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Completeness: If statement is true, 
verifier accepts w/ probability 1.

Soundness: If statement is false, 
verifier rejects w/ high probability, 
no matter what prover does.
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(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each 𝑟! uniformly random

Completeness: If statement is true, 
verifier accepts w/ probability 1.

Soundness: If statement is false, 
verifier rejects w/ high probability, 
no matter what prover does.

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, …]

IP = PSPACE, zero-knowledge, succinct arguments, etc.
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(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each 𝑟! uniformly random

Completeness: If statement is true, 
verifier accepts w/ probability 1.

Soundness: If statement is false, 
verifier rejects w/ high probability, 
no matter what prover does.

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, …]

But do we always need it?
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• 𝐻 is a random oracle (usually)
[FS86, BR93, PS96]

• 𝐻 is “correlation-intractable” (sometimes)
[CGH04, HMR08, CCR16, KRR17, CCRR18, CCHLRRW19, PS19, 
BKM20, LV20a, JKKZ20, LV20b …]

When does Fiat-Shamir preserve soundness?
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Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

What happens if the hash function exposes “structure”?

This work: For some well-known protocols, soundness can still hold.



Result 1: Can compile some protocols*

w/ simple, non-cryptographic† FS hash 
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• 𝐻 𝑥 = 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝)



Result 1: Can compile some protocols*

w/ simple, non-cryptographic† FS hash 
functions.

Result 2: For many 3-message HVZK 
arguments‡, cryptographic FS hash 
function is necessary.

‡ Examples:
• Blum’s Hamiltonicity protocol w/ 

parallel repetition
• GMW86 3-Coloring protocol w/ 

parallel repetition
• 1-bit challenge Schnorr w/ parallel 

repetition

* Examples:
• Lyubashevsky’s ID protocol
• Schnorr’s ID protocol
• Chaum-Pedersen protocol
† Examples:
• 𝐻 𝑥 = BitDecomp(𝑥)
• 𝐻 𝑥 = 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝)
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ℎ(𝛼)

𝛼 𝑧

random in ℤ'

𝛼 𝐺=Key Idea: What if                           ? 

ℎ(𝛼)

For example, ℎ 𝛼 = 𝐵𝑖𝑡𝐷𝑒𝑐𝑜𝑚𝑝 𝛼 ,

𝐺 =

1,2,4, …
1,2,4, … .

⋱
1,2,4, …
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𝑧Since      is short, hard to find under SIS!
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This is exactly the MP12/LW15 lattice trapdoor!

In an alternate timeline, we could have discovered lattice 
trapdoors from trying to Fiat-Shamir Lyubashevsky’s protocol.
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then ℎ is secure FS hash for [Lyu12] ID scheme (under SIS).
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Theorem. If there exists               such that 

then ℎ is secure FS hash for [Lyu12] ID scheme (under SIS).

𝛼 𝐺=
ℎ(𝛼)

𝐺

What does this say about signatures?



We have two approaches for constructing lattice-based signatures:

GPV08
(Preimage Sampleable Functions)

𝑓) 𝑥 = 𝐴𝑥 where trapdoor 𝑇
enables pre-image sampling.

Sign 𝑚 by applying random oracle 
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(“Lattice Signatures w/o Trapdoors”)

Compile Lyubashevsky ID protocol 
into signature Fiat-Shamir.
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𝑓) 𝑥 = 𝐴𝑥 where trapdoor 𝑇
enables pre-image sampling.

Sign 𝑚 by applying random oracle 
𝑅𝑂 𝑚 and use 𝑇 to find preimage 
of 𝑅𝑂 𝑚 .

Fiat-Shamir + Lyubashevsky
(“Lattice Signatures w/o Trapdoors”)

Compile Lyubashevsky ID protocol 
into signature Fiat-Shamir.

