Does Fiat-Shamir Require a Cryptographic Hash Function?

Yilei Chen (Visa Research)

Alex Lombardi (MIT)

Fermi Ma (Princeton and NTT Research)
Willy Quach (Northeastern)

(Public-Coin) Interactive Protocols
[GMR85, B85]

(Public-Coin) Interactive Protocols

. [GMR85, B85]
x 1S true

(Public-Coin) Interactive Protocols

.I know a [GMR85, B85]
witness for x

(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each r; uniformly random

(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each r; uniformly random

Completeness: If statement is true,
verifier accepts w/ probability 1.

Soundness: If statement is false,
verifier rejects w/ high probability,
no matter what prover does.

(Public-Coin) Interactive Protocols

[GMR85, B85]
251
51 Completeness: If statement is true,
: verifier accepts w/ probability 1.
Ap—1 |
Tre_1 Soundness: If statement is false,
N verifier rejects w/ high probability,
K

no matter what prover does.

Public coin: each r; uniformly random

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, ..]

IP = PSPACE, zero-knowledge, succinct arguments, etc.

(Public-Coin) Interactive Protocols

[GMR85, B85]
251
51 Completeness: If statement is true,
: verifier accepts w/ probability 1.
Ap—1 |
Tre_1 Soundness: If statement is false,
N verifier rejects w/ high probability,
K

no matter what prover does.

Public coin: each r; uniformly random

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, ..]

But do we always need it?

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol I1

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

a; Hash Function H

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

aq Hash Function H
Ar—1
Tk—1

3%

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

aq Hash Function H
: 1 = H(a

ak—l 1 (1)

k-1

Ay

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

aq Hash Function H

51 aq,a,

: 1 = H(a
ak—l 1 (1)
k-1

(09%

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

aq Hash Function H
4] aq,ay

a . 7,'1 — H(al)
k—1 o

. r, = H(aq,ay)
k—1
Ay

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

a; Hash Function H
1 aq,dy, ..., A
: 1 = H(a
ak—l 1 (1)
Tie_1 r, = H(aq, az)
Ay R Tk—1 = H(al, cee) ak—l)

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

When does Fiat-Shamir preserve soundness?

a; Hash Function H
41 aq, Ay, ..., 5
: rn = H(a
ak—l 1 (1)
Tie_1 r, = H(ay, ay)
Ay R Tk—1 = H(al, cee) ak—l)

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

When does Fiat-Shamir preserve soundness?

« His arandom oracle (usually)
[FS86, BR93, PS96)]

a; Hash Function H
1 aq, Ay, ..., 5
: rn = H(a
ak—l 1 (1)
Tie_1 r, = H(ay, ay)
Ay R Tk—1 = H(al, cee) ak—l)

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

When does Fiat-Shamir preserve soundness?

« His arandom oracle (usually)
[FS86, BR93, PS96)]

« H is “correlation-intractable” (sometimes)
[CGHO04, HMRO08, CCR16, KRR17, CCRR18, CCHLRRW19, PS19,
BKM20, LV20a, JKKZ20, LV20b ..]

a; Hash Function H
1 aq, Ay, ..., 5
: rn = H(a
ak—l 1 (1)
Tie_1 r, = H(ay, ay)
Ay R Tk—1 = H(al, cee) ak—l)

Public-Coin Interactive Protocol I Non-Interactive Argument FSy (IT)

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function A, care must be taken first to ensure
that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and
second to ensure that A exposes no relevant “structure” attributable to its being defined from some
lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function A, care must be taken first to ensure
that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and
second to ensure that A exposes no relevant “structure” attributable to its being defined from some
lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

What happens if the hash function exposes “structure™

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function A, care must be taken first to ensure
that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and
second to ensure that A exposes no relevant “structure” attributable to its being defined from some
lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

What happens if the hash function exposes “structure™

This work: For some well-known protocols, soundness can still hold.

Result 1: Can compile some protocols”
w/ simple, non-cryptographic* FS hash
functions.

* Examples:

« Lyubashevsky's ID protocol
« Schnorr's ID protocol

« Chaum-Pedersen protocol

" Examples:
 H(x) = BitDecomp(x)
« H(x) =ax + b (mod p)

*

Result 1: Can compile some protocols
w/ simple, non-cryptographic* FS hash
functions.

Result 2: For many 3-message HVZK
arguments?, cryptographic FS hash
function is necessary.

