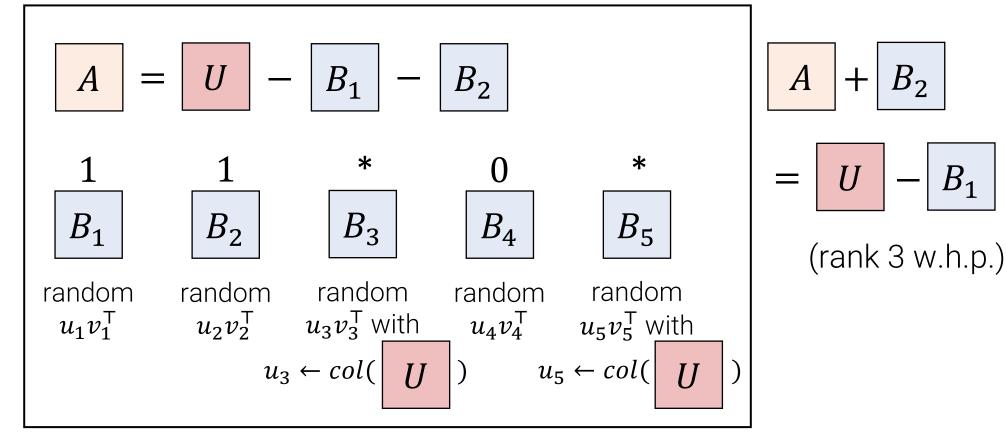
+



secret random rank w = 2 matrix

Evaluation: On input x = 01000

 B_1



s = 11*0* of length n = 5, w = 2 wildcards, width w + 1 = 3 square matrices over \mathbb{Z}_q .

