
Does Fiat-Shamir Require a Cryptographic Hash Function?

Yilei Chen (Visa Research)
Alex Lombardi (MIT)
Fermi Ma (Princeton and NTT Research)
Willy Quach (Northeastern)

(Public-Coin) Interactive Protocols
[GMR85, B85]

VP

(Public-Coin) Interactive Protocols
[GMR85, B85]

VP

𝑥 is true

(Public-Coin) Interactive Protocols
[GMR85, B85]

VP

I know a
witness for 𝑥

(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each 𝑟! uniformly random

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP

(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each 𝑟! uniformly random

Completeness: If statement is true,
verifier accepts w/ probability 1.

Soundness: If statement is false,
verifier rejects w/ high probability,
no matter what prover does.

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP

(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each 𝑟! uniformly random

Completeness: If statement is true,
verifier accepts w/ probability 1.

Soundness: If statement is false,
verifier rejects w/ high probability,
no matter what prover does.

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, …]

IP = PSPACE, zero-knowledge, succinct arguments, etc.

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP

(Public-Coin) Interactive Protocols
[GMR85, B85]

Public coin: each 𝑟! uniformly random

Completeness: If statement is true,
verifier accepts w/ probability 1.

Soundness: If statement is false,
verifier rejects w/ high probability,
no matter what prover does.

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, …]

But do we always need it?

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP

Public-Coin Interactive Protocol Π

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

𝑎", 𝑎&, … 𝑎#𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

𝑎", 𝑎&, … 𝑎#

𝑟" = 𝐻 𝑎"
𝑟& = 𝐻 𝑎", 𝑎&

⋮
𝑟#$" = 𝐻(𝑎", … , 𝑎#$")

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

𝑎", 𝑎&, … 𝑎#

𝑟" = 𝐻 𝑎"
𝑟& = 𝐻 𝑎", 𝑎&

⋮
𝑟#$" = 𝐻(𝑎", … , 𝑎#$")

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

𝑎", 𝑎&, … 𝑎#

𝑟" = 𝐻 𝑎"
𝑟& = 𝐻 𝑎", 𝑎&

⋮
𝑟#$" = 𝐻(𝑎", … , 𝑎#$")

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

Fiat-Shamir Heuristic
[FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

𝑎", 𝑎&, … , 𝑎#

𝑟" = 𝐻 𝑎"
𝑟& = 𝐻 𝑎", 𝑎&

⋮
𝑟#$" = 𝐻(𝑎", … , 𝑎#$")

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

𝑎", 𝑎&, … , 𝑎#

𝑟" = 𝐻 𝑎"
𝑟& = 𝐻 𝑎", 𝑎&

⋮
𝑟#$" = 𝐻(𝑎", … , 𝑎#$")

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

When does Fiat-Shamir preserve soundness?

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

Public-Coin Interactive Protocol Π

𝑎", 𝑎&, … , 𝑎#

Non-Interactive Argument 𝐹𝑆% Π

𝑟" = 𝐻 𝑎"
𝑟& = 𝐻 𝑎", 𝑎&

⋮
𝑟#$" = 𝐻(𝑎", … , 𝑎#$")

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

• 𝐻 is a random oracle (usually)
[FS86, BR93, PS96]

When does Fiat-Shamir preserve soundness?

𝑎", 𝑎&, … , 𝑎#

𝑟" = 𝐻 𝑎"
𝑟& = 𝐻 𝑎", 𝑎&

⋮
𝑟#$" = 𝐻(𝑎", … , 𝑎#$")

𝑟"
𝑎"

⋮

𝑟#$"
𝑎#$"

𝑎#

VP VP
Hash Function 𝐻

• 𝐻 is a random oracle (usually)
[FS86, BR93, PS96]

• 𝐻 is “correlation-intractable” (sometimes)
[CGH04, HMR08, CCR16, KRR17, CCRR18, CCHLRRW19, PS19,
BKM20, LV20a, JKKZ20, LV20b …]

When does Fiat-Shamir preserve soundness?

Public-Coin Interactive Protocol Π Non-Interactive Argument 𝐹𝑆% Π

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

What happens if the hash function exposes “structure”?

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

What happens if the hash function exposes “structure”?

This work: For some well-known protocols, soundness can still hold.

Result 1: Can compile some protocols*

w/ simple, non-cryptographic† FS hash
functions.

* Examples:
• Lyubashevsky’s ID protocol
• Schnorr’s ID protocol
• Chaum-Pedersen protocol
† Examples:
• 𝐻 𝑥 = BitDecomp(𝑥)
• 𝐻 𝑥 = 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝)

Result 1: Can compile some protocols*

w/ simple, non-cryptographic† FS hash
functions.

Result 2: For many 3-message HVZK
arguments‡, cryptographic FS hash
function is necessary.

