Does Fiat-Shamir Require a Cryptographic Hash Function?

Yilei Chen(Visa Research)Alex Lombardi(MIT)Fermi Ma(Princeton and NTT Research)Willy Quach(Northeastern)

x is true

Public coin: each r_i uniformly random

Public coin: each r_i uniformly random

Completeness: If statement is true, verifier accepts w/ probability 1.

Soundness: If statement is false, verifier rejects w/ high probability, no matter what prover does.

Completeness: If statement is true, verifier accepts w/ probability 1.

Soundness: If statement is false, verifier rejects w/ high probability, no matter what prover does.

Public coin: each r_i uniformly random

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, ...]

IP = PSPACE, zero-knowledge, succinct arguments, etc.

Completeness: If statement is true, verifier accepts w/ probability 1.

Soundness: If statement is false, verifier rejects w/ high probability, no matter what prover does.

Public coin: each r_i uniformly random

Interaction is powerful [GS86, GMR89, GMW91, S92, K92, ...]

But do we always need it?

Magical compiler that removes interaction from (public-coin) interactive protocols

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

Magical compiler that removes interaction from (public-coin) interactive protocols

How? Replace random verifier messages with hash of previous messages

Public-Coin Interactive Protocol Π

When does Fiat-Shamir preserve soundness?

Public-Coin Interactive Protocol Π

When does Fiat-Shamir preserve soundness?

• *H* is a random oracle (usually) [FS86, BR93, PS96]

Public-Coin Interactive Protocol Π

When does Fiat-Shamir preserve soundness?

- *H* is a random oracle (usually) [FS86, BR93, PS96]
- *H* is "correlation-intractable" (sometimes) [CGH04, HMR08, CCR16, KRR17, CCRR18, CCHLRRW19, PS19, BKM20, LV20a, JKKZ20, LV20b ...]

Public-Coin Interactive Protocol Π

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function h, care must be taken first to ensure that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and second to ensure that h exposes no relevant "structure" attributable to its being defined from some lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function h, care must be taken first to ensure that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and second to ensure that h exposes no relevant "structure" attributable to its being defined from some lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

What happens if the hash function exposes "structure"?

Intuition: FS hash function should be complex/cryptographic. [Bellare-Rogaway93]

When instantiating a random oracle by a concrete function h, care must be taken first to ensure that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and second to ensure that h exposes no relevant "structure" attributable to its being defined from some lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

What happens if the hash function exposes "structure"?

This work: For some well-known protocols, soundness can still hold.

Result 1: Can compile some protocols* w/ *simple, non-cryptographic*⁺ FS hash functions.

- * Examples:
- Lyubashevsky's ID protocol
- Schnorr's ID protocol
- Chaum-Pedersen protocol
- * Examples:
- $H(x) = \operatorname{BitDecomp}(x)$
- $H(x) = ax + b \pmod{p}$

Result 1: Can compile some protocols* w/ *simple, non-cryptographic*⁺ FS hash functions.

- * Examples:
- Lyubashevsky's ID protocol
- Schnorr's ID protocol
- Chaum-Pedersen protocol
- * Examples:
- $H(x) = \operatorname{BitDecomp}(x)$
- $H(x) = ax + b \pmod{p}$

Result 2: For many 3-message HVZK arguments[‡], cryptographic FS hash function is *necessary*.

- * Examples:
- Blum's Hamiltonicity protocol w/ parallel repetition
- GMW86 3-Coloring protocol w/ parallel repetition
- 1-bit challenge Schnorr w/ parallel repetition

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

I know a short pre-image of *Y*.

Soundness: Must use *h* where hard

to find α and short z satisfying:

Soundness: Must use h where hard to find α and short z satisfying:

Key Idea: What if
$$\alpha = G$$
?
 $h(\alpha)$

Soundness: Must use h where hard to find α and short z satisfying:

Key Idea: What if $\alpha = G$? $h(\alpha)$

For example, $h(\alpha) = BitDecomp(\alpha)$, $G = \begin{bmatrix} 1, 2, 4, ... & & \\ & 1, 2, 4, ... & & \\ & & \ddots & \\ & & & 1, 2, 4, ... \end{bmatrix}$

This is exactly the MP12/LW15 lattice trapdoor!