Claim. [GPV08] with [MP12] trapdoor can be viewed as Hash-and-Sign 
applied to 𝐹𝑆*[Π+,-] where FS hash function is ℎ 𝛼, 𝑥 = 𝐺$" 𝛼 + 𝑥 .
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+
𝑧
=𝐴 𝑌𝐺

ℎ(𝛼, 𝑅𝑂(𝑚))

=−𝐴 𝐺 + 𝑌
𝑧

random in ℤ'

−𝑅𝑂(𝑚)

If ℎ 𝛼, 𝑅𝑂 𝑚 = 𝐺$"(𝛼 + 𝑅𝑂 𝑚 ):

ℎ(𝛼, 𝑅𝑂(𝑚))

𝛼

𝑅𝑂(𝑚)

+ = 𝐺
ℎ(𝛼, 𝑅𝑂(𝑚))

𝑅𝑂(𝑚)

−

As in [GPV08], a signature is a 
preimage of 𝑅𝑂 𝑚 !
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works with 𝜀 probability.
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public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash 
𝐻:𝐺 → ℤ0

𝐻 𝑔/ = 𝑘 for noticeable 
fraction of 𝑔/

Schnorr
+ Fiat-Shamir

FS-Schnorr always insecure 
for these 𝐻. All 

functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

Thm: FS-Schnorr secure 
in “Generic Group Model” 
for these 𝐻!
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Aside: Generic Group Model (GGM) [N94,S97,M95]  

Tagline: Idealized interface that only allows “honest” use of the group.

1) Sample random 
injection 
𝜎: ℤ0 → 0,1 ℓ.

2) Replace each 𝑔.
with “label” 𝜎(𝑥).

3) Permit group 
operations via 
oracle queries

𝑥 𝜎(𝑥)
0 10100100
1 01010111
⋮ ⋮

𝑝 − 1 10010110

GGM Oracle 𝜎 𝑥" , … , 𝜎(𝑥#)

𝜎 𝑥 , 𝜎 𝑦 , 𝑎, 𝑏

𝜎(𝑎𝑥 + 𝑏𝑦)
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(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for 𝐻:𝐺×𝑀 → ℤ0
where 𝐻 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

This 𝐻 is insecure in practice!

Attack: We show a non-uniform attack on 
this signature scheme in any concrete group.

(also applies to [NSW09] Schnorr signatures)
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Recall: Valid signature on 𝑚 is (𝑔/, 𝑧) where:
𝑔1 = 𝑔/ 𝑔. 4!78 (89: 0)

Signing key 𝑔..

• Advice: (𝑚, 𝑟) where the bit-representation of 𝑔/ is −𝑚 (𝑚𝑜𝑑 𝑝).
• Attack: Output 𝑚,𝑔/, 𝑧 = 𝑟 .

Over ℤ0× and elliptic curve groups, this attack can be done without advice!

Group 𝐺 of order 𝑝 with 
generator 𝑔

𝐻 𝑔/, 𝑚 = 𝑔/ +𝑚 𝑚𝑜𝑑 𝑝

Non-Uniform Attack
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Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially) 
recover our positive results in the preprocessing GGM:

𝑥 𝜎(𝑥)
0 10100100
1 01010111
⋮ ⋮

𝑝 − 1 10010110

GGM Oracle

𝜎 𝑥" , … , 𝜎(𝑥#)

𝜎 𝑥 , 𝜎 𝑦 , 𝑎, 𝑏

𝜎(𝑎𝑥 + 𝑏𝑦)

poly-size 
“advice”



Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for 
𝐻:𝐺×𝑀 → ℤ0 where 𝐻# 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 + 𝑘 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

Uniformly random key 𝑘 ← ℤ0 blocks 
generic non-uniform attacks



Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for 
𝐻:𝐺×𝑀 → ℤ0 where 𝐻# 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 + 𝑘 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

Uniformly random key 𝑘 ← ℤ0 blocks 
generic non-uniform attacks

Conjecture: This scheme is secure if 𝐺 is ℤ0×.
(not implied by generic analysis, but we haven’t found any attacks)



Sign(𝑠𝑘,𝑚)

• Sample 𝑟 ← ℤ0. Let
𝑧 = 𝑟 + 𝑔/ +𝑚 + 𝑘 ⋅ 𝑠𝑘 𝑚𝑜𝑑 𝑝
• Output (𝑔/, 𝑧)

Warning: Our security analysis does not imply security in ℤ0×!