‡ Examples:
• Blum’s Hamiltonicity protocol w/

parallel repetition
• GMW86 3-Coloring protocol w/

parallel repetition
• 1-bit challenge Schnorr w/ parallel

repetition

* Examples:
• Lyubashevsky’s ID protocol
• Schnorr’s ID protocol
• Chaum-Pedersen protocol
† Examples:
• 𝐻 𝑥 = BitDecomp(𝑥)
• 𝐻 𝑥 = 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝)

Outline

• Positive Results for Lyubashevsky

• Positive Results for Schnorr

• Negative Results

Outline

• Positive Results for Lyubashevsky

• Positive Results for Schnorr

• Negative Results

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

public

I know a short
pre-image of 𝑌.

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =
𝑧 independent of 𝑅
by noise-flooding or
rejection sampling

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =
𝑐

+
𝑧
=𝐴 𝛼 𝑌

Accept if

and 𝑧 is “short”.

𝑧 independent of 𝑅
by noise-flooding or
rejection sampling

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =

Soundness (Average Case)

If accepts with good

probability, breaks SIS.

𝑐
+

𝑧
=𝐴 𝛼 𝑌

Accept if

and 𝑧 is “short”.

𝑧 independent of 𝑅
by noise-flooding or
rejection sampling

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =

Soundness (Average Case)

Run on 𝑐 ≠ 𝑐′, get

𝑐
+

𝑧
=𝐴 𝛼 𝑌

Accept if

and 𝑧 is “short”.

𝑧 independent of 𝑅
by noise-flooding or
rejection sampling

𝑅 𝑐𝑡 +𝑧 =

𝑅 𝑐′𝑡 +𝑧′ =

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =

Soundness (Average Case)

Subtract

𝑐
+

𝑧
=𝐴 𝛼 𝑌

Accept if

and 𝑧 is “short”.

𝑧 independent of 𝑅
by noise-flooding or
rejection sampling

𝑅=

𝑧 − 𝑧(𝑐 − 𝑐′

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =

Soundness (Average Case)

Multiply by 𝐴, rearrange:

𝑐
+

𝑧
=𝐴 𝛼 𝑌

Accept if

and 𝑧 is “short”.

𝑧 independent of 𝑅
by noise-flooding or
rejection sampling

=

𝑧 − 𝑧(

𝑐 − 𝑐′

𝐴 −𝑌 0

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

𝛼 𝐴
𝑡

= “short”

I know a short
pre-image of 𝑌.

𝑐 random
in {0,1}

𝑅 𝑐𝑡 +𝑧 =

Honest Verifier ZK

Pick random , , set

𝑐
+

𝑧
=𝐴 𝛼 𝑌

Accept if

and 𝑧 is “short”.

𝑐 𝑧

𝑐
−

𝑧
= 𝐴𝛼 𝑌

𝑧 independent of 𝑅
by noise-flooding or
rejection sampling

Review:
Lyubashevsky’s
ID Protocol
[Lyu12]

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

I know a short
pre-image of 𝑌.

+
𝑧
=𝐴 𝛼 𝑌

Accept if

and 𝑧 is “short”.

Lyubashevsky
+ Fiat-Shamir 𝑥 𝑦FS hash ℎ:

ℤ' {0,1}

𝛼 𝐴
𝑡

= “short”

𝑅𝑡 +𝑧 =

ℎ(𝛼)

ℎ(𝛼)

𝐴
𝑅

𝑌=

public secret

random
in ℤ' “short”

(statistically)
random in ℤ'

public

Soundness: Must use ℎ where hard

to find and short satisfying:

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼)

𝛼 𝑧

random in ℤ'

Soundness: Must use ℎ where hard

to find and short satisfying:

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼)

𝛼 𝑧

random in ℤ'

𝛼 𝐺=Key Idea: What if ?

ℎ(𝛼)

Soundness: Must use ℎ where hard

to find and short satisfying:

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼)

𝛼 𝑧

random in ℤ'

𝛼 𝐺=Key Idea: What if ?

ℎ(𝛼)

For example, ℎ 𝛼 = 𝐵𝑖𝑡𝐷𝑒𝑐𝑜𝑚𝑝 𝛼 ,

𝐺 =

1,2,4, …
1,2,4, … .

⋱
1,2,4, …

.

Soundness: Must use ℎ where hard

to find and short satisfying:

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼)

𝛼 𝑧

random in ℤ'

𝛼 𝐺=Key Idea: What if ?

ℎ(𝛼)

+
𝑧
=𝐴 𝑌

ℎ(𝛼)

𝐺

ℎ(𝛼)

Soundness: Must use ℎ where hard

to find and short satisfying:

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼)

𝛼 𝑧

random in ℤ'

𝛼 𝐺=Key Idea: What if ?

ℎ(𝛼)

+
𝑧
=𝐴 𝑌

ℎ(𝛼)

𝐺

ℎ(𝛼)

=−𝐴

ℎ(𝛼)

𝐺 + 𝑌
𝑧

0

random in ℤ'ℎ(𝛼)

𝑧Since is short, hard to find under SIS!