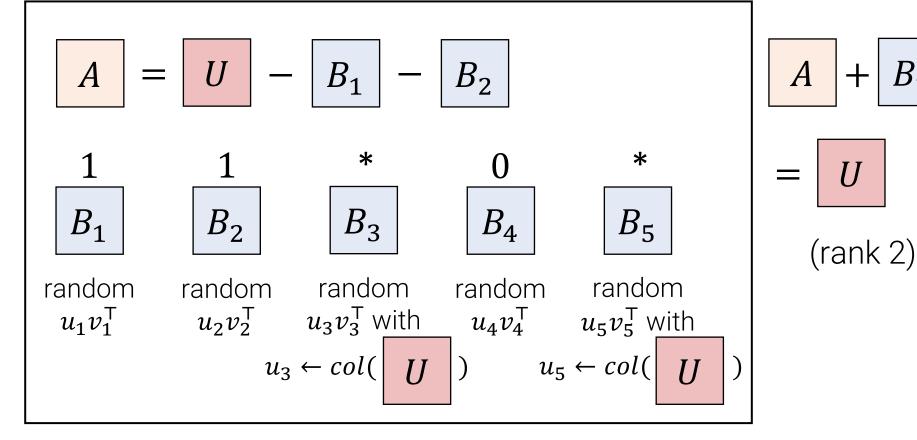
secret random rank w = 2 matrix

Evaluation: On input x = 11000

 B_1

 B_2

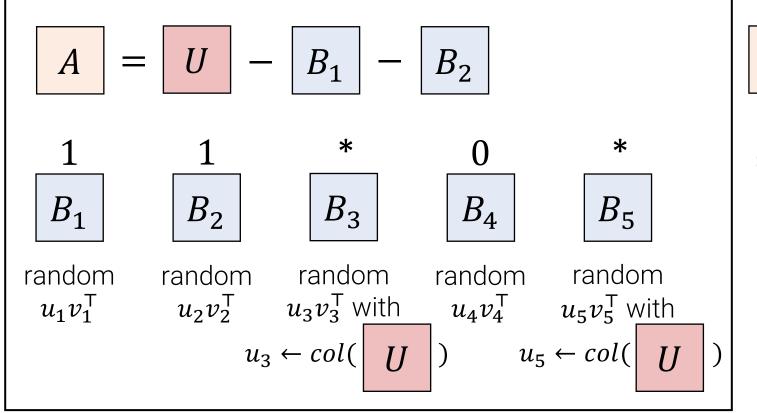
+

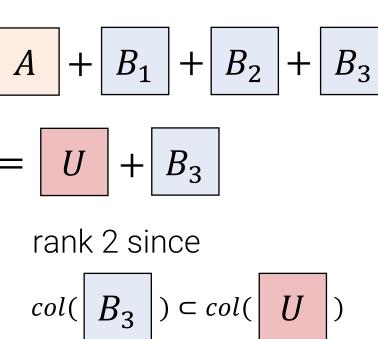


s = 11*0* of length n = 5, w = 2 wildcards, width w + 1 = 3 square matrices over \mathbb{Z}_q .