* Examples:

« Lyubashevsky's ID protocol
« Schnorr's ID protocol

« Chaum-Pedersen protocol

" Examples:
 H(x) = BitDecomp(x)
* H(x) =ax + b (mod p)

* Examples:

« Blum’s Hamiltonicity protocol w/
parallel repetition

« GMW86 3-Coloring protocol w/
parallel repetition

» T-bit challenge Schnorr w/ parallel
repetition

Outline

» Positive Results for Lyubashevsky
« Positive Results for Schnorr

« Negative Results

Outline

« Positive Results for Lyubashevsky
« Positive Results for Schnorr

« Negative Results

public secret public

Review: | | |
_yubashevsky’'s A p |FLY

~ ~
.BULDZEOJ[OCOl random — (statistically)

NZqg “short” random in Z,

public secret public

Review: | | |
_yubashevsky’'s A p |FLY

~ ~
.BULDZEOJ[OCOl random — (statistically)

NZqg “short” random in Z,

| know a short
pre-image of Y.

Review:
_yubashevsky’s

D Protocol
Lyu12]

| know a short
pre-image of Y.

public secret

public
|

A
— R
random —
INZg; “short”
a=| A

Y

<
(statistically)

random in Ly

public secret public

RevVIew: | | |
_yubashevsky’'s A p |FLY

N
.BULDZEOJ[OCOl random — (statistically)

NZqg “short” random in Z,

| know a short
pre-image of Y. a= A

¢~ ‘short”

random
in {0,1}

C\

public secret public

RevVIew: | | |
_yubashevsky’'s A p |FLY

N
.BULDZEOJ[OCOl random — (statistically)

NZqg “short” random in Z,

| know a short
pre-image of Y. a= A

¢~ ‘short”

random
in {0,1}

C\

public secret public

Review: | | |
_yubashevsky’'s A p |FLY

~ ~
.BULDZEOJ[OCOl random — (statistically)

NZqg “short” random in Z,

| know a short
pre-image of Y. a= A

¢~ ‘short”

random
in {0,1}

N
I
o~
|
=
a

public secret public

RevVIew: | | |
_yubashevsky’'s A p |FLY

N
.BULDZEOJ[OCOl random — (statistically)

NZqg “short” random in Z,

| know a short
pre-image of Y. a= A

¢~ ‘short”

random
in {0,1}

z independent of R
by noise-flooding or
rejection sampling

N
I
o~
|
=
a

public secret public

Review: | | |
_yubashevsky’'s A p |FLY

~ ~
.BULDZEOJ[OCOl random — (statistically)

NZqg “short” random in Z,

| know a short

re-image of Y. _
P J a=| 4 ¢+ “short”
. random Accept if
N {0,
0.1) A =la|+| Y
z independent of R z

N
I
o~
|
=
a

by noise-flooding or
rejection sampling ‘ and z is “short”.

public secret public

Review: | | |
_yubashevsky’'s A p |FLY
<
IP 1P2IiOJ[OCO| random — (statistically)
b inZ, ‘“short” random in Z,
| know a short
re-image of Y. _
P J a=| 4 ¢+ “short”
_ random
in{0,1}
z independent of R
by noise-flooding or z|=|t|+| R ||c
rejection sampling

Soundness (Average Case)

- \
=2
l%:‘l\i
"4

(2
probability, é’ breaks SIS.

It accepts with good

Accept if

A =la|+| Y

and z is “short”.

public secret public

Review: | | |
yubashevsky's A [y Soundness (Average Case)
_ . |
- ~ Runonc # ¢, get
-BULDZEOJ[OCOl random — (statistically)

in 7 « » random in Z
g short q Azlel+l e

| know a short

pre-image of Y. _))
a=[_4 ||l “short J=lelel Bl
random Accept if
C\
In {0,
01 A =la|+| Y
z independent of R z ¢

N
I
o~
|
=
a

by noise-flooding or
rejection sampling ‘ and 7 is “short”.

Review:
_yubashevsky’s

D Protocol
Lyu12]

| know a short
pre-image of Y.

z independent of R
by noise-flooding or Z
rejection sampling

public secret public

A = Y
~ R N
random (statistically)
NZqg “short” random in Z,
a=| 4 ¢ "short”
_ random
in {0,1}
=|t|+| R |c

Soundness (Average Case)

Subtract
z—2z cC—cC
\
\
=| R
Accept if
A =la|+| Y
YA

and z is “short”.

public secret public

Review: | | |
yubashevsky's)y [y Soundness (Average Case)
- R - .
-~ o~ Multiply by A, rearrange:
.PU?ZEOJ[OCN random — (statistically)
- nZ, ‘short’ randominz, A | =y || |=lo
| know a short z—2z""]
re-image of Y. _ i
P J a=| 4 ¢~ ‘short” c—c

random Accept if

in{0,1}

A =la|+| Y

z independent of R
by noise-flooding or
rejection sampling ‘ and z is “short”.