In an alternate timeline, we could have *discovered* lattice trapdoors from trying to Fiat-Shamir Lyubashevsky's protocol.

What does this say about signatures?

We have two approaches for constructing lattice-based signatures:

GPV08 (Preimage Sampleable Functions)

 $f_A(x) = Ax$ where trapdoor T enables pre-image sampling.

Sign m by applying random oracle RO(m) and use T to find preimage of RO(m).

Fiat-Shamir + Lyubashevsky
("Lattice Signatures w/o Trapdoors")

Compile Lyubashevsky ID protocol into signature Fiat-Shamir.

We have two approaches for constructing lattice-based signatures:

GPV08 (Preimage Sampleable Functions)

 $f_A(x) = Ax$ where trapdoor T enables pre-image sampling.

Sign m by applying random oracle RO(m) and use T to find preimage of RO(m).

Fiat-Shamir + Lyubashevsky ("Lattice Signatures w/o Trapdoors")

Compile Lyubashevsky ID protocol into signature Fiat-Shamir.

Claim. [GPV08] with [MP12] trapdoor can be viewed as Hash-and-Sign applied to $FS_h[\Pi_{Lyu}]$ where FS hash function is $h(\alpha, x) = G^{-1}(\alpha + x)$.

If
$$h(\alpha, RO(m)) = G^{-1}(\alpha + RO(m))$$
:
 $\alpha + \Box = G$
 $RO(m)$
 $h(\alpha, RO(m))$

$$|f h(\alpha, RO(m)) = G^{-1}(\alpha + RO(m)): \qquad \alpha + \square = G \\ RO(m) \qquad h(\alpha, RO(m))$$

If
$$h(\alpha, RO(m)) = G^{-1}(\alpha + RO(m))$$
:
 $\alpha + \Box = G$
 $RO(m)$
 $h(\alpha, RO(m))$

If
$$h(\alpha, RO(m)) = G^{-1}(\alpha + RO(m))$$
:
 $\alpha + \Box = G$
 $RO(m)$
 $h(\alpha, RO(m))$

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

Review: Schnorr's ID Protocol [S91]

Group G of order p with generator g

public g^x

Review: Schnorr's ID Protocol [S91]

Group G of order p with generator g

I know x public g^x

Review: Schnorr's
ID Protocol [S91]Group G of order p
with generator gI know x
Sample random
$$r \leftarrow \mathbb{Z}_p$$
.public g^x
cSample random $r \leftarrow \mathbb{Z}_p$. g^r
cSample random $c \leftarrow \mathbb{Z}_p$.

Review: Schnorr's
ID Protocol [S91]Group G of order p
with generator gI know x
Sample random
$$r \leftarrow \mathbb{Z}_p$$
.public g^x Compute $z = r + cx$. $z \rightarrow$ Compute $z = r + cx$. $z \rightarrow$ Accept if $g^z = g^r (g^x)^c$.

Proof of Knowledge: If $\sqrt[n]{2}$ accepts w/ good probability, can extract x from $\sqrt[n]{2}$. (run $\sqrt[n]{2}$ on $c_1 \neq c_2$; solve $z_1 = r + c_1 x$ and $z_2 = r + c_2 x$ for x)

Honest Verifier ZK: Can simulate honest verifier accepting transcripts.

(pick random c, z, set $g^r = g^z (g^x)^{-c}$).

Important Open Question: For what *H* is this sound?

Important Open Question: For what H is this sound?

Let's ask a different question...

For what *H* is this *unsound*?

Rephrased: For what *H* is it possible to break FS-Schnorr for *any* group *G*?