secret random rank w = 2 matrix

Evaluation: On input x = 11100

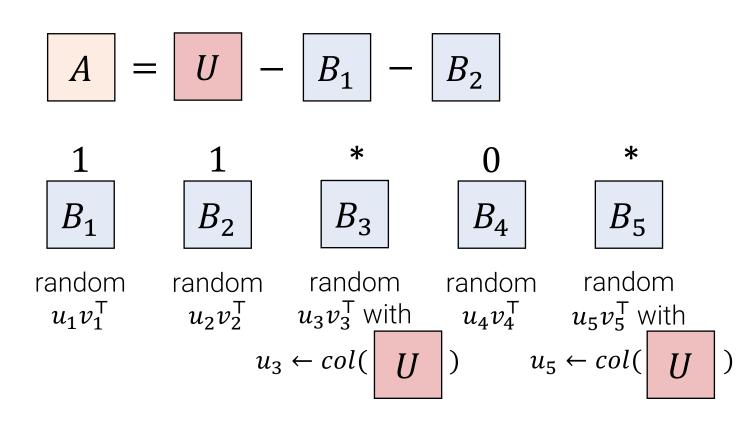




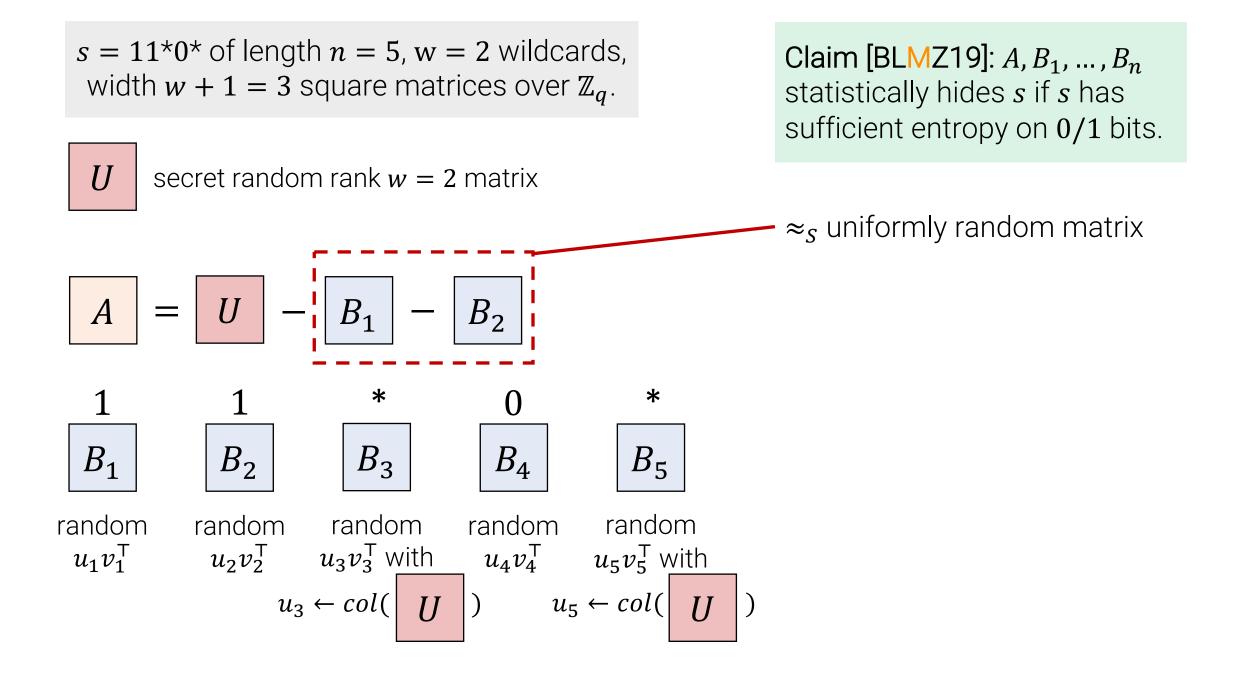
s = 11*0* of length n = 5, w = 2 wildcards, width w + 1 = 3 square matrices over \mathbb{Z}_q .