Another Perspective:
𝐴

𝑅
𝑌=

random
in ℤ' “short”

(statistically)
random in ℤ'

𝑅If you know where

then you can find short solution to =−𝐴 𝐺 + 𝑌
𝑧

0

ℎ 𝛼

𝑧

ℎ 𝛼

Another Perspective:
𝐴

𝑅
𝑌=

random
in ℤ' “short”

(statistically)
random in ℤ'

𝑅If you know where

then you can find short solution to =−𝐴 𝐺 + 𝑌
𝑧

0

ℎ 𝛼

𝑧

ℎ 𝛼

This is exactly the MP12/LW15 lattice trapdoor!

In an alternate timeline, we could have discovered lattice
trapdoors from trying to Fiat-Shamir Lyubashevsky’s protocol.

Theorem. If there exists such that

then ℎ is secure FS hash for [Lyu12] ID scheme (under SIS).

𝛼 𝐺=
ℎ(𝛼)

𝐺

Theorem. If there exists such that

then ℎ is secure FS hash for [Lyu12] ID scheme (under SIS).

𝛼 𝐺=
ℎ(𝛼)

𝐺

What does this say about signatures?

We have two approaches for constructing lattice-based signatures:

GPV08
(Preimage Sampleable Functions)

𝑓) 𝑥 = 𝐴𝑥 where trapdoor 𝑇
enables pre-image sampling.

Sign 𝑚 by applying random oracle
𝑅𝑂 𝑚 and use 𝑇 to find preimage
of 𝑅𝑂 𝑚 .

Fiat-Shamir + Lyubashevsky
(“Lattice Signatures w/o Trapdoors”)

Compile Lyubashevsky ID protocol
into signature Fiat-Shamir.

We have two approaches for constructing lattice-based signatures:

GPV08
(Preimage Sampleable Functions)

𝑓) 𝑥 = 𝐴𝑥 where trapdoor 𝑇
enables pre-image sampling.

Sign 𝑚 by applying random oracle
𝑅𝑂 𝑚 and use 𝑇 to find preimage
of 𝑅𝑂 𝑚 .

Fiat-Shamir + Lyubashevsky
(“Lattice Signatures w/o Trapdoors”)

Compile Lyubashevsky ID protocol
into signature Fiat-Shamir.

Claim. [GPV08] with [MP12] trapdoor can be viewed as Hash-and-Sign
applied to 𝐹𝑆*[Π+,-] where FS hash function is ℎ 𝛼, 𝑥 = 𝐺$" 𝛼 + 𝑥 .

If ℎ 𝛼, 𝑅𝑂 𝑚 = 𝐺$"(𝛼 + 𝑅𝑂 𝑚): 𝛼

𝑅𝑂(𝑚)

+ = 𝐺
ℎ(𝛼, 𝑅𝑂(𝑚))

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼, 𝑅𝑂(𝑚))random in ℤ'

If ℎ 𝛼, 𝑅𝑂 𝑚 = 𝐺$"(𝛼 + 𝑅𝑂 𝑚): 𝛼

𝑅𝑂(𝑚)

+ = 𝐺
ℎ(𝛼, 𝑅𝑂(𝑚))

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼, 𝑅𝑂(𝑚))random in ℤ'

+
𝑧
=𝐴 𝑌

ℎ(𝛼)

𝐺

ℎ(𝛼)

If ℎ 𝛼, 𝑅𝑂 𝑚 = 𝐺$"(𝛼 + 𝑅𝑂 𝑚): 𝛼

𝑅𝑂(𝑚)

+ = 𝐺
ℎ(𝛼, 𝑅𝑂(𝑚))

𝑅𝑂(𝑚)

−

+
𝑧
=𝐴 𝛼 𝑌

ℎ(𝛼, 𝑅𝑂(𝑚))random in ℤ'

+
𝑧
=𝐴 𝑌𝐺

ℎ(𝛼, 𝑅𝑂(𝑚))

=−𝐴 𝐺 + 𝑌
𝑧

random in ℤ'

−𝑅𝑂(𝑚)

If ℎ 𝛼, 𝑅𝑂 𝑚 = 𝐺$"(𝛼 + 𝑅𝑂 𝑚):

ℎ(𝛼, 𝑅𝑂(𝑚))

𝛼

𝑅𝑂(𝑚)

+ = 𝐺
ℎ(𝛼, 𝑅𝑂(𝑚))

𝑅𝑂(𝑚)

−

As in [GPV08], a signature is a
preimage of 𝑅𝑂 𝑚 !

Outline

• Positive Results for Lyubashevsky

• Positive Results for Schnorr

• Negative Results

Group 𝐺 of order 𝑝
with generator 𝑔

Review: Schnorr’s
ID Protocol [S91]

public 𝑔.

I know 𝑥

Group 𝐺 of order 𝑝
with generator 𝑔

Review: Schnorr’s
ID Protocol [S91]

public 𝑔.

𝑔/

I know 𝑥

Sample random 𝑟 ← ℤ0.

Group 𝐺 of order 𝑝
with generator 𝑔

Review: Schnorr’s
ID Protocol [S91]

public 𝑔.

𝑔/

𝑐

I know 𝑥

Sample random 𝑟 ← ℤ0.