Rephrased: For what *H* is it possible to break FS-Schnorr for *any* group *G*?

• Constant functions: If $H(g^r) = k$ for all g^r , set $g^r = (g^x)^{-k}$ and z = 0.

Rephrased: For what *H* is it possible to break FS-Schnorr for *any* group *G*?

- Constant functions: If $H(g^r) = k$ for all g^r , set $g^r = (g^x)^{-k}$ and z = 0.
- "Constant on many inputs" : If $H(g^r) = k$ for ε fraction of g^r , same attack works with ε probability.

Tagline: Idealized interface that only allows "honest" use of the group.

Tagline: Idealized interface that only allows "honest" use of the group.

1) Sample random injection $\sigma: \mathbb{Z}_p \to \{0,1\}^{\ell}.$

Tagline: Idealized interface that only allows "honest" use of the group.

- 1) Sample random injection $\sigma: \mathbb{Z}_p \to \{0,1\}^{\ell}.$
- 2) Replace each g^x with "label" $\sigma(x)$.

 $\sigma(x_1), \ldots, \sigma(x_k)$

Tagline: Idealized interface that only allows "honest" use of the group.

- 1) Sample random injection $\sigma: \mathbb{Z}_p \to \{0,1\}^{\ell}.$
- 2) Replace each g^x with "label" $\sigma(x)$.
- 3) Permit group operations via oracle queries

		7
GGM Oracle		$\sigma(\alpha) = \sigma(\alpha)$
x	$\sigma(x)$	$\xrightarrow{o(x_1), \dots, o(x_k)}$
0	10100100	$\sigma(x) \sigma(y) \sigma h$
1	01010111	$- \underbrace{\sigma(x), \sigma(y), u, v}_{\bullet}$
•	:	$\sigma(ax+by) \qquad ; \qquad $
<i>p</i> – 1	10010110	

This extends to Schnorr signatures!*

*Similar to analysis by [NSW09]

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \to \mathbb{Z}_p$ where $H(g^r, m) \coloneqq g^r + m \pmod{p}$ if |M|/p is negligible.

*Similar to analysis by [NSW09]

This extends to Schnorr signatures!*

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \to \mathbb{Z}_p$ where $H(g^r, m) \coloneqq g^r + m \pmod{p}$ if |M|/p is negligible.

*Similar to analysis by [NSW09] ...but the story doesn't end here

This *H* is insecure in practice!

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \to \mathbb{Z}_p$ where $H(g^r, m) \coloneqq g^r + m \pmod{p}$ if |M|/p is negligible.

This *H* is insecure in practice!

Attack: We show a non-uniform attack on this signature scheme in any concrete group.

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \to \mathbb{Z}_p$ where $H(g^r, m) \coloneqq g^r + m \pmod{p}$ if |M|/p is negligible.

This *H* is insecure in practice!

Attack: We show a non-uniform attack on this signature scheme in any concrete group.

(also applies to [NSW09] Schnorr signatures)

(Example) Theorem: Schnorr sigs are EUF-CMA secure in GGM for $H: G \times M \to \mathbb{Z}_p$ where $H(g^r, m) \coloneqq g^r + m \pmod{p}$ if |M|/p is negligible. $H(g^r, m) = g^r + m \pmod{p}$

Group *G* of order *p* with generator *g*

Signing key g^x .

Recall: Valid signature on m is (g^r, z) where: $g^z = g^r (g^x)^{g^r + m \pmod{p}}$ $H(g^r, m) = g^r + m \pmod{p}$

Group G of order p with generator g

Signing key g^x .

Recall: Valid signature on m is (g^r, z) where: $g^z = g^r (g^x)^{g^r + m \pmod{p}}$

Non-Uniform Attack

- Advice: (m, r) where the bit-representation of g^r is $-m \pmod{p}$.
- Attack: Output $(m, g^r, z = r)$.

 $H(g^r, m) = g^r + m \pmod{p}$

Group G of order p with generator g

Signing key g^x .