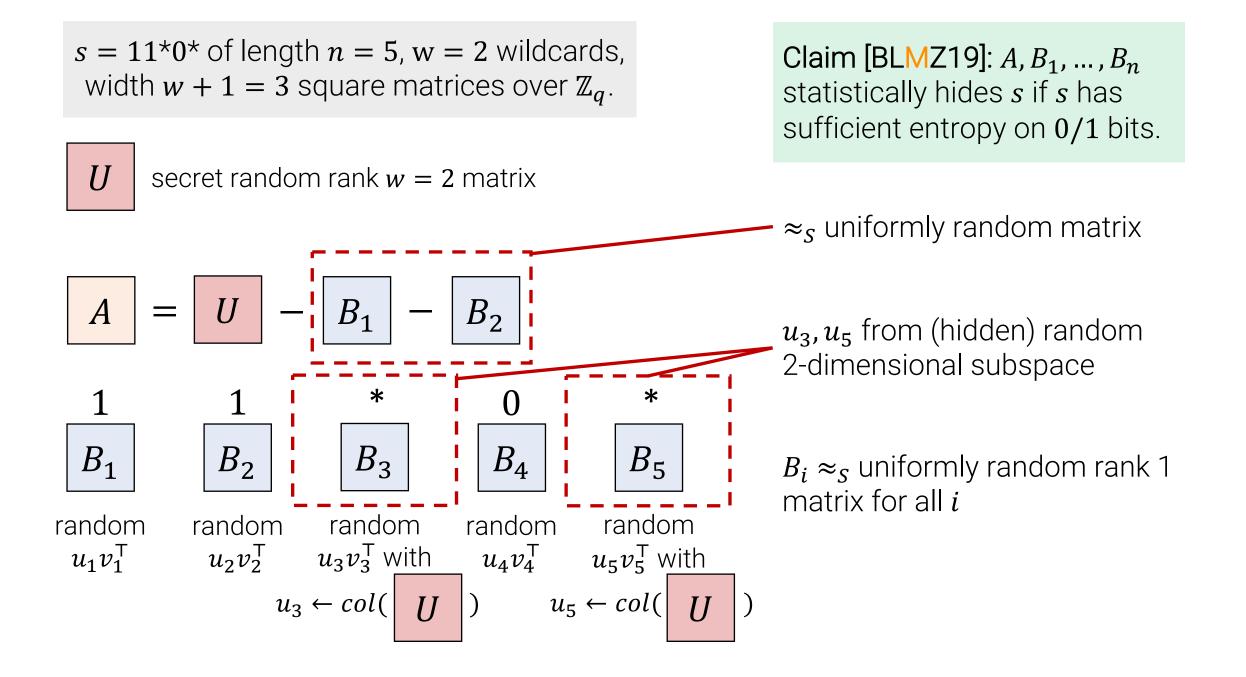
U

secret random rank w = 2 matrix

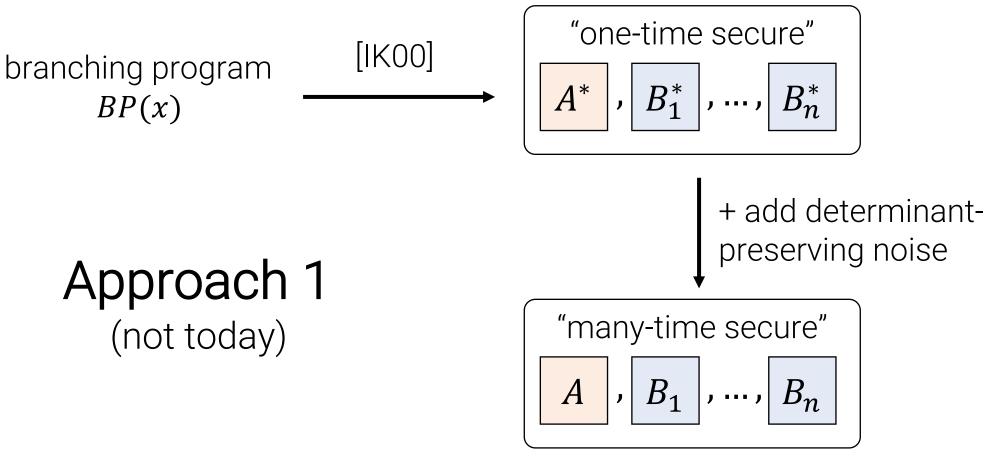


Claim [BLMZ19]: A, B_1, \dots, B_n statistically hides s if s has sufficient entropy on 0/1 bits.



