Does Fiat-Shamir Require a Cryptographic Hash Function?

Yilei Chen
Alex Lombardi
Fermi Ma
Willy Quach
(Visa Research)
(MIT)
(Princeton and NTT Research)
(Northeastern)

(Public-Coin) Interactive Protocols [GMR85, B85]

(Public-Coin) Interactive Protocols

 [GMR85, B85]x is true

I know a witness for x

(Public-Coin) Interactive Protocols

 [GMR85, B85]

(Public-Coin) Interactive Protocols

 [GMR85, B85]

Public coin: each r_{i} uniformly random

(Public-Coin) Interactive Protocols

[GMR85, B85]

Completeness: If statement is true, verifier accepts w/ probability 1.

Soundness: If statement is false, verifier rejects w/ high probability, no matter what prover does.

Public coin: each r_{i} uniformly random

(Public-Coin) Interactive Protocols

[GMR85, B85]

Completeness: If statement is true, verifier accepts w/ probability 1.

Soundness: If statement is false, verifier rejects w/ high probability, no matter what prover does.
Public coin: each r_{i} uniformly random

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, ...]
$I P=P S P A C E$, zero-knowledge, succinct arguments, etc.

(Public-Coin) Interactive Protocols

[GMR85, B85]

> Completeness: If statement is true, verifier accepts w/ probability 1.

Soundness: If statement is false, verifier rejects w/ high probability, no matter what prover does.

Public coin: each r_{i} uniformly random

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, ...]
But do we always need it?

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol П
Non-Interactive Argument $F S_{H}(\Pi)$

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π
Non-Interactive Argument $F S_{H}(\Pi)$

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol П

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Fiat-Shamir Heuristic [FS86]

Magical compiler that removes interaction from (public-coin) interactive protocols How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

When does Fiat-Shamir preserve soundness?

Public-Coin Interactive Protocol Π
Non-Interactive Argument $F S_{H}(\Pi)$

When does Fiat-Shamir preserve soundness?

- H is a random oracle (usually) [FS86, BR93, PS96]

Public-Coin Interactive Protocol Π

When does Fiat-Shamir preserve soundness?

- H is a random oracle (usually) [FS86, BR93, PS96]
- H is "correlation-intractable" (sometimes) [CGH04, HMR08, CCR16, KRR17, CCRR18, CCHLRRW19, PS19, BKM20, LV20a, JKKZ20, LV20b ...]

Public-Coin Interactive Protocol Π

Hash Function H

Non-Interactive Argument $F S_{H}(\Pi)$

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function h, care must be taken first to ensure that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and second to ensure that h exposes no relevant "structure" attributable to its being defined from some lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function h, care must be taken first to ensure that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and second to ensure that h exposes no relevant "structure" attributable to its being defined from some lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

> What happens if the hash function exposes "structure"?

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function h, care must be taken first to ensure that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and second to ensure that h exposes no relevant "structure" attributable to its being defined from some lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

What happens if the hash function exposes "structure"?
This work: For some well-known protocols, soundness can still hold.

Result 1: Can compile some protocols* w/ simple, non-cryptographic ${ }^{\dagger}$ FS hash functions.

* Examples:
- Lyubashevsky's ID protocol
- Schnorr's ID protocol
- Chaum-Pedersen protocol
${ }^{+}$Examples:
- $H(x)=\operatorname{BitDecomp}(x)$
- $H(x)=a x+b(\bmod p)$

Result 1: Can compile some protocols* w/ simple, non-cryptographic ${ }^{+}$FS hash functions.
*Examples:

- Lyubashevsky's ID protocol
- Schnorr's ID protocol
- Chaum-Pedersen protocol
${ }^{+}$Examples:
- $H(x)=\operatorname{BitDecomp}(x)$
- $H(x)=a x+b(\bmod p)$

Result 2: For many 3-message HVZK arguments ${ }^{\ddagger}$, cryptographic FS hash function is necessary.
\# Examples:

- Blum's Hamiltonicity protocol w/ parallel repetition
- GMW86 3-Coloring protocol w/ parallel repetition
- 1-bit challenge Schnorr w/ parallel repetition

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

Review:	public	secret	public
Lyubashevsky's	A	R	$=Y$
ID Protocol	rando		(statisticaly
	in \mathbb{Z}_{q}	hort"	random in \mathbb{Z}_{a}

I know a short pre-image of Y.

I know a short pre-image of Y.

I know a short pre-image of Y.

I know a short pre-image of Y.

Review:

 Lyubashevsky's ID ProtocolI know a short pre-image of Y.