N
I
o~
|
=
a

Review:
_yubashevsky’s

D Protocol
Lyu12]

| know a short
pre-image of Y.

z independent of R
by noise-flooding or Z
rejection sampling

public secret

public
|

A = Y
~ R N
random (statistically)
NZqg “short” random in Z,
a=| 4 ¢ "short”
L random
in{0,1}
=|t|+| R |c

Honest Verifier ZK
Pick random cl || Set
al=| A —| Y
Z
Accept if
A =la|+| Y
YA

and z is “short”.

Lyubashevsky
+ Fiat-Shamir

| know a short
pre-image of Y.

public secret

public
|

A =| Y
~ R ~
random — (statistically)
NZqg “short” random in Z,
al=| A
zZ|=|t|+

FS hash h:

Accept if

h(a)

A = |

|

and z is “short”.

/

Soundness: Must use h where hard

to find |a| and short |z| satistying:

&}

random in Z, h(a)

AN
|
K
+
~

Soundness: Must use h where hard

to find |«

and short

Z

satisfying:

|l
K
+

random in Ly

&}

h(a)

Key Idea: What if

Soundness: Must use h where hard Key Idea: What if ja|=| G ?

to find |a| and short |z|satistying: //

h(a)

AN
|
K
+
~

For example, h(a) = BitDecomp(a),

\Z/ | 1,24, ...
| . 1,2,4,

random in Z, h(a)

1,2,4, ...

Soundness: Must use h where hard

to find |«

and short

Z

satisfying:

|l
K
+

random in Ly

=

h(a)

Key Idea: What if ja|=| G ?

| |

| |

h(a) h(a)

Soundness: Must use h where hard Key Idea: What if |a|=| G ?
to find |a| and short |z|satistying: /
h(a)
A =la|+| Y —_— A = +| Y
g Z
random in Z, h(a) l h(a) h(a)
Since . is short, hard to find under SIS! —A |G+Y|| |=[0
N random in Z,
h(a) ~h(a)

A = Y
Another Perspective:If you know | R | where R -

random — (statistically)
NZg “short’ random in Z,

then you can find short solution | | to | =4 |G + Y| [=|0

Nh(a) N h(a)

A

Another Perspective: If you know | R | where — R
random —
inZg “short’
then you can find short solution | | to | =4 |G+ Y| |=
YA YA
Nh(a) Nh(a)

This is exactly the MP12/LW15 lattice trapdoor!

=| v
<
(statistically)

random in Lg

In an alternate timeline, we could have discovered lattice
trapdoors from trying to Fiat-Shamir Lyubashevsky's protocol.

Theorem. If there exists

such that

" h(a)

then h is secure FS hash for [Lyu12] ID scheme (under SIS).

Theorem. If there exists

such that

N h(a)

then h is secure FS hash for [Lyu12] ID scheme (under SIS).

What does this say about signatures?

We have two approaches for constructing lattice-based signatures:

GPV08 Fiat-Shamir + Lyubashevsky
(Preimage Sampleable Functions) (“Lattice Signatures w/o Trapdoors”)
fa(x) = Ax where trapdoor T Compile Lyubashevsky ID protocol
enables pre-image sampling. iInto signature Fiat-Shamir.

Sign m by applying random oracle
RO(m) and use T to find preimage
of RO(m).

We have two approaches for constructing lattice-based signatures:

GPV08 Fiat-Shamir + Lyubashevsky
(Preimage Sampleable Functions) (“Lattice Signatures w/o Trapdoors”)
fa(x) = Ax where trapdoor T Compile Lyubashevsky ID protocol
enables pre-image sampling. iInto signature Fiat-Shamir.

Sign m by applying random oracle
RO(m) and use T to find preimage
of RO(m).

Claim. [GPV08] with [MP12] trapdoor can be viewed as Hash-and-Sign
applied to FSy[I1,,] where FS hash function is h(a, x) = ¢ (a + x).

f h(@,RO(m)) = G~ (a + RO(M)): |a|+|\|=| G

N h(a, RO(M))

f h(@,RO(m)) = G~ (a + RO(M)): |a|+|\|=| G

N h(a, RO(M))

random in Z, h(a,RO(m))

f h(@,RO(m)) = G~ (a + RO(M)): |a|+|\|=| G

N h(a, RO(M))

A =la|+| Y — | A = G +| Y =\

Z Z \
N SR

random in Z,, h(a, RO(m)) h(a) h(a)

f h(@,RO(m)) = G~ (a + RO(M)): |a|+|\|=| G

RO\(m) ™ h(a,RO(m))
A =l + Y — A — G + Y —|\
\/ -1 RO(m)
random in Z, h(a, RO(m)) l h(a, RO(m))
—a |e+v|| |=] L
& —RO
As in [GPV08], a signature is a \/ (m)

- |
preimage of RO(m)! randominZ, | .