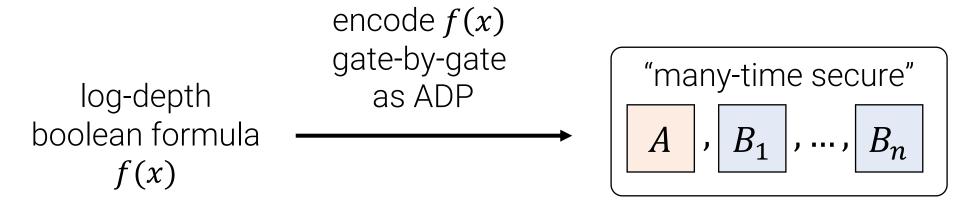


Candidate Many-Time Secure ADPs for NC1



Obfuscated program

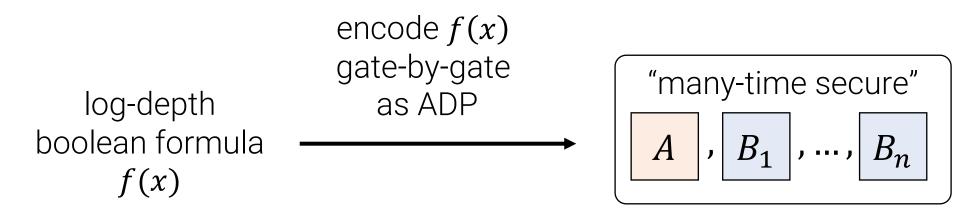
Candidate Many-Time Secure ADPs for NC1



Obfuscated program

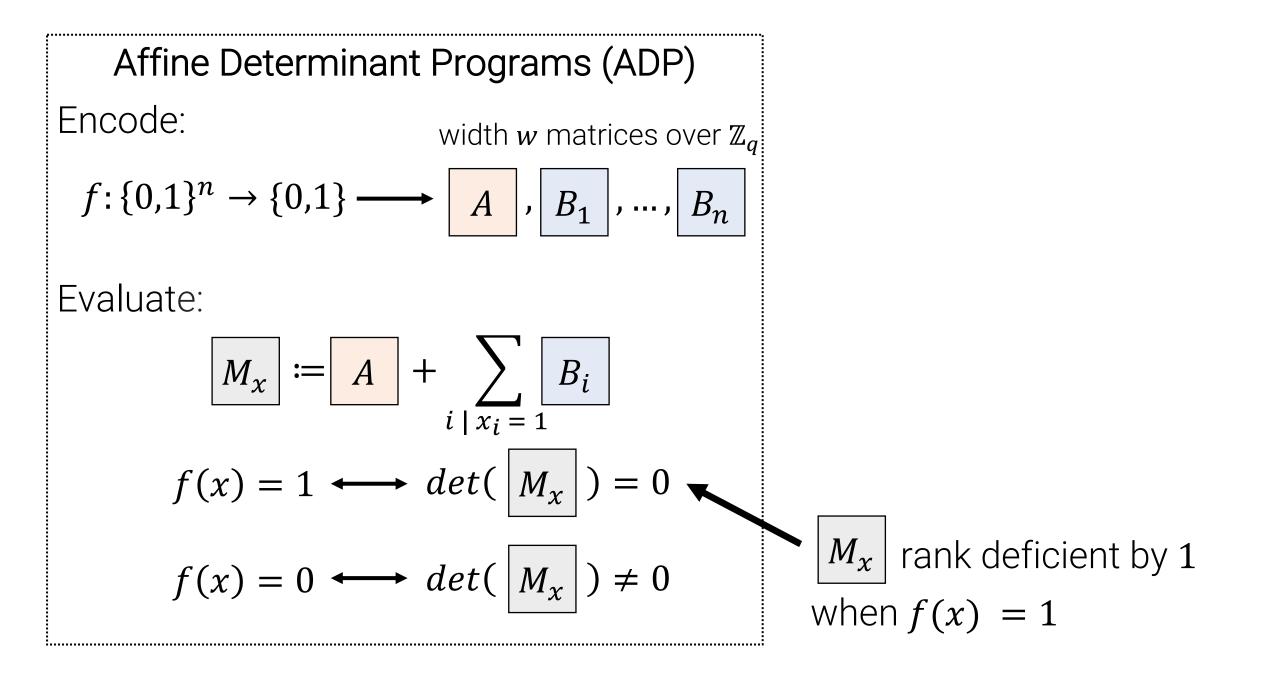
Approach 2

Candidate Many-Time Secure ADPs for NC1



Obfuscated program

- Positive/Negative Input-wire ADPs
- AND Gates
- OR Gates



Positive Input Wire

$$f(x_1, ..., x_n) = x_i$$

1) Draw random $u \leftarrow \mathbb{Z}_q$
2) Construct width-1 ADP:

$$A = u, B_i = -u, B_j = 0 \quad (\forall j \neq i)$$

Positive Input Wire

$$f(x_1, ..., x_n) = x_i$$
1) Draw random $u \leftarrow \mathbb{Z}_q$
2) Construct width-1 ADP:
$$A = u, B_i = -u, B_i = 0 \quad (\forall j \neq i)$$

$$A = u, \quad B_i = -u, \quad B_j = 0 \quad (\forall j \neq i)$$

Correctness
$$M_x \coloneqq A + \sum_{i \mid x_i = 1} B_i$$

• If $x_i = 1$, then $M_x = 0$
• If $x_i = 0$, then $M_x = u$

(determinant of a scalar is itself)

Negative Input Wire

$$f(x_1, ..., x_n) = \neg x_i$$

1) Draw random $u \leftarrow \mathbb{Z}_q$
2) Construct width-1 ADP:

$$A = 0, \quad B_i = u, \quad B_j = 0 \quad (\forall j \neq i)$$

Negative Input Wire

$$f(x_1, ..., x_n) = \neg x_i$$
1) Draw random $u \leftarrow \mathbb{Z}_q$
2) Construct width-1 ADP:
$$A = 0 \quad \mathbb{R} = u \quad \mathbb{R}_i = 0 \quad (\forall i \neq i)$$

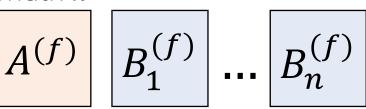
$$A = 0, \quad B_i = u, \quad B_j = 0 \quad (\forall j \neq i)$$