Review:

 Lyubashevsky's ID Protocol[Lyu12]

I know a short pre-image of Y.
z independent of R by noise-flooding or rejection sampling

Review:

 Lyubashevsky's ID Protocol[Lyu12]

I know a short pre-image of Y.
z independent of R by noise-flooding or rejection sampling

Accept if

Review：

Lyubashevsky＇s
ID Protocol
［Lyu12］

I know a short pre－image of Y ．

Soundness（Average Case）

 probability，㞔会 breaks SIS． z independent of R by noise－flooding or rejection sampling

public secret public

$$
\begin{array}{cll}
\text { random } & & \text { (statistically) } \\
\text { in } \mathbb{Z}_{q} & \text { "short" } & \text { random in } \mathbb{Z}_{q}
\end{array}
$$

Review:

Lyubashevsky's
ID Protocol
[Lyu12]

I know a short pre-image of Y.
public secret public

Soundness (Average Case)

Run on $c \neq c^{\prime}$, get

Accept if

Review:

Lyubashevsky's
ID Protocol
[Lyu12]
public secret public

I know a short pre-image of Y.
z independent of R by noise-flooding or rejection sampling

Soundness (Average Case)

Subtract

Accept if

Review:

 Lyubashevsky's ID Protocol[Lyu12]

I know a short
pre-image of Y.

z independent of R by noise-flooding or rejection sampling

public secret public

Soundness (Average Case)

Multiply by A, rearrange:

Accept if

Review:

z independent of R by noise-flooding or rejection sampling

Lyubashevsky's
ID Protocol
[Lyu12]

I know a short pre-image of Y.

Honest Verifier ZK

Accept if

I know a short pre-image of Y.

Soundness: Must use h where hard to find α and short ${ }_{z}$ satisfying:

Soundness: Must use h where hard to find α and short $\square z$ satisfying:

Key Idea: What if $\alpha=\square$?

Soundness: Must use h where hard to find α and short ${ }_{z}$ satisfying:

Key Idea: What if $\alpha=\square$?
For example, $h(\alpha)=\operatorname{BitDecomp}(\alpha)$,
$G=\left[\begin{array}{ll}1,2,4, \ldots & \\ & 1,2,4, \ldots .\end{array}\right.$

Soundness: Must use h where hard to find α and short $\square z$ satisfying:

Soundness: Must use h where hard
Key Idea: What if $\alpha=G$

$h(\alpha)$

Since \prod_{z} is short, hard to find under SIS!

then you can find short solution

This is exactly the MP12/LW15 lattice trapdoor!
In an alternate timeline, we could have discovered lattice trapdoors from trying to Fiat-Shamir Lyubashevsky's protocol.

```
Theorem. If there exists G}\mathrm{ such that }\alpha=\squareG|h(\alpha
then h is secure FS hash for [Lyu12] ID scheme (under SIS).
```


What does this say about signatures?

We have two approaches for constructing lattice-based signatures:

GPV08
 (Preimage Sampleable Functions)

$f_{A}(x)=A x$ where trapdoor T enables pre-image sampling.

Sign m by applying random oracle $R O(m)$ and use T to find preimage of $R O(m)$.

Fiat-Shamir + Lyubashevsky

 ("Lattice Signatures w/o Trapdoors")Compile Lyubashevsky ID protocol into signature Fiat-Shamir.

We have two approaches for constructing lattice-based signatures:

GPV08

(Preimage Sampleable Functions)
$f_{A}(x)=A x$ where trapdoor T enables pre-image sampling.

Sign m by applying random oracle $R O(m)$ and use T to find preimage of $R O(m)$.

Fiat-Shamir + Lyubashevsky ("Lattice Signatures w/o Trapdoors")

Compile Lyubashevsky ID protocol into signature Fiat-Shamir.

Claim. [GPV08] with [MP12] trapdoor can be viewed as Hash-and-Sign applied to $F S_{h}\left[\Pi_{L y u}\right]$ where FS hash function is $h(\alpha, x)=G^{-1}(\alpha+x)$.

$$
\begin{array}{cc}
\text { If } h(\alpha, R O(m))=G^{-1}(\alpha+R O(m)): & \alpha+\square=\square G \\
R O(m)
\end{array} h_{h(\alpha, R O(m))}
$$

$$
\begin{array}{cc}
\text { If } h(\alpha, R O(m))=G^{-1}(\alpha+R O(m)): & \alpha+\square=\square G \\
R O(m)
\end{array} h_{h(\alpha, R O(m))}
$$

$$
\begin{array}{rc}
\text { If } h(\alpha, R O(m))=G^{-1}(\alpha+R O(m)): & \alpha+\square=\square G \\
R O(m)
\end{array} h_{h(\alpha, R O(m))}
$$

$$
\begin{aligned}
& \text { If } h(\alpha, R O(m))=G^{-1}(\alpha+R O(m)): \alpha+Q_{1}=\square G \\
& R O(m)
\end{aligned} \underbrace{}_{h(\alpha, R O(m))}
$$

As in [GPV08], a signature is a preimage of $R O(m)$!