Recall: Valid signature on m is (g^r, z) where: $g^z = g^r (g^x)^{g^r + m \pmod{p}}$

Non-Uniform Attack

- Advice: (m, r) where the bit-representation of g^r is $-m \pmod{p}$.
- Attack: Output $(m, g^r, z = r)$.

Over \mathbb{Z}_p^{\times} and elliptic curve groups, this attack can be done *without* advice!

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially) recover our positive results in the *preprocessing GGM*:

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially) recover our positive results in the *preprocessing GGM*:

poly-size "advice"

GGN	1 Oracle
<i>x</i>	$\sigma(x)$
0	10100100
1	01010111
:	:
p-1	10010110

Problem: GGM fails to capture non-uniform attacks.

However, this is a known problem of the GGM, and we can (essentially) recover our positive results in the *preprocessing GGM*:

Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for $H: G \times M \to \mathbb{Z}_p$ where $H_k(g^r, m) \coloneqq g^r + m + k \pmod{p}$ if |M|/p is negligible.

Uniformly random key $k \leftarrow \mathbb{Z}_p$ blocks generic non-uniform attacks

Theorem: Schnorr sigs are EUF-CMA secure in preprocessing GGM for $H: G \times M \to \mathbb{Z}_p$ where $H_k(g^r, m) \coloneqq g^r + m + k \pmod{p}$ if |M|/p is negligible. Uniformly random key $k \leftarrow \mathbb{Z}_p$ blocks generic non-uniform attacks

Conjecture: This scheme is secure if G is \mathbb{Z}_p^{\times} . (not implied by generic analysis, but we haven't found any attacks) **Exercise.** Break Schnorr sigs for short messages over \mathbb{Z}_p^{\times} w/ this FS hash:

$$H_k(g^r, m) = g^r + m + k \pmod{p}$$

Sign(sk, m)

 $\operatorname{Ver}(vk, m, (g^r, z))$

• Accept if

$$g^{z} = g^{r} \cdot (g^{sk})^{g^{r}+m+k} \pmod{p}.$$

Warning: Our security analysis does not imply security in \mathbb{Z}_p^{\times} ! But unclear (to us) how to break EUF-CMA security.

Group: \mathbb{Z}_p^{\times} with generator gMessage Space: $m \in M$ with |M|/p negligible Signing key: $sk \leftarrow \mathbb{Z}_p$

Verification key: $vk = (k, g^{sk})$ where $k \leftarrow \mathbb{Z}_p$

Interactive Protocol Π

Non-Interactive Protocol $FS_H[\Pi]$

In positive results, $FS_H[\Pi]$ soundness uses cryptography already present in Π .

Interactive Protocol Π

Non-Interactive Protocol $FS_H[\Pi]$

In positive results, $FS_H[\Pi]$ soundness uses cryptography already present in Π .

• Π_{sch} uses cryptographic groups; $FS_H[\Pi_{sch}]$ soundness relies on generic hardness of the group.

Interactive Protocol Π

Non-Interactive Protocol $FS_H[\Pi]$

In positive results, $FS_H[\Pi]$ soundness uses cryptography already present in Π .

- Π_{sch} uses cryptographic groups; $FS_H[\Pi_{sch}]$ soundness relies on generic hardness of the group.
- Π_{Lyu} uses lattices; $FS_H[\Pi_{Lyu}]$ soundness relies on SIS.

Interactive Protocol Π

Non-Interactive Protocol $FS_H[\Pi]$

This suggests a strategy: identify a security property related to Π that results in sound $FS_H[\Pi]$ for a simple/non-cryptographic H.

This suggests a strategy: identify a security property related to Π that results in sound $FS_H[\Pi]$ for a simple/non-cryptographic H.

When is it possible to do this?

Outline

- Positive Results for Lyubashevsky
- Positive Results for Schnorr
- Negative Results

Soundness of $FS_H[\Pi^t]$ requires H to satisfy a cryptographic security property.

