# The Distinction Between Fixed and Random Generators in Group-Based Assumptions

James Bartusek (Princeton → UC Berkeley)

Fermi Ma (Princeton)

Mark Zhandry (Princeton + NTT Research)

```
Fix a cyclic group G of order q.

Let g be a generator of G.

For uniformly random x, y, z \leftarrow \mathbb{Z}_q,

(g, g^x, g^y, g^{xy}) \approx_C (g, g^x, g^y, g^z).
```

```
Fix a cyclic group G of order q.

Let g be a generator of G.

For uniformly random x, y, z \leftarrow \mathbb{Z}_q,

(g, g^x, g^y, g^{xy}) \approx_C (g, g^x, g^y, g^z).
```

When is g chosen?

Fix a cyclic group G of order q with fixed generator g.

For uniformly random 
$$x, y, z \leftarrow \mathbb{Z}_q$$
,  $(g, g^x, g^y, g^{xy}) \approx_C (g, g^x, g^y, g^z)$ .

- Katz-Lindell (textbook)
- Boneh (1998 DDH survey)
- Katz-Wang (CCS 2003)
- Boyle-Gilboa-Ishai (CRYPTO 2016)
- Döttling-Garg (CRYPTO 2017)
- Villar (PKC 2017)

g is fixed in the group description

```
Fix a cyclic group G of order q with fixed generator g.

Pick a uniformly random r \leftarrow \mathbb{Z}_q and set h = g^r.

For uniformly random x, y, z \leftarrow \mathbb{Z}_q,

(h, h^x, h^y, h^{xy}) \approx_C (h, h^x, h^y, h^z).
```

h is a random group generator

Fix a cyclic group G of order q with fixed generator g. Pick a uniformly random  $r \leftarrow \mathbb{Z}_q$  and set  $h = g^r$ . For uniformly random  $x, y, z \leftarrow \mathbb{Z}_q$ ,  $(h, h^x, h^y, h^{xy}) \approx_C (h, h^x, h^y, h^z)$ .

- Naor-Reingold (FOCS 1995)
- Naor-Reingold (FOCS 1997)
- Cramer-Shoup (CRYPTO 1998)
- Nielsen (CRYPTO 2002)
- Agrawal-Libert-Stehlé (CRYPTO 2016)

h is a random group generator

(fixed-DDH) For fixed generator g,  $(g, g^x, g^y, g^{xy}) \approx_C (g, g^x, g^y, g^z)$ .

(random-DDH) For random generator h,  $(h, h^x, h^y, h^{xy}) \approx_C (h, h^x, h^y, h^z)$ .

Are these assumptions equivalent?

(fixed-DDH) For fixed generator g,  $(g, g^x, g^y, g^{xy}) \approx_C (g, g^x, g^y, g^z)$ .

(random-DDH) For random generator h,  $(h, h^x, h^y, h^{xy}) \approx_C (h, h^x, h^y, h^z)$ .

Are these assumptions equivalent?

[Shoup99]: fixed- and random-DDH not known to be equivalent

(also discussed in [SadeghiSteiner01] and [Galbraith] textbook)

(fixed-DDH) For fixed generator g,  $(g, g^x, g^y, g^{xy}) \approx_C (g, g^x, g^y, g^z)$ .

(random-DDH) For random generator h,  $(h, h^x, h^y, h^{xy}) \approx_C (h, h^x, h^y, h^z)$ .

Are these assumptions equivalent?

Follow-up question:

Do we have similar issues for Discrete Log or CDH?

## When are fixed and random-generator assumptions equivalent?

| Discrete Log             | CDH                      | DDH                                 |
|--------------------------|--------------------------|-------------------------------------|
| equivalent<br>(folklore) | equivalent<br>(folklore) | no known equivalence or separations |

**Note:** Adversary for random-generator problem always implies adversary for fixed-generator problem (re-randomize the fixed-generator instance).

## Warmup (folklore): random-DLog $\leq_R$ fixed-DLog.

Public G, prime order p, generator g.



Reduction

Compute  $r^{-1}(rx) = x$ .



### When are fixed and random-generator assumptions equivalent?



Folklore CDH equivalence requires knowing totient of group order

## When are fixed and random-generator assumptions equivalent?

|                          | Discrete Log             | CDH                      | DDH |
|--------------------------|--------------------------|--------------------------|-----|
| known prime<br>order     | equivalent<br>(folklore) | equivalent<br>(folklore) | ??  |
| unknown<br>prime order   | equivalent<br>(folklore) | ??                       | ??  |
| unknown<br>factorization | equivalent<br>(folklore) | ??                       | ??  |

|                          | Discrete Log             | CDH                               | DDH                             |
|--------------------------|--------------------------|-----------------------------------|---------------------------------|
| known prime<br>order     | equivalent<br>(folklore) | equivalent<br>(folklore)          | black-box separated (this work) |
| unknown<br>order         | equivalent<br>(folklore) | black-box separated* (this work)  | black-box separated (this work) |
| unknown<br>factorization | equivalent<br>(folklore) | black-box separated** (this work) | black-box separated (this work) |

<sup>\*</sup> Requires hardness of factoring unbalanced modulus

Strategy: Prove hardness of random-CDH (resp. DDH) in the generic group model even given an oracle which solves fixed-CDH (resp. DDH).