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

Review: Schnorr's
ID Protocol [s91]

Group G of order p with generator g
public g^{x}

Review: Schnorr's
ID Protocol [s91]

Group G of order p with generator g

Sample random $c \leftarrow \mathbb{Z}_{p}$.

Review: Schnorr's
ID Protocol [s91]

Group G of order p with generator g

I know x public g^{x}
Sample random $r \leftarrow \mathbb{Z}_{p}$.

Compute $z=r+c x$.

Sample random $c \leftarrow \mathbb{Z}_{p}$. Accept if $g^{z}=g^{r}\left(g^{x}\right)^{c}$.

Review: Schnorr's
ID Protocol [s91]

Group G of order p with generator g

Proof of Knowledge: If 雄 accepts w/ good probability, can extract x from
(run , on $c_{1} \neq c_{2}$; solve $z_{1}=r+c_{1} x$ and $z_{2}=r+c_{2} x$ for x)

Review: Schnorr's
ID Protocol [s91]

Group G of order p with generator g

I know x public g^{x}
Sample random $r \leftarrow \mathbb{Z}_{p}$.

Compute $z=r+c x$.

Sample random $c \leftarrow \mathbb{Z}_{p}$.
Accept if $g^{z}=g^{r}\left(g^{x}\right)^{c}$.

Honest Verifier ZK: Can simulate honest verifier accepting transcripts.
(pick random c, z, set $g^{r}=g^{z}\left(g^{x}\right)^{-c}$).

Schnorr

+ Fiat-Shamir

Group G of order p
with generator g
FS hash
$H: G \rightarrow \mathbb{Z}_{p}$

Sample random $r \leftarrow \mathbb{Z}_{p}$.

$$
\xrightarrow{g^{r}, z} \text { 車穿 }
$$

Schnorr

+ Fiat-Shamir
Sample random $r \leftarrow \mathbb{Z}_{p}$.
Compute $z=r+H\left(g^{r}\right) x$.

> Group G of order p with generator g

FS hash $H: G \rightarrow \mathbb{Z}_{p}$

Accept if $g^{z}=g^{r}\left(g^{x}\right)^{H\left(g^{r}\right)}$.

Important Open Question: For what H is this sound?

Schnorr

+ Fiat-Shamir

Sample random $r \leftarrow \mathbb{Z}_{p}$.
Compute $z=r+H\left(g^{r}\right) x$.

Group G of order p with generator g

FS hash
public g^{x}

Accept if $g^{z}=g^{r}\left(g^{x}\right)^{H\left(g^{r}\right)}$.

Important Open Question: For what H is this sound?
Let's ask a different question...
For what H is this unsound?

Schnorr

+ Fiat-Shamir

Sample random $r \leftarrow \mathbb{Z}_{p}$.
Compute $z=r+H\left(g^{r}\right) x$.

> | Group G of order p |
| :--- |
| with generator g |

FS hash $H: G \rightarrow \mathbb{Z}_{p}$

Accept if $g^{Z}=g^{r}\left(g^{x}\right)^{H\left(g^{r}\right)}$.

Rephrased: For what H is it possible to break FS-Schnorr for any group G ?

Schnorr

+ Fiat-Shamir

$$
\begin{aligned}
& \text { Group } G \text { of order } p \\
& \text { with generator } g \\
& \hline
\end{aligned}
$$

FS hash
$H: G \rightarrow \mathbb{Z}_{p}$

Rephrased: For what H is it possible to break FS-Schnorr for any group G ?

- Constant functions: If $H\left(g^{r}\right)=k$ for all g^{r}, set $g^{r}=\left(g^{x}\right)^{-k}$ and $z=0$.

Schnorr

+ Fiat-Shamir

Group G of order p with generator g

Sample random $r \leftarrow \mathbb{Z}_{p}$.
Compute $z=r+H\left(g^{r}\right) x$.

Rephrased: For what H is it possible to break FS-Schnorr for any group G ?