™ h(a, RO(m))

Outline

» Positive Results for Lyubashevsky
 Positive Results for Schnorr

« Negative Results

Review: Schnorr's
ID Protocol [s91]

Group G of order p
with generator g

public g*

Review: Schnorr's
ID Protocol [s91]

Group G of order p
with generator g

| kKnow x

public g*

Review: Schnorr's
ID Protocol [so1]

Group G of order p
with generator g

| kKnow x

Sample random r « Z,,. \

public g*

Review: Schnorr's
ID Protocol [so1]

Group G of order p
with generator g

| kKnow x

Sample random r « Z,,. \

public g*

Sample random ¢ « Z,,.

Review: Schnorr's
ID Protocol [s91]

Group G of order p
with generator g

| kKnow x

Sample random r « Z,,. \

Compute z =r + cx.

public g*

Sample random ¢ « Z,,.

Accept if g%z = g"(g*)¢.

Review: Schnorr's Group G of order p
ID Protocol [so1] with generator g

| know x public g*

Samplerandomr « Z,. __ 9"

Sample random ¢ « Z,,.

Compute z = r + cx. e Z

Accept if g%z = g"(g*)¢.

Proof of Knowledge: If @ accepts w/ good probability, can extract x from .

%
(run ON ¢y # ¢y, SOlve z; =r + cyx and z, = r + ¢,x for x)

Review: Schnorr's Group G of order p

ID Protocol [so1] with generator g
| know x public g*
Sample random r « Z,,. g
/ C Sample random ¢ « Z,,.
Compute z = r + cx. VA

Accept if gz = g"(g*)°¢.

Honest Verifier ZK: Can simulate honest verifier accepting transcripts.

(pick random ¢, z, set g™ = g%(g*)~°).

Schnorr
+ Fiat-Shamir

Group G of order p
with generator g

FS hash

i X
H:G - 1, public g

Sample random r « Z,,.

Computez=r+ H(g")x.

Accept if g% = g"(g¥)H@").

Schnorr Group G of order p FS hash

I X
+ Fiat-Shamir with generator g H:G - Z, public g

Sample random Z.,. _ .
P T O Accept if g% = g"(g*)H@").

Computez=r+ H(g")x.

Important Open Question: For what H is this sound?

Schnorr Group G of order p FS hash

I X
+ Fiat-Shamir with generator g H:G - Z, public g

Sample random Z.,. _ .
P T O Accept if g% = g"(g*)H@").

Computez=r+ H(g")x.

Important Open Question: For what H is this sound?
Let's ask a different question...

For what H is this unsound?

Schnorr Group G of order p FS hash

I X
+ Fiat-Shamir with generator g H:G - Z, public g

Sample random Z.,. _ .
P T O Accept if g% = g"(g*)H@").

Computez=r+ H(g")x.

Rephrased: For what H is it possible to break FS-Schnorr for any group G~

Schnorr Group G of order p FS hash

I X
+ Fiat-Shamir with generator g H:G - Z, public g

Sample random Z.,. _ .
P T O Accept if g% = g"(g*)H@").

Computez=r+ H(g")x.

Rephrased: For what H is it possible to break FS-Schnorr for any group G~

- Constant functions: If H(g") = k for all g", set g" = (g*) ™ and z = 0.

Schnorr
+ Fiat-Shamir

Sample random r « Z,,.

Computez=r+ H(g")x.

Group G of order p
with generator g

FS hash
H:G - 7,

public g*

Accept if g% = g"(g¥)H@").

Rephrased: For what H is it possible to break FS-Schnorr for any group G~

- Constant functions: If H(g") = k for all g", set g" = (g*) ™ and z = 0.

« “Constant on many inputs”: If H(g") = k for ¢ fraction of g", same attack
works with & probability.

Schnorr Group G of order p FS hash

i X
+ Fiat-Shamir with generator g H:G - Z, public g

Sample random r « Z,,. .
P r fp Accept if g7 = g"(g*)H9").

Computez=r+ H(g")x.

FS-Schnorr always insecure S ceabl
for these H. | ilg”) = i T mouesElalE Al

N 1 r
fraction of g functions H

Schnorr Group G of order p FS hash

i X
+ Fiat-Shamir with generator g H:G - Z, public g

Sample random r « Z,,. -
P P Accept if g% = g"(g*)H@").

Computez=r+ H(g")x.