Soundness of $FS_H[\Pi^t]$ requires H to satisfy a cryptographic security property.

- Blum's Hamiltonicity protocol
- GMW86 3-Coloring protocol
- 1-bit challenge Schnorr
- 1-bit challenge Lyubashevsky

Soundness of $FS_H[\Pi^t]$ requires H to satisfy a cryptographic security property.

- Blum's Hamiltonicity protocol
- GMW86 3-Coloring protocol
- 1-bit challenge Schnorr
- 1-bit challenge Lyubashevsky

Takeaway: FS without a cryptographic hash function requires large challenge space that is *not* obtained via parallel repetition of a protocol with a small challenge space.

Soundness of $FS_H[\Pi^t]$ requires H to satisfy a cryptographic security property.

• Blum's Hamiltonicity protocol

Recall: First message in Blum is a cryptographic commitment.

Even if the commitment is "ideal", the Fiat-Shamir hash function must be cryptographic.

$$P(G, \sigma)$$
 $V(G)$ $G' = \pi(G)$ for $\pi \leftarrow S_n$ a $Compute a = Com(G')$ a $b = 0$: open G' and send π . $b \in \{0,1\}$ $b = 1$: open $\pi \circ \sigma$. z $d = 1$: open $\pi \circ \sigma$. z $d = 1$: open ings valid and edge openings are 1.

Attacking an Insecure *H*: Suppose $H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$.

Attacking an Insecure *H*: Suppose
$$H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$$
.

Attacking an Insecure *H*: Suppose
$$H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$$
.

• $b_{1,1} \leftarrow \{0,1\}$


```
Attacking an Insecure H: Suppose H(a_1, ..., a_t) = f(a_1), ..., f(a_t).
```

- $b_{1,1} \leftarrow \{0,1\}$
- Compute $a_{1,1}$ that can open on challenge $b_{1,1}$.

Attacking an Insecure H: Suppose $H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$.

- $b_{1,1} \leftarrow \{0,1\}$
- Compute $a_{1,1}$ that can open on challenge $b_{1,1}$.
- If $f(a_{1,1}) = b_{1,1}$ move on.

$$\checkmark$$

Attacking an Insecure *H*: Suppose
$$H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$$
.

- challenge $b_{1,1}$.
- If $f(a_{1,1}) = b_{1,1}$ move on.

$$\checkmark$$

Attacking an Insecure H: Suppose
$$H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$$
.

- $b_{1,1} \leftarrow \{0,1\}$
- Compute $a_{1,1}$ Compute $a_{2,1}$ that can open on • $f(a_{2,1}) \neq b_{2,1}$ challenge $b_{1,1}$.

• If
$$f(a_{1,1}) = b_{1,1}$$

move on.

•
$$b_{2,1} \leftarrow \{0,1\}$$

- $b_{2,2} \leftarrow \{0,1\}$
- Compute $a_{2,2}$
- $f(a_{2,2}) = b_{2,2}$

Attacking an Insecure H: Suppose
$$H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$$
.

- $b_{1,1} \leftarrow \{0,1\}$
- Compute $a_{1,1}$ Compute $a_{2,1}$ that can open on • challenge $b_{1,1}$.

• If
$$f(a_{1,1}) = b_{1,1}$$

move on.

$$b_{2,1} \leftarrow \{0,1\}$$

$$f(a_{2,1}) \neq b_{2,1} \quad \bullet$$

- $b_{2,2} \leftarrow \{0,1\}$
- Compute $a_{2,2}$
- $f(a_{2,2}) = b_{2,2}$

•
$$b_{3,1} \leftarrow \{0,1\}$$

• Compute $a_{3,1}$
• $f(a_{3,1}) = b_{3,1}$

- $b_{t,1} \leftarrow \{0,1\}$
- Compute $a_{t,1}$
- $f(a_{3,1}) = b_{3,1}$ $f(a_{t,1}) \neq b_{t,1}$
 - $b_{t,2} \leftarrow \{0,1\}$
 - Compute $a_{t,2}$

•
$$f(a_{t,2}) = b_{t,2}$$

Each i = 1, ..., t takes 2 tries in expectation

Attacking an Insecure H: Suppose
$$H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$$
.