- Constant functions: If $H\left(g^{r}\right)=k$ for all g^{r}, set $g^{r}=\left(g^{x}\right)^{-k}$ and $z=0$.
- "Constant on many inputs" : If $H\left(g^{r}\right)=k$ for ε fraction of g^{r}, same attack works with ε probability.

Schnorr

+ Fiat-Shamir

>	Group G of order p
with generator g	$\quad \begin{gathered}\text { FS hash } \\ H: G \rightarrow \mathbb{Z}_{p}\end{gathered}$

public g^{x}
Sample random $r \leftarrow \mathbb{Z}_{p}$.

Accept if $g^{Z}=g^{r}\left(g^{x}\right)^{H\left(g^{r}\right)}$.

FS-Schnorr always insecure for these H.
$H\left(g^{r}\right)=k$ for noticeable fraction of g^{r}

Schnorr

+ Fiat-Shamir

$$
\begin{array}{c|c|}
\hline \text { Group } G \text { of order } p \\
\text { with generator } g & \begin{array}{c}
\text { FS hash } \\
H: G \rightarrow \mathbb{Z}_{p}
\end{array} \\
\hline
\end{array}
$$

Sample random $r \leftarrow \mathbb{Z}_{p}$.
Accept if $g^{z}=g^{r}\left(g^{x}\right)^{H\left(g^{r}\right)}$.
Compute $z=r+H\left(g^{r}\right) x$.

$H\left(g^{r}\right)$ has $\omega(\log \lambda)$ min-
entropy on random g^{r}

FS-Schnorr always insecure for these H.

$$
\begin{aligned}
& H\left(g^{r}\right)=k \text { for noticeable } \\
& \text { fraction of } g^{r}
\end{aligned}
$$

All
functions H

Schnorr + Fiat-Shamir

Group G of order p with generator g

$$
\begin{gathered}
\text { FS hash } \\
H: G \rightarrow \mathbb{Z}_{p}
\end{gathered}
$$

Sample random $r \leftarrow \mathbb{Z}_{p}$.

Accept if $g^{Z}=g^{r}\left(g^{x}\right)^{H\left(g^{r}\right)}$.

Thm: FS-Schnorr secure in "Generic Group Model" for these H !

FS-Schnorr always insecure for these H.

$$
\begin{gathered}
H\left(g^{r}\right)=k \text { for noticeable } \\
\text { fraction of } g^{r}
\end{gathered}
$$

All
functions H

Aside: Generic Group Model (GGM) [n94,S97,M95]

Tagline: Idealized interface that only allows "honest" use of the group.

Aside: Generic Group Model (GGM) [N94,S97,M95]

Tagline: Idealized interface that only allows "honest" use of the group.

1) Sample random injection
$\sigma: \mathbb{Z}_{p} \rightarrow\{0,1\}^{\ell}$.

GGM Oracle	
x	$\sigma(x)$
0	10100100
1	01010111
\vdots	\vdots
$p-1$	10010110

Aside: Generic Group Model (GGM) [N94,S97,M95]

Tagline: Idealized interface that only allows "honest" use of the group.

1) Sample random injection
$\sigma: \mathbb{Z}_{p} \rightarrow\{0,1\}^{\ell}$.
2) Replace each g^{x} with "label" $\sigma(x)$.

GGM Oracle	
x	$\sigma(x)$
0	10100100
1	01010111
\vdots	\vdots
$p-1$	10010110

Aside: Generic Group Model (GGM) [N94,S97,M95]

Tagline: Idealized interface that only allows "honest" use of the group.

1) Sample random injection
$\sigma: \mathbb{Z}_{p} \rightarrow\{0,1\}^{\ell}$.
2) Replace each g^{x} with "label" $\sigma(x)$.
3) Permit group operations via
 oracle queries

$H\left(g^{r}\right)$ has $\omega(\log \lambda)$ min- entropy on random g^{r}		Theorem: FS-Schnorr secure in GGM for these H.
(captures all "reasonable" H)		

$H\left(g^{r}\right)$ has $\omega(\log \lambda)$ minentropy on random g^{r}		Theorem: FS-Schnorr secure in GGM for these H. (captures all "reasonable" H)
$H\left(g^{r}\right)=k$ for noticeable fraction of g^{r}	All functions H	Example: $H: G \rightarrow \mathbb{Z}_{p}$ where $H\left(g^{r}\right):=$ "interpret g^{r} as a bitstring and reduce mod $p^{\prime \prime}$

This extends to Schnorr signatures!*

*Similar to analysis by [NSW09]