H(g") has w(log A) min-
entropy on random g"

FS-Schnorr always insecure " e f ceabl
for these H. | ilg”) = i T mouesElalE Al

N 1 r
fraction of g functions H

Schnorr Group G of order p FS hash

| X
+ Fiat-Shamir with generator g H:G - Z, public g
Sample random r « Z,,. r
P " 9,z Accept if g% = g™ (g¥)HW@",
Computez=r+ H(g")x.
Thm: FS-Schnorr secure
in “Generic Group Model” ~~_ H(g") has w(log 1) min-
for these H! entropy on random g”
FS-Schnorr always insecure
for these H d ~_ H(g") = k for noticeable Al
. L , ,
fraction of g functions H

Aside: Generic Group Model (GGM) [N94,597,M95)

Tagline: Idealized interface that only allows "honest” use of the group.

Aside: Generic Group Model (GGM) [N94,597,M95)

Tagline: Idealized interface that only allows "honest” use of the group.

1) Sample random

injection GGM Oracle
0:Z, - {0,1}". X o (%)
0 (10100100

1 01010111

p—1 (10010110

Aside: Generic Group Model (GGM) [N94,597,M95)

Tagline: Idealized interface that only allows "honest” use of the group.

1) Sample random

injecti GGM Oracle

Injection , o) 0 (0)

o: Zp - {0,1}*. X o(x) :
2) Replace each g* 0 |10100100

with “label” o (x). 1 |o1010111

p—1 (10010110

Aside: Generic Group Model (GGM) [N94,597,M95)

Tagline: Idealized interface that only allows "honest” use of the group.

Sample random
Injection

0:Z, - {0,1}".
Replace each g*
with “label” a(x).

Permit group
operations via
oracle queries

o(xq), ...,0(xy) :

GGM Oracle
X o(x)
0 (10100100

1 01010111

4 o(x),o(y),a,b

p—1 (10010110

o(ax + by)

H(g") has w(log 1) min-
entropy on random g"

H(g") = k for noticeable
fraction of g"

All

functions H

Theorem: FS-Schnorr secure
in GGM for these H.
— (captures all “reasonable” H)

Theorem: FS-Schnorr secure
H(g") has w(log 4) min- ___| inGGM forthese H.
entropy on random g” — (captures all “reasonable” H)
. , Example: H: ¢ —» Z,, where
H(g") = k for not|7§eable Al e) .
fraction of g functions H St&gng)é;dlpg(ej[ireetmg()da;"a it-

Theorem: FS-Schnorr secure
H(g") has w(log 4) min- ___| inGGM forthese H.
entropy on random g” — (captures all “reasonable” H)
. , Example: H: ¢ —» Z,, where
H(g") = k for not|7§eable Al N) §
fraction of g functions H I;&gm)é;dlg(ej[ireetmg()da;"a it-

This extends to Schnorr signatures!*

*Similar to analysis by [NSWO09]

| Theorem: FS-Schnorr secure
H(g") has w(log 4) min- ___| inGGM forthese H.
entropy on random g" — (captures all “reasonable” H)
, Example: H: ¢ —» Z,, where
H(g‘r)f= k for nfot|feable Al Ha™ o interpret o 8 a bit
actionoty TUREILONS i strigrwg énd redu%e mgod p’

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for H: GXM — Z,,
where H(g",m) := g" + m (mod p) if |[M|/p is negligible.

*Similar to analysis by [NSWO09]

| Theorem: FS-Schnorr secure
H(g") has w(log A) min- in GGM for these H.
entropy on random g" — (captures all “reasonable” H)

Example: H: ¢ —» Z,, where

H(g") = k for noticeable Al
fraction of g” H(g") =="interpret g" as a bit-

TUREILONS i string and reduce mod p”

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for H: GXM — Z,,
where H(g",m) := g" + m (mod p) if |[M|/p is negligible.

*similar to analysis by INswoe] ...DUt the story doesn’t end here

This H is insecure in practice!

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for H: GXM — Z,,
where H(g",m) := g" + m (mod p) if |[M|/p is negligible.

This H is insecure in practice!

Attack: We show a non-uniform attack on
this signature scheme in any concrete group.

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for H: GXM — Z,,
where H(g",m) := g" + m (mod p) if |[M|/p is negligible.

This H is insecure in practice!

Attack: We show a non-uniform attack on

this signature scheme in any concrete group.
(also applies to [NSW09] Schnorr signatures)

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for H: GXM — Z,,
where H(g",m) := g" + m (mod p) if |[M|/p is negligible.

H(g",m) = g" + m (mod p)

Group G of order p with
generator g

Signing key g*.

Recall: Valid signature on mis (g7, z) where:
gz — gr(gx)grﬂn (mod p)

H(g",m) = g" + m (mod p)

Group G of order p with
generator g

Signing key g*.

Recall: Valid signature on mis (g7, z) where:
gz — gr(gx)g’”+m (mod p)

Non-Uniform Attack

« Advice: (m,r) where the bit-representation of g” is —m (mod p).
« Attack: Output (m,g",z =r).

H(g",m) = g" + m (mod p)

Group G of order p with
generator g

Signing key g*.