Sample random 𝑐 ← ℤ0.

Group 𝐺 of order 𝑝
with generator 𝑔

Review: Schnorr’s
ID Protocol [S91]

public 𝑔.

𝑔/

𝑐

𝑧

I know 𝑥

Sample random 𝑟 ← ℤ0.

Sample random 𝑐 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝑐𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

Review: Schnorr’s
ID Protocol [S91]

public 𝑔.

Accept if 𝑔1 = 𝑔/(𝑔.)2.

𝑔/

𝑐

𝑧

I know 𝑥

Sample random 𝑟 ← ℤ0.

Sample random 𝑐 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝑐𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

Proof of Knowledge: If accepts w/ good probability, can extract 𝑥 from .

(run on 𝑐" ≠ 𝑐&; solve 𝑧" = 𝑟 + 𝑐"𝑥 and 𝑧& = 𝑟 + 𝑐&𝑥 for 𝑥)

Review: Schnorr’s
ID Protocol [S91]

public 𝑔.

Accept if 𝑔1 = 𝑔/(𝑔.)2.

𝑔/

𝑐

𝑧

I know 𝑥

Sample random 𝑟 ← ℤ0.

Accept if 𝑔1 = 𝑔/(𝑔.)2.

Sample random 𝑐 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝑐𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

Honest Verifier ZK: Can simulate honest verifier accepting transcripts.

(pick random 𝑐, 𝑧, set 𝑔/ = 𝑔1(𝑔.)$2).

Review: Schnorr’s
ID Protocol [S91]

public 𝑔.

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

Schnorr
+ Fiat-Shamir

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

Schnorr
+ Fiat-Shamir

Important Open Question: For what 𝐻 is this sound?

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

Schnorr
+ Fiat-Shamir

Important Open Question: For what 𝐻 is this sound?

Let’s ask a different question…

For what 𝐻 is this unsound?

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

Schnorr
+ Fiat-Shamir

Rephrased: For what 𝐻 is it possible to break FS-Schnorr for any group 𝐺?

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

Schnorr
+ Fiat-Shamir

Rephrased: For what 𝐻 is it possible to break FS-Schnorr for any group 𝐺?

• Constant functions: If 𝐻 𝑔/ = 𝑘 for all 𝑔/, set 𝑔/ = (𝑔.)$# and 𝑧 = 0.

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

Schnorr
+ Fiat-Shamir

Rephrased: For what 𝐻 is it possible to break FS-Schnorr for any group 𝐺?

• Constant functions: If 𝐻 𝑔/ = 𝑘 for all 𝑔/, set 𝑔/ = (𝑔.)$# and 𝑧 = 0.

• “Constant on many inputs” : If 𝐻 𝑔/ = 𝑘 for 𝜀 fraction of 𝑔/, same attack
works with 𝜀 probability.

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

Schnorr
+ Fiat-Shamir

All
functions 𝐻

FS-Schnorr always insecure
for these 𝐻.

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.
Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

Schnorr
+ Fiat-Shamir

All
functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

FS-Schnorr always insecure
for these 𝐻.

𝑔/, 𝑧

public 𝑔.

Sample random 𝑟 ← ℤ0.

Compute 𝑧 = 𝑟 + 𝐻(𝑔/)𝑥.

Group 𝐺 of order 𝑝
with generator 𝑔

FS hash
𝐻:𝐺 → ℤ0

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

Schnorr
+ Fiat-Shamir

FS-Schnorr always insecure
for these 𝐻. All

functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

Thm: FS-Schnorr secure
in “Generic Group Model”
for these 𝐻!

Accept if 𝑔1 = 𝑔/(𝑔.)%(4!).

Aside: Generic Group Model (GGM) [N94,S97,M95]

Tagline: Idealized interface that only allows “honest” use of the group.

Aside: Generic Group Model (GGM) [N94,S97,M95]

Tagline: Idealized interface that only allows “honest” use of the group.

1) Sample random
injection
𝜎: ℤ0 → 0,1 ℓ. 𝑥 𝜎(𝑥)

0 10100100
1 01010111
⋮ ⋮

𝑝 − 1 10010110

GGM Oracle

Aside: Generic Group Model (GGM) [N94,S97,M95]

Tagline: Idealized interface that only allows “honest” use of the group.

1) Sample random
injection
𝜎: ℤ0 → 0,1 ℓ.

2) Replace each 𝑔.
with “label” 𝜎(𝑥).

𝑥 𝜎(𝑥)
0 10100100
1 01010111
⋮ ⋮

𝑝 − 1 10010110

GGM Oracle 𝜎 𝑥" , … , 𝜎(𝑥#)

Aside: Generic Group Model (GGM) [N94,S97,M95]

Tagline: Idealized interface that only allows “honest” use of the group.

1) Sample random
injection
𝜎: ℤ0 → 0,1 ℓ.

2) Replace each 𝑔.
with “label” 𝜎(𝑥).