$H\left(g^{r}\right)$ has $\omega(\log \lambda)$ min- entropy on random g^{r}		Theorem: FS-Schnorr secure in GGM for these H.
(captures all "reasonable" H)		

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \rightarrow \mathbb{Z}_{p}$ where $H\left(g^{r}, m\right):=g^{r}+m(\bmod p)$ if $|M| / p$ is negligible.
*Similar to analysis by [NSW09]

$H\left(g^{r}\right)$ has $\omega(\log \lambda)$ min- entropy on random g^{r}		Theorem: FS-Schnorr secure in GGM for these H.
(captures all "reasonable" H)		

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \rightarrow \mathbb{Z}_{p}$ where $H\left(g^{r}, m\right):=g^{r}+m(\bmod p)$ if $|M| / p$ is negligible.

This H is insecure in practice!

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \rightarrow \mathbb{Z}_{p}$ where $H\left(g^{r}, m\right):=g^{r}+m(\bmod p)$ if $|M| / p$ is negligible.

This H is insecure in practice!

Attack: We show a non-uniform attack on this signature scheme in any concrete group.

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \rightarrow \mathbb{Z}_{p}$ where $H\left(g^{r}, m\right):=g^{r}+m(\bmod p)$ if $|M| / p$ is negligible.

This H is insecure in practice!

Attack: We show a non-uniform attack on this signature scheme in any concrete group.

(also applies to [NSW09] Schnorr signatures)
(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \rightarrow \mathbb{Z}_{p}$ where $H\left(g^{r}, m\right):=g^{r}+m(\bmod p)$ if $|M| / p$ is negligible.

$$
H\left(g^{r}, m\right)=g^{r}+m(\bmod p)
$$

Group G of order p with generator g

Signing key g^{x}.
Recall: Valid signature on m is $\left(g^{r}, z\right)$ where:

$$
g^{z}=g^{r}\left(g^{x}\right)^{g^{r}+m(\bmod p)}
$$

$$
H\left(g^{r}, m\right)=g^{r}+m(\bmod p)
$$

Group G of order p with generator g

Signing key g^{x}.
Recall: Valid signature on m is $\left(g^{r}, z\right)$ where:

$$
g^{z}=g^{r}\left(g^{x}\right)^{g^{r}+m(\bmod p)}
$$

Non-Uniform Attack

- Advice: (m, r) where the bit-representation of g^{r} is $-m(\bmod p)$.
- Attack: Output ($m, g^{r}, z=r$).

$$
H\left(g^{r}, m\right)=g^{r}+m(\bmod p)
$$

Group G of order p with generator g

Signing key g^{x}.
Recall: Valid signature on m is $\left(g^{r}, z\right)$ where:

$$
g^{z}=g^{r}\left(g^{x}\right)^{g^{r}+m(\bmod p)}
$$

Non-Uniform Attack

- Advice: (m, r) where the bit-representation of g^{r} is $-m(\bmod p)$.
- Attack: Output ($m, g^{r}, z=r$).

Over \mathbb{Z}_{p}^{\times}and elliptic curve groups, this attack can be done without advice!

Problem: GGM fails to capture non-uniform attacks.
However, this is a known problem of the GGM, and we can (essentially) recover our positive results in the preprocessing GGM:

Problem: GGM fails to capture non-uniform attacks.
However, this is a known problem of the GGM, and we can (essentially) recover our positive results in the preprocessing GGM:

GGM Oracle	
x	$\sigma(x)$
0	10100100
1	01010111
\vdots	\vdots
$p-1$	10010110

$\left\lvert\, \begin{aligned} & \text { poly-size } \\ & \text { "advice" }\end{aligned}\right.$

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially) recover our positive results in the preprocessing GGM:

GGM Oracle	
x	$\sigma(x)$
0	10100100
1	01010111
\vdots	\vdots
$p-1$	10010110

Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for $H: G \times M \rightarrow \mathbb{Z}_{p}$ where $H_{k}\left(g^{r}, m\right):=g^{r}+m+k(\bmod p)$ if $|M| / p$ is negligible.

Uniformly random key $k \leftarrow \mathbb{Z}_{p}$ blocks

 generic non-uniform attacksTheorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for $H: G \times M \rightarrow \mathbb{Z}_{p}$ where $H_{k}\left(g^{r}, m\right):=g^{r}+m+k(\bmod p)$ if $|M| / p$ is negligible.