Recall: Valid signature on mis (g7, z) where:
gz — gr(gx)g’”ﬂn (mod p)

Non-Uniform Attack

« Advice: (m,r) where the bit-representation of g” is —m (mod p).
« Attack: Output (m,g",z =r).

Over Z3 and elliptic curve groups, this attack can be done without advice!

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially)
recover our positive results in the preprocessing GGM:.

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially)
recover our positive results in the preprocessing GGM:.

x o(x)
0 |10100100

1 01010111
GGM Oracle]
p—1 (10010110
b og(x)
0 (10100100 :
poly-size
1 01010111 “sdvice”
p—1 (10010110

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially)
recover our positive results in the preprocessing GGM:.

x o(x)

0 10100100
1 01010111
GGM Oracle s s
p—1 (10010110
b og(x)
o (10100100 {
o\X1), ..., 0X " . "
1 |01010111 (x1) (k): \ S dvice
p—1 10010110 a(x),0(y),a,b ‘,
< - \ '

o(ax + by) !

Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for
H:GxXM - Z, where Hi(g",m) == g" + m + k (mod p) if [M|/p is negligible.

N\

Uniformly random key k « Z, blocks
generic non-uniform attacks

Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for
H:GxXM - Z, where Hi(g",m) == g" + m + k (mod p) if [M|/p is negligible.

N\

Uniformly random key k « Z, blocks
generic non-uniform attacks

Conjecture: This scheme is secure if G is Zj.
(not implied by generic analysis, but we haven't found any attacks)

Exercise. Break Schnorr sigs for short

r .
messages over ZX w/ this FS hash: Hi(g",m) = g" + m + k (mod p)

Sign(sk, m)
Group: Z with generator g * Sampler « Zy. Let
: =r+(g" k) - sk d

Message Space: m € M with z=1+(g" +m+k)-sk(modp)

e « Qutput (g7, 2)
IM|/p negligible
Signing key: sk < Z, Ver(vk,m,(g", z))
Verification key: vk = (k, g%) * Acceptit
where k < Z, 9% =g" - (g7)9 ™k (mod p).

Warning: Our security analysis does not imply security in Zy!

But unclear (to us) how to break EUF-CMA security.

Interpreting Positive Results

Hash Function H

a
a, z
C
c =H(a)
Z
Interactive Protocol I1 Non-Interactive Protocol FSg[IT]

In positive results, FSy[I1] soundness uses cryptography already present in I1.

Interpreting Positive Results

Hash Function H

a
a, z
C
c =H(a)
Z
Interactive Protocol I1 Non-Interactive Protocol FSg[IT]

In positive results, FSy[I1] soundness uses cryptography already present in I1.

« [lg. Uses cryptographic groups; FSy[Ilg.] soundness relies on generic
hardness of the group.

Interpreting Positive Results

Hash Function H

a
a, z
C
c =H(a)
Z
Interactive Protocol I1 Non-Interactive Protocol FSg[IT]

In positive results, FSy[I1] soundness uses cryptography already present in I1.

« [lg. Uses cryptographic groups; FSy[Ilg.] soundness relies on generic
hardness of the group.

I1;,, uses lattices; FSy[II;,,] soundness relies on SIS.

Interpreting Positive Results

Hash Function H

a
a, z
C
c =H(a)
Z
Interactive Protocol I1 Non-Interactive Protocol FSg[IT]

This suggests a strategy: identify a security property related to IT that results in
sound FSy[II] for a simple/non-cryptographic H.

Interpreting Positive Results

Hash Function H

a
a, z
C
c =H(a)
Z
Interactive Protocol I1 Non-Interactive Protocol FSg[IT]

This suggests a strategy: identify a security property related to IT that results in
sound FSy[II] for a simple/non-cryptographic H.

When is it possible to do this?

Outline

» Positive Results for Lyubashevsky
« Positive Results for Schnorr

* Negative Results

Theorem. Let IT be a 3-message HVZK argument (or proof) with poly-size
challenge space and let I1* denote Il repeated t times in parallel.

Soundness of FSy[I1t] requires H to satisfy a cryptographic security property.

Theorem. Let IT be a 3-message HVZK argument (or proof) with poly-size
challenge space and let I1* denote Il repeated t times in parallel.

Soundness of FSy[I1t] requires H to satisfy a cryptographic security property.

* Blum’'s Hamiltonicity protocol
« GMW86 3-Coloring protocol
 T-bit challenge Schnorr

« 1-bit challenge Lyubashevsky

Theorem. Let IT be a 3-message HVZK argument (or proof) with poly-size
challenge space and let I1* denote Il repeated t times in parallel.

Soundness of FSy[I1t] requires H to satisfy a cryptographic security property.