3) Permit group
operations via
oracle queries

𝑥 𝜎(𝑥)
0 10100100
1 01010111
⋮ ⋮

𝑝 − 1 10010110

GGM Oracle 𝜎 𝑥" , … , 𝜎(𝑥#)

𝜎 𝑥 , 𝜎 𝑦 , 𝑎, 𝑏

𝜎(𝑎𝑥 + 𝑏𝑦)

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

All
functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

Theorem: FS-Schnorr secure
in GGM for these 𝐻.
(captures all “reasonable” 𝐻)

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

All
functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

Theorem: FS-Schnorr secure
in GGM for these 𝐻.
(captures all “reasonable” 𝐻)

Example: 𝐻:𝐺 → ℤ0 where

𝐻 𝑔/ ≔ “interpret 𝑔/ as a bit-
string and reduce mod 𝑝”

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

All
functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

Theorem: FS-Schnorr secure
in GGM for these 𝐻.
(captures all “reasonable” 𝐻)

Example: 𝐻:𝐺 → ℤ0 where

𝐻 𝑔/ ≔ “interpret 𝑔/ as a bit-
string and reduce mod 𝑝”

This extends to Schnorr signatures!*

*Similar to analysis by [NSW09]

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

All
functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

Theorem: FS-Schnorr secure
in GGM for these 𝐻.
(captures all “reasonable” 𝐻)

Example: 𝐻:𝐺 → ℤ0 where

𝐻 𝑔/ ≔ “interpret 𝑔/ as a bit-
string and reduce mod 𝑝”

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for 𝐻:𝐺×𝑀 → ℤ0
where 𝐻 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

*Similar to analysis by [NSW09]

𝐻 𝑔/ = 𝑘 for noticeable
fraction of 𝑔/

All
functions 𝐻

𝐻(𝑔/) has 𝜔 𝑙𝑜𝑔 𝜆 min-
entropy on random 𝑔/

Theorem: FS-Schnorr secure
in GGM for these 𝐻.
(captures all “reasonable” 𝐻)

Example: 𝐻:𝐺 → ℤ0 where

𝐻 𝑔/ ≔ “interpret 𝑔/ as a bit-
string and reduce mod 𝑝”

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for 𝐻:𝐺×𝑀 → ℤ0
where 𝐻 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

*Similar to analysis by [NSW09] …but the story doesn’t end here

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for 𝐻:𝐺×𝑀 → ℤ0
where 𝐻 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

This 𝐻 is insecure in practice!

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for 𝐻:𝐺×𝑀 → ℤ0
where 𝐻 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

This 𝐻 is insecure in practice!

Attack: We show a non-uniform attack on
this signature scheme in any concrete group.

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for 𝐻:𝐺×𝑀 → ℤ0
where 𝐻 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

This 𝐻 is insecure in practice!

Attack: We show a non-uniform attack on
this signature scheme in any concrete group.

(also applies to [NSW09] Schnorr signatures)

Recall: Valid signature on 𝑚 is (𝑔/, 𝑧) where:
𝑔1 = 𝑔/ 𝑔. 4!78 (89: 0)

Signing key 𝑔..

Group 𝐺 of order 𝑝 with
generator 𝑔

𝐻 𝑔/, 𝑚 = 𝑔/ +𝑚 𝑚𝑜𝑑 𝑝

Recall: Valid signature on 𝑚 is (𝑔/, 𝑧) where:
𝑔1 = 𝑔/ 𝑔. 4!78 (89: 0)

Signing key 𝑔..

• Advice: (𝑚, 𝑟) where the bit-representation of 𝑔/ is −𝑚 (𝑚𝑜𝑑 𝑝).
• Attack: Output 𝑚,𝑔/, 𝑧 = 𝑟 .

Group 𝐺 of order 𝑝 with
generator 𝑔

𝐻 𝑔/, 𝑚 = 𝑔/ +𝑚 𝑚𝑜𝑑 𝑝

Non-Uniform Attack

Recall: Valid signature on 𝑚 is (𝑔/, 𝑧) where:
𝑔1 = 𝑔/ 𝑔. 4!78 (89: 0)

Signing key 𝑔..

• Advice: (𝑚, 𝑟) where the bit-representation of 𝑔/ is −𝑚 (𝑚𝑜𝑑 𝑝).
• Attack: Output 𝑚,𝑔/, 𝑧 = 𝑟 .

Over ℤ0× and elliptic curve groups, this attack can be done without advice!