Uniformly random key $k \leftarrow \mathbb{Z}_{p}$ blocks

 generic non-uniform attacksConjecture: This scheme is secure if G is \mathbb{Z}_{p}^{\times}.
(not implied by generic analysis, but we haven't found any attacks)

Exercise. Break Schnorr sigs for short messages over \mathbb{Z}_{p}^{\times}w/ this FS hash:

$$
H_{k}\left(g^{r}, m\right)=g^{r}+m+k(\bmod p)
$$

Sign $(s k, m)$

Group: \mathbb{Z}_{p}^{\times}with generator g
Message Space: $m \in M$ with
$|M| / p$ negligible
Signing key: $s k \leftarrow \mathbb{Z}_{p}$
Verification key: $v k=\left(k, g^{s k}\right)$ where $k \leftarrow \mathbb{Z}_{p}$

- Sample $r \leftarrow \mathbb{Z}_{p}$. Let
$z=r+\left(g^{r}+m+k\right) \cdot s k(\bmod p)$
- Output $\left(g^{r}, z\right)$

$$
\operatorname{Ver}\left(v k, m,\left(g^{r}, z\right)\right)
$$

- Accept if

$$
g^{z}=g^{r} \cdot\left(g^{s k}\right)^{g^{r}+m+k}(\bmod p) .
$$

Warning: Our security analysis does not imply security in \mathbb{Z}_{p}^{\times}!
But unclear (to us) how to break EUF-CMA security.

Interpreting Positive Results
Hash Function H

In positive results, $F S_{H}[\Pi]$ soundness uses cryptography already present in Π.

Interpreting Positive Results

Hash Function H

In positive results, $F S_{H}[\Pi]$ soundness uses cryptography already present in Π.

- $\Pi_{S c h}$ uses cryptographic groups; $F S_{H}\left[\Pi_{S c h}\right]$ soundness relies on generic hardness of the group.

Interpreting Positive Results

Hash Function H

In positive results, $F S_{H}[\Pi]$ soundness uses cryptography already present in Π.

- $\Pi_{S c h}$ uses cryptographic groups; $F S_{H}\left[\Pi_{S c h}\right]$ soundness relies on generic hardness of the group.
- $\Pi_{L y u}$ uses lattices; $F S_{H}\left[\Pi_{L y u}\right]$ soundness relies on SIS.

Interpreting Positive Results
Hash Function H

This suggests a strategy: identify a security property related to Π that results in sound $F S_{H}[\Pi]$ for a simple/non-cryptographic H.

Interpreting Positive Results
Hash Function H

This suggests a strategy: identify a security property related to Π that results in sound $F S_{H}[\Pi]$ for a simple/non-cryptographic H.

When is it possible to do this?

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size challenge space and let Π^{t} denote Π repeated t times in parallel.
Soundness of $F S_{H}\left[\Pi^{t}\right]$ requires H to satisfy a cryptographic security property.

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size challenge space and let Π^{t} denote Π repeated t times in parallel.

Soundness of $F S_{H}\left[\Pi^{t}\right]$ requires H to satisfy a cryptographic security property.

- Blum's Hamiltonicity protocol
- GMW86 3-Coloring protocol
- 1-bit challenge Schnorr
- 1-bit challenge Lyubashevsky

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size challenge space and let Π^{t} denote Π repeated t times in parallel.
Soundness of $F S_{H}\left[\Pi^{t}\right]$ requires H to satisfy a cryptographic security property.

- Blum's Hamiltonicity protocol
- GMW86 3-Coloring protocol
- 1-bit challenge Schnorr
- 1-bit challenge Lyubashevsky

Takeaway: FS without a cryptographic hash function requires large challenge space that is not obtained via parallel repetition of a protocol with a small challenge space.

Theorem. Let Π be a 3-message HVZK argument (or proof) with poly-size challenge space and let Π^{t} denote Π repeated t times in parallel.

Soundness of $F S_{H}\left[\Pi^{t}\right]$ requires H to satisfy a cryptographic security property.

- Blum's Hamiltonicity protocol

Recall: First message in Blum is a cryptographic commitment.
Even if the commitment is "ideal", the Fiat-Shamir hash function must be cryptographic.

Review: ZK Proof of Hamiltonicity [Blum86]

$G^{\prime}=\pi(G)$ for $\pi \leftarrow S_{n}$
Compute $a=\operatorname{Com}\left(G^{\prime}\right)$
$b=0$: open G^{\prime} and send π.
$b=1$: open $\pi \circ \sigma$.

Accept if:
$b=0$: openings valid and
$G^{\prime}=\pi(G)$.
$b=1$: openings valid and edge openings are 1 .