L

Idea: Break each instance one-by-one.

- $b_{1,1} \leftarrow \{0,1\}$
- Compute $a_{1,1}$ that can open on • challenge $b_{1,1}$.

• If
$$f(a_{1,1}) = b_{1,1}$$

move on.

$$b_{2,1} \leftarrow \{0,1\}$$
 •
Compute $a_{2,1}$ •
 $f(a_{2,1}) \neq b_{2,1}$ •

•
$$b_{2,2} \leftarrow \{0,1\}$$

Compute $a_{2,2}$ • $f(a_{2,2}) = b_{2,2}$

•
$$b_{3,1} \leftarrow \{0,1\}$$

• Compute $a_{3,1}$
• $f(a_{3,1}) = b_{3,1}$

(0 1)

- $b_{t,1} \leftarrow \{0,1\}$
- Compute $a_{t,1}$ $f(a_{t,1}) \neq b_{t,1}$
- $b_{t,2} \leftarrow \{0,1\}$
- Compute $a_{t,2}$ • $f(a_{t,2}) = b_{t,2}$

Each i = 1, ..., t takes 2 tries in expectation.

Attacking an Insecure *H*: Suppose $H(a_1, ..., a_t) = f(a_1), ..., f(a_t)$.

$$\begin{array}{c|c} b_{1,1} \leftarrow \{0,1\} & b_{2,1} \leftarrow \{0,1\} \\ \mbox{Commitment } a_{1,1} & \mbox{Commitment } a_{2,1} \\ \hline b_{1,2} \leftarrow \{0,1\} & b_{2,2} \leftarrow \{0,1\} \\ \mbox{Commitment } a_{1,2} & \mbox{Commitment } a_{2,2} \\ \hline b_{2,3} \leftarrow \{0,1\} \\ \mbox{Commitment } a_{2,3} \end{array} ~ \cdot \cdot \left[\begin{array}{c} b_{t,1} \leftarrow \{0,1\} \\ \mbox{Commitment } a_{t,1} \\ \mbox{Commitment } a_{2,2} \\ \hline \end{array} \right]$$

Modify attack to always perform k tries for each i.

Modify attack to always perform k tries for each i.

If $k = \omega(\log t)$, w.h.p. can choose block j_i in each column i s.t. $H(a_{1,j_1}, \dots, a_{t,j_t}) = b_{1,j_1}, \dots, b_{t,j_t}$

Lemma. For $\omega(t)$ rows, exists block j_i in each column i s.t. $H(a_{1,j_1}, ..., a_{t,j_t}) = b_{1,j_1}, ..., b_{t,j_t}$

General attack on $FS_H[\Pi_{Blum}]$:

1) Sample grid of random bit/commitment pairs.

General attack on $FS_H[\Pi_{Blum}]$: 1) Sample grid of random bit/commitment pairs. 2) Choose block j_i in column i s.t. $H(a_{1,j_1}, ..., a_{t,j_t}) = b_{1,j_1}, ..., b_{t,j_t}$.

General attack on $FS_H[\Pi_{Blum}]$:

1) Sample grid of random bit/commitment pairs.

2) Choose block j_i in column i s.t. $H(a_{1,j_1}, \dots, a_{t,j_t}) = b_{1,j_1}, \dots, b_{t,j_t}$.

B) Open commitments.

Soundness of $FS_H[\Pi_{Blum}]$ requires computational hardness of (2).

H must be "mix-and-match resistant."

(requirement extends to any parallel repetition of 3-message HVZK argument with poly-size challenge space.)

Thanks!

eprint: 2020/915 slides: cs.princeton.edu/~fermim/

drawings by Eysa Lee