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The Decisional Diffie-Hellman (DDH) Assumption

—ix a cyclic group G of order gq.
et g be a generator of G.
or uniformly random x, y, z « Zg,

(9.9% 9,97 ) =c (9,9%, 97, 9%).




The Decisional Diffie-Hellman (DDH) Assumption

—ix a cyclic group G of order gq.
et g be a generator of G.
or uniformly random x, y, z « Zg,
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When is g chosen?



The Decisional Diffie-Hellman (DDH) Assumption

Fix a cyclic group G of order g with fixed generator g.

For uniformly random x, y, z « Z,,
(9.9%9”,9) =c (9,.9%,97,97).

Katz-Lindell (textbook) g is fixed in the
Boneh (1998 DDH survey) group description

Katz-Wang (CCS 2003)
Boyle-Gilboa-Ishai (CRYPTO 2016)
Dottling-Garg (CRYPTO 2017)
Villar (PKC 2017)



The Decisional Diffie-Hellman (DDH) Assumption

~ix a cyclic group G of order g with fixed generator g.
Pick a uniformly random r « Z, and seth = g".

or uniformly random x, y, z « Zg,
(h, h*, hY,h*Y ) =, (h,h*, hY, h?).

h is a random
group generator




The Decisional Diffie-Hellman (DDH) Assumption

~ix a cyclic group G of order g with fixed generator g.
Pick a uniformly random r « Z, and seth = g".

or uniformly random x, y, z « Zg,
(h, h*, hY,h*Y ) =, (h,h*, hY, h?).

« Naor-Reingold (FOCS 1995) h is a random

 Naor-Reingold (FOCS 1997) group generator
« Cramer-Shoup (CRYPTO 1998)

 Nielsen (CRYPTO 2002)
« Agrawal-Libert-Stehlé (CRYPTO 2016)



(fixed-DDH) For fixed generator g,
(g;gx;gy;gxy) ~c (.g)gx)gy)gz)'

(random-DDH) For random generator h,
(h,h*, hY,h*Y ) =, (h, h*, hY, h?).

Are these assumptions equivalent?
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(g;gx;gy;gxy) ~c (.g)gx)gy)gz)'

(random-DDH) For random generator h,
(h,h*, hY,h*Y ) =, (h, h*, hY, h?).

Are these assumptions equivalent?

[Shoup99]: fixed- and random-DDH not known to be equivalent
(also discussed in [SadeghiSteiner01] and [Galbraith] textbook)



(fixed-DDH) For fixed generator g,
(g;gx;gy;gxy) ~c (.g)gx)gy)gz)'

(random-DDH) For random generator h,
(h,h*, hY,h*Y ) =, (h, h*, hY, h?).

Are these assumptions equivalent?

Follow-up question:
Do we have similar issues for Discrete Log or CDH?



When are fixed and random-generator assumptions equivalent?

Discrete Log CDH DDH
equivalent equivalent no known equivalence
(folklore) (folklore) or separations

Note: Adversary for random-generator problem always implies adversary
for fixed-generator problem (re-randomize the fixed-generator instance).



Warmup (folklore): random-DLog <y fixed-DLog.
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When are fixed and random-generator assumptions equivalent?

Discrete Log CDH DDH
equivalent equivalent no known equivalence
(folklore) (folklore) or separations

/

Folklore CDH equivalence requires knowing totient
of group order



When are fixed and random-generator assumptions equivalent?

Discrete Log CDH DDH
known prime equivalent equivalent o
order (folklore) (folklore) N
unknown equivalent n 79
prime order (folklore) N N
unknown equivalent n 27

factorization (folklore)



Discrete Log CDH DDH

known prime equivalent equivalent black-box separated
order (folklore) (folklore) (this work)

unknown equivalent black-box separated* black-box separated
order (folklore) (this work) (this work)

unknown equivalent black-box separated** black-box separated
factorization (folklore) (this work) (this work)

* Requires hardness of factoring unbalanced modulus
** Requires strong knowledge assumption

Strategy: Prove hardness of random-CDH (resp. DDH) in the
generic group model even given an oracle which solves fixed-
CDH (resp. DDH).



Discrete Log

known prime equivalent
order (folklore)
unknown equivalent
order (folklore)
unknown equivalent
factorization (folklore)

* Requires hardness of factoring unbalanced modulus
** Requires strong knowledge assumption

CDH

equivalent
(folklore)

black-box separated*
(this work)

black-box separated**
(this work)

DDH

black-box separated
(this work)

black-box separated
(this work)

black-box separated
(this work)

\ /

What if we had concrete groups
realizing these separations?



Observation: A group where fixed-CDH is easy but random-CDH is hard
implies a “self-bilinear map” [YYHK14].

Self-Bilinear Map: A group G with a pairing e: G* — G such that
e(g*, g”) =e(g,9)".

[YYHK14]: These imply
« multiparty non-interactive key agreement with trusted setup [BS02]
« distributed broadcast encryption [BZ14]



Observation: A group where fixed-CDH is easy but random-CDH is hard
implies a “self-bilinear map” [YYHK14].

Self-Bilinear Map: A group G with a pairing e: G* — G such that
e(g*, g”) =e(g,9)".