Review: ZK Proof of Hamiltonicity [Blum86]

$G^{\prime}=\pi(G)$ for $\pi \leftarrow S_{n}$
Compute $a=\operatorname{Com}\left(G^{\prime}\right)$
$\mathrm{w} / \operatorname{Com}(x ; r)=\mathcal{O}(x, r)$

$$
b \in\{0,1\}
$$

$b=0$: open G^{\prime} and send π.
$b=1$: open $\pi \circ \sigma$.

Accept if:
$b=0$: openings valid and
$G^{\prime}=\pi(G)$.
$b=1$: openings valid and edge openings are 1 .

Review: ZK Proof of Hamiltonicity [Blum86]

$G^{\prime}=\pi(G)$ for $\pi \leftarrow S_{n}$ Compute $a=\operatorname{Com}\left(G^{\prime}\right)$ $\mathrm{w} / \operatorname{Com}(x ; r)=\mathcal{O}(x, r)$
$b=0$: open G^{\prime} and send π.
$b=1$: open $\pi \circ \sigma$.

+ parallel repetition

$$
\xrightarrow{a_{1}, \ldots, a_{t}}
$$

$$
b_{1}, \ldots, b_{t}
$$

$$
\xrightarrow{z_{1}, \ldots, z_{t}}
$$

Accept if:
$b=0$: openings valid and $G^{\prime}=\pi(G)$.
$b=1$: openings valid and edge openings are 1.

Review: ZK Proof of Hamiltonicity [Blum86]

What is a bad choice of H ?

$G^{\prime}=\pi(G)$ for $\pi \leftarrow S_{n}$
Compute $a=\operatorname{Com}\left(G^{\prime}\right)$
$\mathrm{w} / \operatorname{Com}(x ; r)=\mathcal{O}(x, r)$

$$
\begin{aligned}
& a_{1}, \ldots, a_{t} \\
& z_{1}, \ldots, z_{t} \\
& \hline
\end{aligned}
$$

$b=0$: open G^{\prime} and send π.

$$
\begin{gathered}
b_{1}, \ldots, b_{t} \\
=H\left(a_{1}, \ldots, a_{t}\right)
\end{gathered}
$$

Accept if:
$b=0$: openings valid and
$G^{\prime}=\pi(G)$.
$b=1$: openings valid and edge openings are 1.

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.
Idea: Break each instance one-by-one.

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.
Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow\{0,1\}$

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$. Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow\{0,1\}$
- Compute $a_{1,1}$ that can open on challenge $b_{1,1}$.

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.
Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow\{0,1\}$
- Compute $a_{1,1}$ that can open on challenge $b_{1,1}$.
- If $f\left(a_{1,1}\right)=b_{1,1}$ move on.

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.
Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow\{0,1\}$
- Compute $a_{1,1}$
- $b_{2,1} \leftarrow\{0,1\}$ that can open on challenge $b_{1,1}$.
- Compute $a_{2,1}$
- $f\left(a_{2,1}\right) \neq b_{2,1}$
- If $f\left(a_{1,1}\right)=b_{1,1}$ move on.

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.
Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow\{0,1\}$
- Compute $a_{1,1}$ that can open on challenge $b_{1,1}$.
- If $f\left(a_{1,1}\right)=b_{1,1}$ move on.
\checkmark
- $b_{2,1} \leftarrow\{0,1\}$
- Compute $a_{2,1}$
- $f\left(a_{2,1}\right) \neq b_{2,1}$
- $b_{2,2} \leftarrow\{0,1\}$
- Compute $a_{2,2}$
- $f\left(a_{2,2}\right)=b_{2,2}$

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.
Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow\{0,1\}$
- Compute $a_{1,1}$ that can open on challenge $b_{1,1}$
- If $f\left(a_{1,1}\right)=b_{1,1}$ move on.
- $b_{2,1} \leftarrow\{0,1\} \quad$ - $b_{3,1} \leftarrow\{0,1\}$
- Compute $a_{2,1}$ - Compute $a_{3,1}$
- $f\left(a_{2,1}\right) \neq b_{2,1} \cdot f\left(a_{3,1}\right)=b_{3,1}$
- $b_{2,2} \leftarrow\{0,1\}$
- Compute $a_{2,2}$
- $f\left(a_{2,2}\right)=b_{2,2}$
\checkmark
Each $i=1, \ldots, t$ takes 2 tries in expectation
- $b_{t, 1} \leftarrow\{0,1\}$
- Compute $a_{t, 1}$
- $f\left(a_{t, 1}\right) \neq b_{t, 1}$
- $b_{t, 2} \leftarrow\{0,1\}$
- Compute $a_{t, 2}$
- $f\left(a_{t, 2}\right)=b_{t, 2}$