Correctness
• If
$$x_i = 1$$
, then $M_x = u$
 $M_x = A + \sum_{i \mid x_i = 1} B_i$
• If $x_i = 0$, then $M_x = 0$

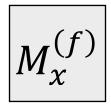
(determinant of a scalar is itself)

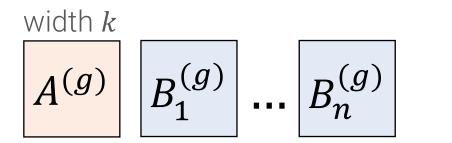
Candidate AND Gates

width k

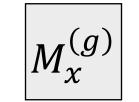


Evaluation on x is $M_x^{(f)}$

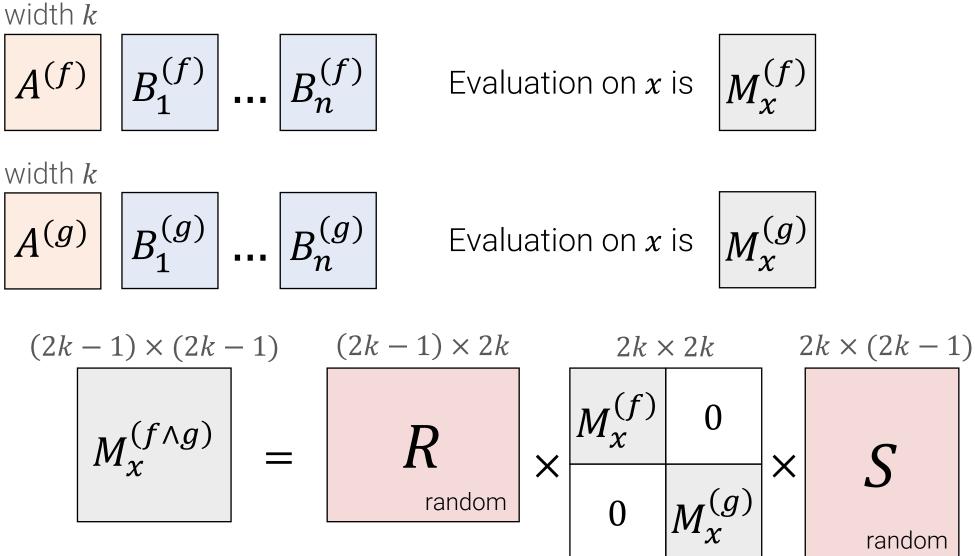




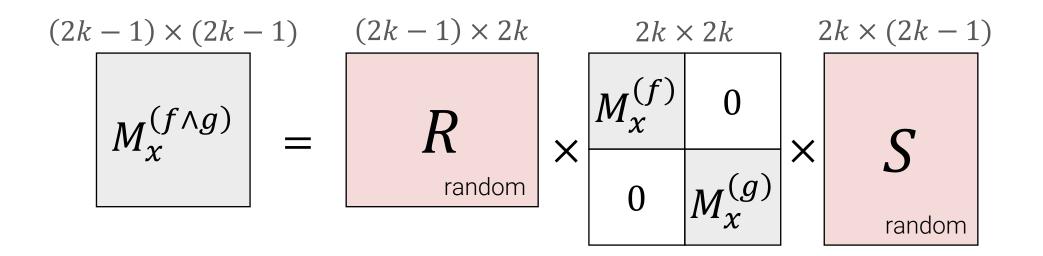
Evaluation on x is



Candidate AND Gates

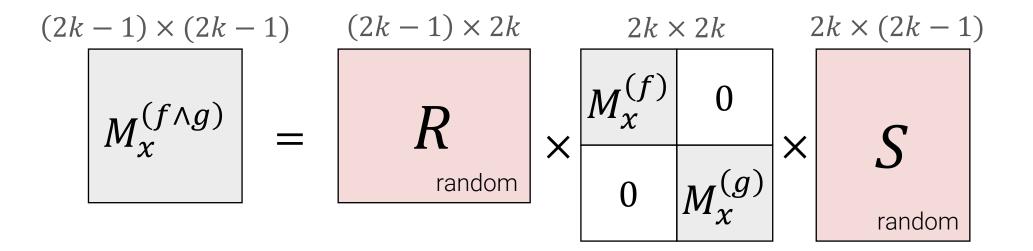


AND Gate Correctness • If f(x) and g(x) are both 1, then $M_x^{(f)}$ and $M_x^{(g)}$ are both rank k - 1, so $M_x^{(f \land g)}$ is rank 2k - 2(rank deficient)