Group 𝐺 of order 𝑝 with
generator 𝑔

𝐻 𝑔/, 𝑚 = 𝑔/ +𝑚 𝑚𝑜𝑑 𝑝

Non-Uniform Attack

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially)
recover our positive results in the preprocessing GGM:

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially)
recover our positive results in the preprocessing GGM:

𝑥 𝜎(𝑥)
0 10100100
1 01010111
⋮ ⋮

𝑝 − 1 10010110

GGM Oracle

poly-size
“advice”

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially)
recover our positive results in the preprocessing GGM:

𝑥 𝜎(𝑥)
0 10100100
1 01010111
⋮ ⋮

𝑝 − 1 10010110

GGM Oracle

𝜎 𝑥" , … , 𝜎(𝑥#)

𝜎 𝑥 , 𝜎 𝑦 , 𝑎, 𝑏

𝜎(𝑎𝑥 + 𝑏𝑦)

poly-size
“advice”

Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for
𝐻:𝐺×𝑀 → ℤ0 where 𝐻# 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 + 𝑘 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

Uniformly random key 𝑘 ← ℤ0 blocks
generic non-uniform attacks

Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for
𝐻:𝐺×𝑀 → ℤ0 where 𝐻# 𝑔/, 𝑚 ≔ 𝑔/ +𝑚 + 𝑘 (𝑚𝑜𝑑 𝑝) if 𝑀 /𝑝 is negligible.

Uniformly random key 𝑘 ← ℤ0 blocks
generic non-uniform attacks

Conjecture: This scheme is secure if 𝐺 is ℤ0×.
(not implied by generic analysis, but we haven’t found any attacks)

Sign(𝑠𝑘,𝑚)

• Sample 𝑟 ← ℤ0. Let
𝑧 = 𝑟 + 𝑔/ +𝑚 + 𝑘 ⋅ 𝑠𝑘 𝑚𝑜𝑑 𝑝
• Output (𝑔/, 𝑧)

Warning: Our security analysis does not imply security in ℤ0×!

But unclear (to us) how to break EUF-CMA security.

Ver(𝑣𝑘,𝑚, (𝑔/, 𝑧))

• Accept if
𝑔1 = 𝑔/ ⋅ (𝑔<#)4!787# (𝑚𝑜𝑑 𝑝).

𝐻# 𝑔/, 𝑚 = 𝑔/ +𝑚 + 𝑘 (𝑚𝑜𝑑 𝑝)Exercise. Break Schnorr sigs for short
messages over ℤ0× w/ this FS hash:

Group: ℤ0× with generator 𝑔

Message Space: 𝑚 ∈ 𝑀 with
𝑀 /𝑝 negligible

Signing key: 𝑠𝑘 ← ℤ0
Verification key: 𝑣𝑘 = (𝑘, 𝑔<#)
where 𝑘 ← ℤ0

Interpreting Positive Results

𝑎, 𝑧

𝑐 = 𝐻 𝑎

VP VP
Hash Function 𝐻

𝑎

𝑐

𝑧

Interactive Protocol Π Non-Interactive Protocol 𝐹𝑆%[Π]

In positive results, 𝐹𝑆%[Π] soundness uses cryptography already present in Π.

Interpreting Positive Results

𝑎, 𝑧

𝑐 = 𝐻 𝑎

VP VP
Hash Function 𝐻

𝑎

𝑐

𝑧

Interactive Protocol Π Non-Interactive Protocol 𝐹𝑆%[Π]

In positive results, 𝐹𝑆%[Π] soundness uses cryptography already present in Π.

• Π=2* uses cryptographic groups; 𝐹𝑆%[Π=2*] soundness relies on generic
hardness of the group.

Interpreting Positive Results

𝑎, 𝑧

𝑐 = 𝐻 𝑎

VP VP
Hash Function 𝐻

𝑎

𝑐

𝑧

Interactive Protocol Π Non-Interactive Protocol 𝐹𝑆%[Π]

In positive results, 𝐹𝑆%[Π] soundness uses cryptography already present in Π.

• Π=2* uses cryptographic groups; 𝐹𝑆%[Π=2*] soundness relies on generic
hardness of the group.

• Π+,- uses lattices; 𝐹𝑆%[Π+,-] soundness relies on SIS.

Interpreting Positive Results

𝑎, 𝑧

𝑐 = 𝐻 𝑎

VP VP
Hash Function 𝐻

𝑎

𝑐

𝑧

Interactive Protocol Π Non-Interactive Protocol 𝐹𝑆%[Π]

This suggests a strategy: identify a security property related to Π that results in
sound 𝐹𝑆%[Π] for a simple/non-cryptographic 𝐻.

Interpreting Positive Results

𝑎, 𝑧

𝑐 = 𝐻 𝑎

VP VP
Hash Function 𝐻

𝑎

𝑐

𝑧

Interactive Protocol Π Non-Interactive Protocol 𝐹𝑆%[Π]

This suggests a strategy: identify a security property related to Π that results in
sound 𝐹𝑆%[Π] for a simple/non-cryptographic 𝐻.

When is it possible to do this?

Outline

• Positive Results for Lyubashevsky

• Positive Results for Schnorr

• Negative Results

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size
challenge space and let Π> denote Π repeated 𝑡 times in parallel.

Soundness of 𝐹𝑆% Π> requires 𝐻 to satisfy a cryptographic security property.

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size
challenge space and let Π> denote Π repeated 𝑡 times in parallel.

Soundness of 𝐹𝑆% Π> requires 𝐻 to satisfy a cryptographic security property.