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.
Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow\{0,1\}$
- Compute $a_{1,1}$ that can open on challenge $b_{1,1}$.
- If $f\left(a_{1,1}\right)=b_{1,1}$ move on.
\checkmark
- $b_{2,1} \leftarrow\{0,1\}$
- Compute $a_{2,1}$
- $f\left(a_{2,1}\right) \neq b_{2,1}$
- $b_{2,2} \leftarrow\{0,1\}$
- Compute $a_{2,2}$
- $f\left(\frac{\left(a_{2,2}\right)}{\sqrt{ }}\right)=b_{2,2}$
- $b_{3,1} \leftarrow\{0,1\}$
- Compute $a_{3,1}$
- $f\left(\underset{\left.\sqrt{a_{3,1}}\right)}{\sqrt{ }}=b_{3,1}\right.$
- $b_{t, 1} \leftarrow\{0,1\}$
- Compute $a_{t, 1}$
- $f\left(a_{t, 1}\right) \neq b_{t, 1}$
- $b_{t, 2} \leftarrow\{0,1\}$
- Compute $a_{t, 2}$
- $f\left(\frac{\left.a_{t, 2}\right)}{\sqrt{ }}=b_{t, 2}\right.$

Each $i=1, \ldots, t$ takes 2 tries in expectation.

Attacking an Insecure H : Suppose $H\left(a_{1}, \ldots, a_{t}\right)=f\left(a_{1}\right), \ldots, f\left(a_{t}\right)$.

$b_{1,1} \leftarrow\{0,1\}$	
Commitment $a_{1,1}$	$b_{2,1} \leftarrow\{0,1\}$ Commitment $a_{2,1}$
$b_{1,2} \leftarrow\{0,1\}$	
Commitment $a_{1,2}$	$b_{2,2} \leftarrow\{0,1\}$ Commitment $a_{2,2}$
	$b_{2,3} \leftarrow\{0,1\}$ Commitment $a_{2,3}$

Modify attack to always perform k tries for each i.

Modify attack to always perform k tries for each i.

If $k=\omega(\log t)$, w.h.p. can choose block j_{i} in each column i s.t.

$$
H\left(a_{1, j_{1}}, \ldots, a_{t, j_{t}}\right)=b_{1, j_{1}}, \ldots, b_{t, j_{t}}
$$

This generalizes to any H !

t columns

This generalizes to any H !

t columns

Lemma. For $\omega(t)$ rows, exists block j_{i} in each column i s.t.

$$
H\left(a_{1, j_{1}}, \ldots, a_{t, j_{t}}\right)=b_{1, j_{1}}, \ldots, b_{t, j_{t}}
$$

1) Sample grid of random bit/commitment pairs.

General attack on $F S_{H}\left[\Pi_{\text {Blum }}\right]$:

1) Sample grid of random bit/commitment pairs.

General attack on $F S_{H}\left[\Pi_{\text {Blum }}\right]$:

1) Sample grid of random bit/commitment pairs.
2) Choose block j_{i} in column i s.t. $H\left(a_{1, j_{1}}, \ldots, a_{t, j_{t}}\right)=b_{1, j_{1}}, \ldots, b_{t, j_{t}}$.

General attack on $F S_{H}\left[\Pi_{\text {Blum }}\right]$:

1) Sample grid of random bit/commitment pairs.
2) Choose block j_{i} in column i s.t. $H\left(a_{1, j_{1}}, \ldots, a_{t, j_{t}}\right)=b_{1, j_{1}}, \ldots, b_{t, j_{t}}$.
3) Open commitments.

General attack on $F S_{H}\left[\Pi_{\text {Blum }}\right]$:

1) Sample grid of random bit/commitment pairs.
2) Choose block j_{i} in column i s.t. $H\left(a_{1, j_{1}}, \ldots, a_{t, j_{t}}\right)=b_{1, j_{1}}, \ldots, b_{t, j_{t}}$.
3) Open commitments.

Soundness of $F S_{H}\left[\Pi_{B l u m}\right]$ requires computational hardness of (2). H must be "mix-and-match resistant."
(requirement extends to any parallel repetition of 3-message HVZK argument with poly-size challenge space.)

Thanks!

eprint: 2020/915 slides: cs.princeton.edu/~fermim/

drawings by Eysa Lee