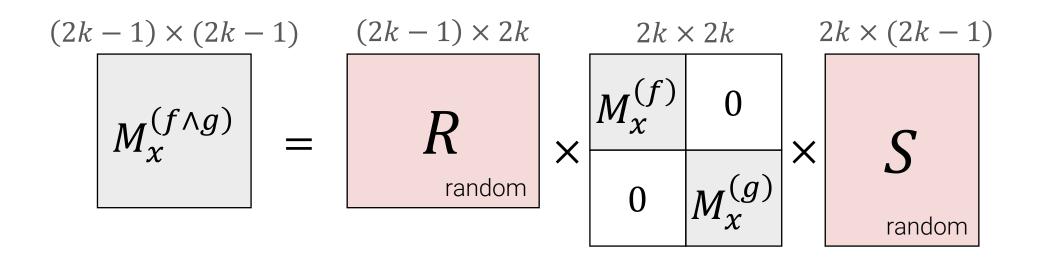


AND Gate Correctness

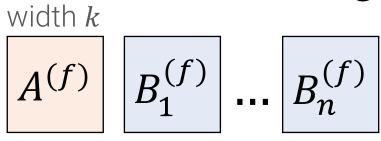
- If f(x) and g(x) are both 1, then $M_x^{(f)}$ and $M_x^{(g)}$ are both rank k - 1, so $M_x^{(f \wedge g)}$ is rank 2k - 2(rank deficient)
- If at least one of f(x) and g(x) is 0, then at least one of $M_x^{(f)}$ and $M_x^{(g)}$ is rank k, so $M_x^{(f \land g)}$ is rank 2k 1 (full rank)



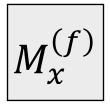
Claim: For appropriately-designed "input wire ADPs", applying these AND gates recovers the [BLMZ19] conjunction obfuscator.