• Blum’s Hamiltonicity protocol
• GMW86 3-Coloring protocol
• 1-bit challenge Schnorr
• 1-bit challenge Lyubashevsky

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size
challenge space and let Π> denote Π repeated 𝑡 times in parallel.

Soundness of 𝐹𝑆% Π> requires 𝐻 to satisfy a cryptographic security property.

• Blum’s Hamiltonicity protocol
• GMW86 3-Coloring protocol
• 1-bit challenge Schnorr
• 1-bit challenge Lyubashevsky

Takeaway: FS without a cryptographic
hash function requires large challenge
space that is not obtained via parallel
repetition of a protocol with a small
challenge space.

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size
challenge space and let Π> denote Π repeated 𝑡 times in parallel.

Soundness of 𝐹𝑆% Π> requires 𝐻 to satisfy a cryptographic security property.

Recall: First message in Blum is a cryptographic commitment.

Even if the commitment is “ideal”, the Fiat-Shamir hash function must be
cryptographic.

• Blum’s Hamiltonicity protocol

𝑉(𝐺)𝑃(𝐺, 𝜎)

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺() Accept if:

𝑏 = 0: openings valid and
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and
edge openings are 1.

Review: ZK Proof of Hamiltonicity [Blum86]

𝑏 ∈ {0,1}

𝑧

𝑎

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.

𝑉(𝐺)𝑃(𝐺, 𝜎)Random
Oracle 𝒪

Random
Oracle 𝒪

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺()
w/ 𝐶𝑜𝑚 𝑥; 𝑟 = 𝒪(𝑥, 𝑟)

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.

Review: ZK Proof of Hamiltonicity [Blum86]

𝑏 ∈ {0,1}

𝑧

𝑎

Accept if:

𝑏 = 0: openings valid and
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and
edge openings are 1.

𝑉(𝐺)𝑃(𝐺, 𝜎)Random
Oracle 𝒪

Random
Oracle 𝒪

Review: ZK Proof of Hamiltonicity [Blum86]

+ parallel
repetition

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺()
w/ 𝐶𝑜𝑚 𝑥; 𝑟 = 𝒪(𝑥, 𝑟) Accept if:

𝑏 = 0: openings valid and
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and
edge openings are 1.

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.

𝑏", … , 𝑏>

𝑧", … , 𝑧>

𝑎", … , 𝑎>

𝑉(𝐺)𝑃(𝐺, 𝜎)Random
Oracle 𝒪

Random
Oracle 𝒪

Review: ZK Proof of Hamiltonicity [Blum86]

𝐺′ = 𝜋 𝐺 for 𝜋 ← 𝑆?
Compute 𝑎 = 𝐶𝑜𝑚(𝐺()
w/ 𝐶𝑜𝑚 𝑥; 𝑟 = 𝒪(𝑥, 𝑟) Accept if:

𝑏 = 0: openings valid and
𝐺′ = 𝜋(𝐺).

𝑏 = 1: openings valid and
edge openings are 1.

𝑏 = 0: open 𝐺′ and send 𝜋.

𝑏 = 1: open 𝜋 ∘ 𝜎.

𝑧", … , 𝑧>
𝑎", … , 𝑎>

FS hash 𝐻

𝑏", … , 𝑏>
= 𝐻(𝑎", … , 𝑎>)

What is a bad choice of 𝐻?

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

• 𝑏"," ← {0,1}

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on
challenge 𝑏",".

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on
challenge 𝑏",".

• If 𝑓 𝑎"," = 𝑏","
move on.
✓

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on
challenge 𝑏",".

• If 𝑓 𝑎"," = 𝑏","
move on.

• 𝑏&," ← {0,1}
• Compute 𝑎&,"
• 𝑓 𝑎&," ≠ 𝑏&,"

X

✓

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on
challenge 𝑏",".

• If 𝑓 𝑎"," = 𝑏","
move on.

• 𝑏&," ← {0,1}
• Compute 𝑎&,"
• 𝑓 𝑎&," ≠ 𝑏&,"

• 𝑏&,& ← {0,1}
• Compute 𝑎&,&
• 𝑓 𝑎&,& = 𝑏&,&

X

✓
✓

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on
challenge 𝑏",".

• If 𝑓 𝑎"," = 𝑏","
move on.

• 𝑏&," ← {0,1}
• Compute 𝑎&,"
• 𝑓 𝑎&," ≠ 𝑏&,"

• 𝑏&,& ← {0,1}
• Compute 𝑎&,&
• 𝑓 𝑎&,& = 𝑏&,&

X

✓

• 𝑏A," ← {0,1}
• Compute 𝑎A,"
• 𝑓 𝑎A," = 𝑏A,"

✓

• 𝑏>," ← {0,1}
• Compute 𝑎>,"
• 𝑓 𝑎>," ≠ 𝑏>,"

• 𝑏>,& ← {0,1}
• Compute 𝑎>,&
• 𝑓 𝑎>,& = 𝑏>,&

X

✓
Each 𝑖 = 1,… , 𝑡 takes 2 tries in expectation

✓

…

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

• 𝑏"," ← {0,1}
• Compute 𝑎","

that can open on
challenge 𝑏",".