* Blum’'s Hamiltonicity protocol Takeaway: FS without a cryptographic
« GMW86 3-Coloring protocol hash function requires large challenge
 T-bit challenge Schnorr space that is not obtained via parallel
« 1-bit challenge Lyubashevsky repetition of a protocol with a small

challenge space.

Theorem. Let IT be a 3-message HVZK argument (or proof) with poly-size
challenge space and let I1* denote Il repeated t times in parallel.

Soundness of FSy[I1t] requires H to satisfy a cryptographic security property.

« Blum'’s Hamiltonicity protocol

Recall: First message in Blum is a cryptographic commitment.

Even if the commitment is “ideal”, the Fiat-Shamir hash function must be
cryptographic.

Review: ZK Proof of Hamiltonicity [Blumse]

G =n(G)form« S,
Compute a = Com(G")

b = 0: open G’ and send .

b=1.openmoo.

Accept if:

b = 0: openings valid and
G =n(G).

b = 1: openings valid and
edge openings are 1.

Review: ZK Proof of Hamiltonicity [Blumse]

Random
Oracle 0

G =n(G)form« S,

Compute a = Com(G")
w/ Com(x;r) = O(x,1)

b = 0: open G’ and send .

b=1.openmoo.

Random
Oracle O

Accept if:

b = 0: openings valid and
G =n(G).

b = 1: openings valid and
edge openings are 1.

Review: ZK Proof of Hamiltonicity [Blumse]

Random
Oracle 0

G =n(G)form« S,

Compute a = Com(G")
w/ Com(x;r) = O(x,1)

b = 0: open G’ and send .

b=1.openmoo.

+ parallel
repetition

Ay, ..., A

Random
Oracle O

by, ., by

Accept if:

b = 0: openings valid and
G =n(G).

b = 1: openings valid and
edge openings are 1.

Review: ZK Proof of Hamiltonicity [Blumse]

Random
Oracle 0

Random
Oracle O

FShash H

What is a bad choice of H?

G =n(G)form« S,

Compute a = Com(G") ai, ..., g

w/ Com(x;r) = O(x,1) Z1y s Zt Acceptif
' b = 0: openings valid and
¢ =n(G).
b = 0: open G’ and send . b1, ..., b (&)
= H(ay, ..., a;) b = 1: openings valid and

b=1.openmoo.

edge openings are 1.

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

|dea: Break each instance one-by-one.

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

|dea: Break each instance one-by-one.

by1 < {0,1}

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

|dea: Break each instance one-by-one.

* b1 < {0,1}

« Compute aq 4
that can open on
challenge by 4.

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

|dea: Break each instance one-by-one.

* b1 < {0,1}

« Compute aq 4
that can open on
challenge by 4.

* |ff(a1,1) = by
maove on.

v

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

|dea: Break each instance one-by-one.

* by, < {01} * b1 < {01}

« Compute a; 4 » Compute a; 4
thatcanopenon « f(ay) # by4
challenge by ;. X

° |ff(a1,1) = by
move on.

v

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

|dea: Break each instance one-by-one.

* b1 < {0,1}

« Compute a; 4 Compute a; 4
thatcanopenon « f(ay) # by4
challenge by ;. X

b2,1 < {0,1}

c I fla) =bis L oy
move on. . Compute as,
v . f(az,z) = by
v

* b1 < {0,1}

« Compute aq 4
that can open on
challenge by 4.

* |ff(a1,1) = by
maove on.

v

b, < {0,1}
Compute a; 4

f(a2,1) # by, * f(a3,1) = b3 1

X
b, < {0,1}
Compute a,
f(az,z) = by
v

|dea: Break each instance one-by-one.

* b3y < {01}
« Compute az,

EFachi =1, ...,t takes 2 tries in expectation

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

by < 10,1}
Compute a; 4

f(at,l) # bt 4
X

bt < {0,1}

Compute a; ,

f (at,z) = bt 7
v

* b1 < {0,1}

« Compute aq 4
that can open on
challenge by 4.

+ If flags) = bra

Mmaove on.

v

|dea: Break each instance one-by-one.

by, < {0,1} * b3 < {0,1}
Computea,,; <« Computeas,

f(a2,1) # by, * f(@ = b3 1

X v

* by, < {0,1}
« Compute ay,

* f=b2,2
v

EFachi =1, ...,t takes 2 tries in expectation.

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

by < 10,1}
Compute a; 4

f(ag1) # beq
X

b, < {0,1}

Compute a;

flacz) = bez

v

b1 < {0,1}
Commitment a, 4

by1 < {0,1}
Commitment a; 4

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

b1, < {0,1}
Commitment a, ,

by, < {0,1}
Commitment a, ,

b, < {0,1}
Commitment a; 4

by3 < {0,1}
Commitment a; 3

Modify attack to always perform k tries for each i.