But unclear (to us) how to break EUF-CMA security.

Ver(𝑣𝑘,𝑚, (𝑔/, 𝑧))

• Accept if
𝑔1 = 𝑔/ ⋅ (𝑔<#)4!787# (𝑚𝑜𝑑 𝑝).

𝐻# 𝑔/, 𝑚 = 𝑔/ +𝑚 + 𝑘 (𝑚𝑜𝑑 𝑝)Exercise. Break Schnorr sigs for short 
messages over ℤ0× w/ this FS hash:

Group: ℤ0× with generator 𝑔

Message Space: 𝑚 ∈ 𝑀 with 
𝑀 /𝑝 negligible

Signing key: 𝑠𝑘 ← ℤ0
Verification key: 𝑣𝑘 = (𝑘, 𝑔<#)
where 𝑘 ← ℤ0
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In positive results, 𝐹𝑆%[Π] soundness uses cryptography already present in Π.

• Π=2* uses cryptographic groups; 𝐹𝑆%[Π=2*] soundness relies on generic 
hardness of the group.

• Π+,- uses lattices; 𝐹𝑆%[Π+,-] soundness relies on SIS.
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𝑎, 𝑧

𝑐 = 𝐻 𝑎

VP VP
Hash Function 𝐻

𝑎

𝑐

𝑧

Interactive Protocol Π Non-Interactive Protocol 𝐹𝑆%[Π]

This suggests a strategy: identify a security property related to Π that results in 
sound 𝐹𝑆%[Π] for a simple/non-cryptographic 𝐻.

When is it possible to do this?



Outline

• Positive Results for Lyubashevsky

• Positive Results for Schnorr

• Negative Results
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Soundness of 𝐹𝑆% Π> requires 𝐻 to satisfy a cryptographic security property.
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• Blum’s Hamiltonicity protocol
• GMW86 3-Coloring protocol
• 1-bit challenge Schnorr
• 1-bit challenge Lyubashevsky



Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size 
challenge space and let Π> denote Π repeated 𝑡 times in parallel.

Soundness of 𝐹𝑆% Π> requires 𝐻 to satisfy a cryptographic security property.

• Blum’s Hamiltonicity protocol
• GMW86 3-Coloring protocol
• 1-bit challenge Schnorr
• 1-bit challenge Lyubashevsky

Takeaway: FS without a cryptographic 
hash function requires large challenge 
space that is not obtained via parallel 
repetition of a protocol with a small 
challenge space.



Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size 
challenge space and let Π> denote Π repeated 𝑡 times in parallel.

Soundness of 𝐹𝑆% Π> requires 𝐻 to satisfy a cryptographic security property.

Recall: First message in Blum is a cryptographic commitment.

Even if the commitment is “ideal”, the Fiat-Shamir hash function must be 
cryptographic.

• Blum’s Hamiltonicity protocol



𝑉(𝐺)𝑃(𝐺, 𝜎)

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺() Accept if:

𝑏 = 0: openings valid and 
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and 
edge openings are 1.

Review: ZK Proof of Hamiltonicity [Blum86]

𝑏 ∈ {0,1}

𝑧

𝑎

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.



𝑉(𝐺)𝑃(𝐺, 𝜎)Random
Oracle 𝒪

Random
Oracle 𝒪

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺()
w/ 𝐶𝑜𝑚 𝑥; 𝑟 = 𝒪(𝑥, 𝑟)

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.

Review: ZK Proof of Hamiltonicity [Blum86]

𝑏 ∈ {0,1}

𝑧

𝑎

Accept if:

𝑏 = 0: openings valid and 
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and 
edge openings are 1.



𝑉(𝐺)𝑃(𝐺, 𝜎)Random
Oracle 𝒪

Random
Oracle 𝒪

Review: ZK Proof of Hamiltonicity [Blum86]

+ parallel 
repetition 

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺()
w/ 𝐶𝑜𝑚 𝑥; 𝑟 = 𝒪(𝑥, 𝑟) Accept if:

𝑏 = 0: openings valid and 
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and 
edge openings are 1.

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.