[YYHK14]: These imply
« multiparty non-interactive key agreement with trusted setup [BS02]
« distributed broadcast encryption [BZ14]

Takeaway: It would be surprising if for any “natural” cryptographic
group, random-CDH holds but fixed-CDH does not.



The Fixed vs. Random Distinction for Generic
Preprocessing Adversaries



Preprocessing Attacks on fixed-DLog

Ottline Phase  (computationally
unbounded)
W2y —— | Group G of order N
@) . with generator g

Online Phase l S-bit “advice”

(time bound T) _ (9,.9%) DLog Challenger

Sample x « [N].
|

Winifx' = x




Preprocessing Attacks on fixed-DLog

IMih10, LCH11, BL13, CK18]: In groups of order N with S bits of
advice, online time T, can solve fixed-DLog with probability

_ o577
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Preprocessing Attacks on fixed-DLog

IMih10, LCH11, BL13, CK18]: In groups of order N with S bits of
advice, online time T, can solve fixed-DLog with probability

_ o577
€E = T .
[CK18]: A generic adversary succeeds with probability at most

_o(5T
€ = A

Observation: [CK18] is only tight for fixed-DLog.



Claim: Preprocessing algorithms have a lower success
probability in the random-DLog setting.

To solve random-DLog, either 1) ignore preprocessing advice or 2)
use preprocessing advice to solve two fixed-Dlog instances:

(e ()
/

success of baby-step-giant-  success probability for two
step algorithm fixed-DLog instances



This work: A generic adversary solves random-DLog with probability

at most
(T2 [ST2\*
—0(—+(=—) ).
€ N+(N>

To solve random-DLog, either 1) ignore preprocessing advice or 2)
use preprocessing advice to solve two fixed-Dlog instances:

(e ()
/

success of baby-step-giant-  success probability for two
step algorithm fixed-DLog instances



This work: A generic adversary solves random-DLog with probability
at most
_(T? (ST%\
e =0 (W + (T) ) .

Also in the paper: Tight bounds for CDH.

Takeaway: Everything else equal, pre-processing attacks succeed
with lower probability on random-generator variants of DLog/CDH.



The Fixed vs. Random Distinction in Assumptions
over Non-Uniform Exponents



Assumptions over Non-Uniform Exponents

DDH-II [Canetti97]

If x is drawn from any well-spread* distribution,
(9.9%,9”,97) =c (9,9%,9”.97)
for uniformly random y, z < Z,.

*super-logarithmic min-entropy (hard to guess)

[Canetti97] shows DDH-Il implies obfuscation for
point functions.



Point Function Obfuscation

Titx =1y
Cy(x) =-

Oifx =y

* _|obfc,) |1

>

Security: Implementation of
Obf (C,) should hide y



Point Function Obfuscation

[Wee05] proves that
strong assumptions
are necessary for
point function
obfuscation

Titx =1y
Cy(x) =-

~Oifx:ty
* _lobrec,) | Yt

Security: Implementation of

Obf (C,) should

hide y



Non-Malleable Point Function Obfuscation [CV08]

[KY18] Observation:; Given a [Canetti97] obfuscation
Obf (Cy), adversary can "maul” to get obfuscation that

accepts on related point f(y), i.e. Obf (Cr(yy).

[KY18] Goal: Make Obf (C,)) non-malleable.



Strong Power DDH [KY18]
If x is drawn from any well-spread* distribution,

2 k
(9.9%,9" ,,9" ) =c(G.9%9%...9%)
for uniformly random ry, 7, ..., 1, < Zg.

*super-logarithmic min-entropy (hard to guess)

[KY18] shows Strong Power DDH implies non-
malleable obfuscation for point functions.



This work: Revisiting Non-Malleable Point Obfuscation

Strong Power DDH [KY18]
If x is drawn from any well-spread* distribution,

2 k
(9.9%,9" ,,9" ) =c(G.9%9%...9%)
for uniformly random ry, 7, ..., 1, < Zg.

*super-logarithmic min-entropy (hard to guess)
Observation: If g is a fixed generator, the assumption is false

Pick x so that g* begins with 0.



Non-Malleable Point Obfuscation from a New Assumption

Our New Assumption (a toy version)
If x is drawn from any well-spread distribution and a, r « Z,

(a’gax+x2) ~ (a,gr)_



Non-Malleable Point Obfuscation from a New Assumption

Our New Assumption (a toy version)
If x is drawn from any well-spread distribution and a, r « Z,

(a’gax+x2) ~ (a,gr)_

Theorem: Our assumption holds in the generic group
model, even if the distribution is picked after the generic
group labels are fixed.



Non-Uniform Assumptions in the Generic Group Model

« All existing generic group proofs of DDH-Il assume the
generic group labeling function is sampled independently of
the well-spread distribution.

» This enables proving false assumptions hold in the GGM!



Non-Uniform Assumptions in the Generic Group Model

« All existing generic group proofs of DDH-Il assume the
generic group labeling function is sampled independently of
the well-spread distribution.

» This enables proving false assumptions hold in the GGM!

« We give a new GGM proof of DDH-II where the well-spread
distribution is picked after the labeling is fixed.



Thank you!

Questions?

slides: cs.princeton.edu/~fermim/talks/crypto-2019.pdf
character art: Eysa Lee