Attacking an Insecure H: Suppose H(a4, ...,a;) = f(aq), ..., f(a;).

t columns
A
r N
b1, < {0,1} by1 < {0,1} bt < {0,1}
Commitment a; ; | Commitment a; 4 Commitment a; 4
b1, < {0,1} by, < {0,1} b, < {0,1}

Commitment a, ,

Commitment a, ,

Commitment a; ,

by x < {0,1}
Commitment a, g

by < {0,1}
Commitment a; j

b < {0,1}
Commitment a;

Modify attack to always perform k tries for each i.

Attacking an Insecure H: Suppose H(a4,

v @) = fag), ., f(ap).

t columns
A
r N
b1, < {0,1} by1 < {0,1} b1 < {0,1}
Commitment a; ; | Commitment a; 4 Commitment a; 4
b1, < {0,1} by, < {0,1} b, < {0,1}
Commitment a; , | Commitment a, , Commitment a; ,

by x < {0,1}
Commitment a, g

by < {0,1}
Commitment a; j

It k = w(logt), w.h.p. can choose bloc

by < {0,1}
Commitment a; j

K j; ineach column i s.t.

H(al,jl, ...,at’jt) = bl,jl’ ""bt,jt

w(t)

TOWS

This generalizes to any H!

t columns
A
r N
b1, < {0,1} by1 < {0,1} bt < {0,1}
Commitment a; ; | Commitment a; 4 Commitment a; 4
b1, < {0,1} by, < {0,1} b, < {0,1}

Commitment a; ,

Commitment a, ,

Commitment a; ,

by x < {0,1}
Commitment a, g

by < {0,1}
Commitment a; j

by < {0,1}
Commitment a; j

w(t)

TOWS

This generalizes to any H!

t columns
A
r N
b1, < {0,1} by1 < {0,1} bt < {0,1}
Commitment a; ; | Commitment a; 4 Commitment a; 4
b1, < {0,1} by, < {0,1} b, < {0,1}

Commitment a; ,

Commitment a, ,

Commitment a; ,

by x < {0,1}
Commitment a, g

by < {0,1}
Commitment a; j

by < {0,1}
Commitment a; j

Lemma. For w(t) rows, exists block j; in each columni s.t.
H(al’jl, . at,jt) —_ bl;j1’ . bt;jt

General attack on FSy [gm]:
1) Sample grid of random bit/commitment pairs.

General attack on FSy [gm]:
1) Sample grid of random bit/commitment pairs.

t columns
A
' N
b1, < {0,1} b,1 < {0,1} b1 < {0,1}
Commitment a; ; | Commitment a; 4 Commitment a; 4
by, < {0,1} b, < {0,1} b, < {0,1}
Commitment a; , | Commitment a, , Commitment a; ,

by < {0,1}
Commitment a, g

by < {0,1}
Commitment a; i

b < {0,1}
Commitment a;

General attack on FSy | giml:
1) Sample grid of random bit/commitment pairs.

2) Choose block j; incolumni s.t. H(ay j,, ..., atj,) = b1 j,, - bt j,.

t columns
A
' N
b1, < {0,1} b,1 < {0,1} b1 < {0,1}
Commitment a; ; | Commitment a; 4 Commitment a; 4
b1, < {0,1} b, < {0,1} b, < {0,1}
Commitment a; , | Commitment a, , Commitment a; ,

by < {0,1}
Commitment a, g

by < {0,1}
Commitment a; i

b < {0,1}
Commitment a;

General attack on FSy | giml:
1) Sample grid of random bit/commitment pairs.

2) Choose block j; incolumni s.t. H(ay j,, ..., atj,) = b1 j,, - bt j,.

3) Open commitments.

t columns
A
' N
b1, < {0,1} b,1 < {0,1} b1 < {0,1}
Commitment a; ; | Commitment a; 4 Commitment a; 4
b1, < {0,1} b, < {0,1} b, < {0,1}
Commitment a; , | Commitment a, , Commitment a; ,

by < {0,1}
Commitment a, g

by < {0,1}
Commitment a; i

b < {0,1}
Commitment a;

General attack on FSy [gm]:
1) Sample grid of random bit/commitment pairs.

2) Choose block j; incolumni s.t. H(ay j,, ..., atj,) = b1 j,, - bt j,.
3) Open commitments.

Soundness of FSy[Iz,m] requires computational hardness of (2).

H must be "mix-and-match resistant.”

(requirement extends to any parallel repetition of 3-message
HVZK argument with poly-size challenge space.)

Thanks!

eprint: 2020/915
slides: cs.princeton.edu/~fermim/

drawings by Eysa Lee