Candidate OR Gates

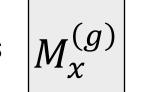


Evaluation on x is $M_x^{(f)}$

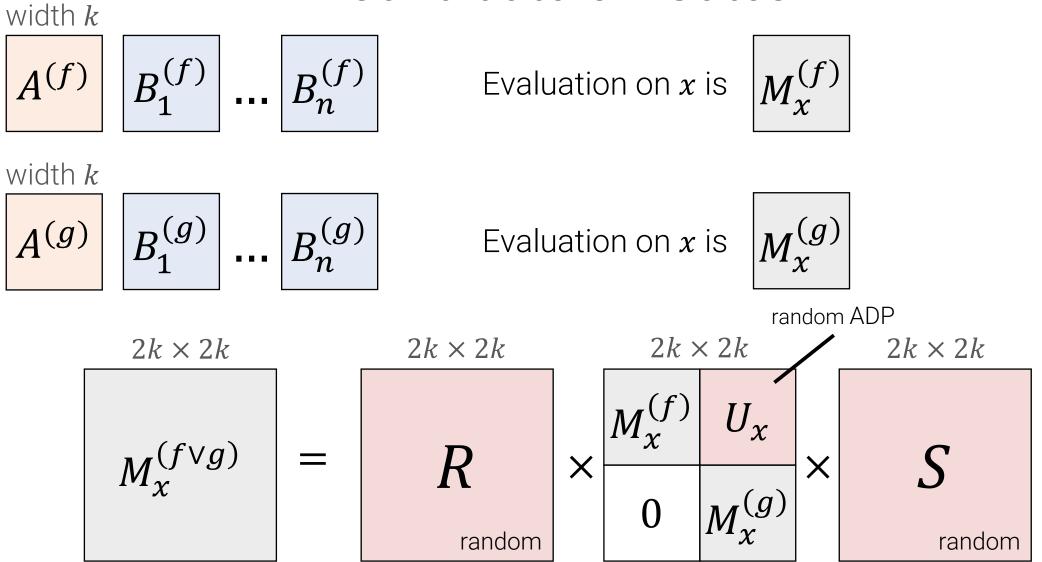


width
$$k$$

 $A^{(g)}$ $B_1^{(g)}$... $B_n^{(g)}$

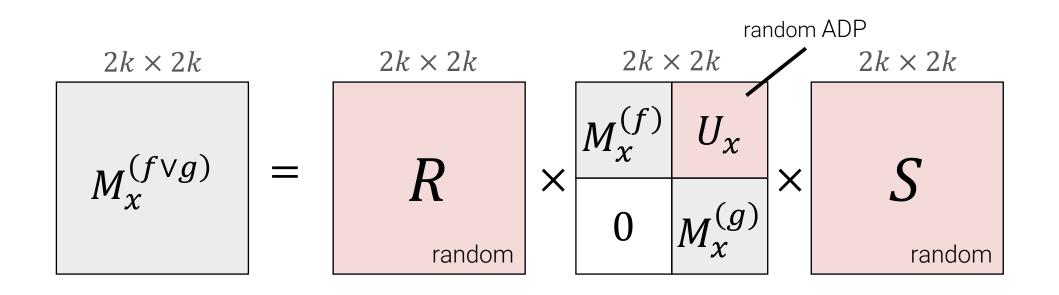


Candidate OR Gates



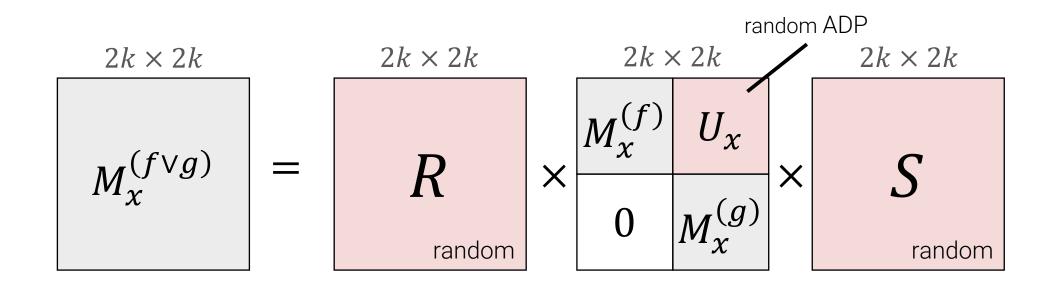
• If at least one of f(x) and g(x) is 1, then $M_x^{(f \land g)}$ is rank 2k - 1 (rank deficient)

OR Gate Correctness



OR Gate Correctness

- If at least one of f(x) and g(x) is 1, then $M_x^{(f \land g)}$ is rank 2k 1 (rank deficient)
- If neither f(x) and g(x) are 1, then $M_x^{(f \land g)}$ is rank 2k (full rank)



Attacks and Defenses

All attacks so far are "kernel attacks", which exploit linear relationships between kernels of $M_{x_1}, M_{x_2}, \dots, M_{x_k}$ from accepting inputs x_1, x_2, \dots, x_k .

Attacks and Defenses

All attacks so far are "kernel attacks", which exploit linear relationships between kernels of $M_{x_1}, M_{x_2}, \dots, M_{x_k}$ from accepting inputs x_1, x_2, \dots, x_k .

Future Directions:

- 1. Design new input wires to resist kernel attacks.
- 2. Security for null/evasive circuits?
- 3. Post-processing strategies, e.g., compute the AND of k independent ADP obfuscations of f.

Thank you! Questions?

slides available at cs.princeton.edu/~fermim/