𝑏", … , 𝑏>

𝑧", … , 𝑧>

𝑎", … , 𝑎>



𝑉(𝐺)𝑃(𝐺, 𝜎)Random
Oracle 𝒪

Random
Oracle 𝒪

Review: ZK Proof of Hamiltonicity [Blum86]

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺()
w/ 𝐶𝑜𝑚 𝑥; 𝑟 = 𝒪(𝑥, 𝑟) Accept if:

𝑏 = 0: openings valid and 
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and 
edge openings are 1.

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.

𝑧", … , 𝑧>
𝑎", … , 𝑎>

FS hash 𝐻

𝑏", … , 𝑏>
= 𝐻(𝑎", … , 𝑎>)

What is a bad choice of 𝐻?



Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).



Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).
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• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on 
challenge 𝑏",".

• If 𝑓 𝑎"," = 𝑏","
move on.

• 𝑏&," ← {0,1}
• Compute 𝑎&,"
• 𝑓 𝑎&," ≠ 𝑏&,"
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Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).



• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on 
challenge 𝑏",".

• If 𝑓 𝑎"," = 𝑏","
move on.

• 𝑏&," ← {0,1}
• Compute 𝑎&,"
• 𝑓 𝑎&," ≠ 𝑏&,"

• 𝑏&,& ← {0,1}
• Compute 𝑎&,&
• 𝑓 𝑎&,& = 𝑏&,&

X

✓

• 𝑏A," ← {0,1}
• Compute 𝑎A,"
• 𝑓 𝑎A," = 𝑏A,"

✓ …

• 𝑏>," ← {0,1}
• Compute 𝑎>,"
• 𝑓 𝑎>," ≠ 𝑏>,"

• 𝑏>,& ← {0,1}
• Compute 𝑎>,&
• 𝑓 𝑎>,& = 𝑏>,&

X

✓
✓

Each 𝑖 = 1,… , 𝑡 takes 2 tries in expectation.

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).



Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

𝑏>," ← {0,1}
Commitment 𝑎>,"…

𝑏&,A ← {0,1}
Commitment 𝑎&,A

Modify attack to always perform 𝑘 tries for each 𝑖.



Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

⋮
𝑏",# ← {0,1}

Commitment 𝑎",#

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

⋮
𝑏&,# ← {0,1}

Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝑘 rows

𝑡 columns

Modify attack to always perform 𝑘 tries for each 𝑖.



Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

⋮
𝑏",# ← {0,1}

Commitment 𝑎",#

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

⋮
𝑏&,# ← {0,1}

Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝑘 rows

If 𝑘 = 𝜔(log 𝑡), w.h.p. can choose block 𝑗! in each column 𝑖 s.t.
𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B#

𝑡 columns



This generalizes to any 𝐻!

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

⋮
𝑏",# ← {0,1}

Commitment 𝑎",#

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

⋮
𝑏&,# ← {0,1}

Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝜔 𝑡
rows

𝑡 columns



This generalizes to any 𝐻!
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⋮
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⋮
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𝑏>," ← {0,1}
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Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝜔 𝑡
rows

Lemma. For 𝜔(𝑡) rows, exists block 𝑗! in each column 𝑖 s.t.
𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B#

𝑡 columns



General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
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General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
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Commitment 𝑎",&
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𝜔 𝑡
rows
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General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
2) Choose block 𝑗! in column 𝑖 s.t. 𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B# .



General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
2) Choose block 𝑗! in column 𝑖 s.t. 𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B# .
3) Open commitments.

…

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",# ← {0,1}
Commitment 𝑎",#

𝑏&,& ← {0,1}
Commitment 𝑎&,&

𝑏&,# ← {0,1}
Commitment 𝑎&,#
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𝜔 𝑡
rows

𝑡 columns

𝑏",& ← {0,1}
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Soundness of 𝐹𝑆% ΠCD-8 requires computational hardness of (2).

𝐻 must be ”mix-and-match resistant.”

(requirement extends to any parallel repetition of 3-message 
HVZK argument with poly-size challenge space.)

General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
2) Choose block 𝑗! in column 𝑖 s.t. 𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B# .
3) Open commitments.
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