• If 𝑓 𝑎"," = 𝑏","
move on.

• 𝑏&," ← {0,1}
• Compute 𝑎&,"
• 𝑓 𝑎&," ≠ 𝑏&,"

• 𝑏&,& ← {0,1}
• Compute 𝑎&,&
• 𝑓 𝑎&,& = 𝑏&,&

X

✓

• 𝑏A," ← {0,1}
• Compute 𝑎A,"
• 𝑓 𝑎A," = 𝑏A,"

✓ …

• 𝑏>," ← {0,1}
• Compute 𝑎>,"
• 𝑓 𝑎>," ≠ 𝑏>,"

• 𝑏>,& ← {0,1}
• Compute 𝑎>,&
• 𝑓 𝑎>,& = 𝑏>,&

X

✓
✓

Each 𝑖 = 1,… , 𝑡 takes 2 tries in expectation.

Idea: Break each instance one-by-one.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

𝑏>," ← {0,1}
Commitment 𝑎>,"…

𝑏&,A ← {0,1}
Commitment 𝑎&,A

Modify attack to always perform 𝑘 tries for each 𝑖.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

⋮
𝑏",# ← {0,1}

Commitment 𝑎",#

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

⋮
𝑏&,# ← {0,1}

Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝑘 rows

𝑡 columns

Modify attack to always perform 𝑘 tries for each 𝑖.

Attacking an Insecure 𝐻: Suppose 𝐻 𝑎", … , 𝑎> = 𝑓 𝑎" , … , 𝑓(𝑎>).

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

⋮
𝑏",# ← {0,1}

Commitment 𝑎",#

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

⋮
𝑏&,# ← {0,1}

Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝑘 rows

If 𝑘 = 𝜔(log 𝑡), w.h.p. can choose block 𝑗! in each column 𝑖 s.t.
𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B#

𝑡 columns

This generalizes to any 𝐻!

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

⋮
𝑏",# ← {0,1}

Commitment 𝑎",#

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

⋮
𝑏&,# ← {0,1}

Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝜔 𝑡
rows

𝑡 columns

This generalizes to any 𝐻!

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",& ← {0,1}
Commitment 𝑎",&

⋮
𝑏",# ← {0,1}

Commitment 𝑎",#

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏&,& ← {0,1}
Commitment 𝑎&,&

⋮
𝑏&,# ← {0,1}

Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮
𝑏>,# ← {0,1}

Commitment 𝑎>,#

…
…

…

𝜔 𝑡
rows

Lemma. For 𝜔(𝑡) rows, exists block 𝑗! in each column 𝑖 s.t.
𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B#

𝑡 columns

General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.

𝑏",& ← {0,1}
Commitment 𝑎",&

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏>,# ← {0,1}
Commitment 𝑎>,#

…

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",# ← {0,1}
Commitment 𝑎",#

𝑏&,& ← {0,1}
Commitment 𝑎&,&

𝑏&,# ← {0,1}
Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮ ⋮ ⋮

…

…

𝜔 𝑡
rows

𝑡 columns

General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.

𝑏",& ← {0,1}
Commitment 𝑎",&

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏>,# ← {0,1}
Commitment 𝑎>,#

…

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",# ← {0,1}
Commitment 𝑎",#

𝑏&,& ← {0,1}
Commitment 𝑎&,&

𝑏&,# ← {0,1}
Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮ ⋮ ⋮

…

…

𝜔 𝑡
rows

𝑡 columns

General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
2) Choose block 𝑗! in column 𝑖 s.t. 𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B# .

General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
2) Choose block 𝑗! in column 𝑖 s.t. 𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B# .
3) Open commitments.

…

𝑏"," ← {0,1}
Commitment 𝑎","

𝑏",# ← {0,1}
Commitment 𝑎",#

𝑏&,& ← {0,1}
Commitment 𝑎&,&

𝑏&,# ← {0,1}
Commitment 𝑎&,#

𝑏>," ← {0,1}
Commitment 𝑎>,"

𝑏>,& ← {0,1}
Commitment 𝑎>,&

⋮ ⋮ ⋮

…

…

𝜔 𝑡
rows

𝑡 columns

𝑏",& ← {0,1}
Commitment 𝑎",&

𝑏&," ← {0,1}
Commitment 𝑎&,"

𝑏>,# ← {0,1}
Commitment 𝑎>,#

Soundness of 𝐹𝑆% ΠCD-8 requires computational hardness of (2).

𝐻 must be ”mix-and-match resistant.”

(requirement extends to any parallel repetition of 3-message
HVZK argument with poly-size challenge space.)

General attack on 𝐹𝑆! Π"#$% :
1) Sample grid of random bit/commitment pairs.
2) Choose block 𝑗! in column 𝑖 s.t. 𝐻 𝑎",B" , … , 𝑎>,B# = 𝑏",B" , … , 𝑏>,B# .
3) Open commitments.

Thanks!
eprint: 2020/915
slides: cs.princeton.edu/~fermim/

drawings by Eysa Lee