<sup>\*\*</sup> Requires strong knowledge assumption

|                                                                                              | Discrete Log             | CDH                                | DDH                                |  |  |
|----------------------------------------------------------------------------------------------|--------------------------|------------------------------------|------------------------------------|--|--|
| known prime<br>order                                                                         | equivalent<br>(folklore) | equivalent<br>(folklore)           | black-box separated (this work)    |  |  |
| unknown<br>order                                                                             | equivalent<br>(folklore) | black-box separated* (this work)   | black-box separated (this work)    |  |  |
| unknown<br>factorization                                                                     | equivalent<br>(folklore) | black-box separated**  (this work) | black-box separated (this work)  ■ |  |  |
| * Requires hardness of factoring unbalanced modulus  ** Requires strong knowledge assumption |                          |                                    |                                    |  |  |

What if we had concrete groups realizing these separations?

Observation: A group where fixed-CDH is easy but random-CDH is hard implies a "self-bilinear map" [YYHK14].

Self-Bilinear Map: A group G with a pairing  $e: G^2 \to G$  such that  $e(g^x, g^y) = e(g, g)^{xy}$ .

[YYHK14]: These imply

- multiparty non-interactive key agreement with trusted setup [BS02]
- distributed broadcast encryption [BZ14]

Observation: A group where fixed-CDH is easy but random-CDH is hard implies a "self-bilinear map" [YYHK14].

Self-Bilinear Map: A group G with a pairing  $e: G^2 \to G$  such that  $e(g^x, g^y) = e(g, g)^{xy}$ .

[YYHK14]: These imply

- multiparty non-interactive key agreement with trusted setup [BS02]
- distributed broadcast encryption [BZ14]

**Takeaway**: It would be surprising if for any "natural" cryptographic group, random-CDH holds but fixed-CDH does not.

# The Fixed vs. Random Distinction for Generic Preprocessing Adversaries



[Mih10, LCH11, BL13, CK18]: In groups of order N with S bits of advice, online time T, can solve fixed-DLog with probability

$$\epsilon = \Omega\left(\frac{ST^2}{N}\right).$$

[Mih10, LCH11, BL13, CK18]: In groups of order N with S bits of advice, online time T, can solve fixed-DLog with probability

$$\epsilon = \Omega\left(\frac{ST^2}{N}\right).$$

[CK18]: A generic adversary succeeds with probability at most

$$\epsilon = \tilde{O}\left(\frac{ST^2}{N}\right).$$

[Mih10, LCH11, BL13, CK18]: In groups of order N with S bits of advice, online time T, can solve fixed-DLog with probability

$$\epsilon = \Omega\left(\frac{ST^2}{N}\right).$$

[CK18]: A generic adversary succeeds with probability at most

$$\epsilon = \tilde{O}\left(\frac{ST^2}{N}\right).$$

Observation: [CK18] is only tight for fixed-DLog.

Claim: Preprocessing algorithms have a lower success probability in the random-DLog setting.

To solve **random**-DLog, either 1) ignore preprocessing advice or 2) use preprocessing advice to solve **two fixed**-Dlog instances:

$$\epsilon = \Omega \left( \frac{T^2}{N} + \left( \frac{ST^2}{N} \right)^2 \right).$$

success of baby-step-giantstep algorithm

success probability for two fixed-DLog instances

**This work:** A generic adversary solves **random**-DLog with probability at most

$$\epsilon = \tilde{O}\left(\frac{T^2}{N} + \left(\frac{ST^2}{N}\right)^2\right).$$

To solve **random**-DLog, either 1) ignore preprocessing advice or 2) use preprocessing advice to solve **two fixed**-Dlog instances:

$$\epsilon = \Omega \left( \frac{T^2}{N} + \left( \frac{ST^2}{N} \right)^2 \right).$$

success of baby-step-giantstep algorithm

success probability for two fixed-DLog instances

**This work:** A generic adversary solves **random**-DLog with probability at most

$$\epsilon = \tilde{O}\left(\frac{T^2}{N} + \left(\frac{ST^2}{N}\right)^2\right).$$

Also in the paper: Tight bounds for CDH.

**Takeaway**: Everything else equal, pre-processing attacks succeed with lower probability on random-generator variants of DLog/CDH.

# The Fixed vs. Random Distinction in Assumptions over Non-Uniform Exponents

## Assumptions over Non-Uniform Exponents

## DDH-II [Canetti97]

If x is drawn from any well-spread\* distribution,  $(g, g^x, g^y, g^{xy}) \approx_C (g, g^x, g^y, g^z)$  for uniformly random  $y, z \leftarrow \mathbb{Z}_q$ .

\*super-logarithmic min-entropy (hard to guess)

[Canetti97] shows DDH-II implies obfuscation for point functions.

#### Point Function Obfuscation

$$C_{y}(x) = \begin{cases} 1 \text{ if } x = y \\ 0 \text{ if } x \neq y \end{cases}$$

Security: Implementation of  $Obf(C_v)$  should hide y

#### Point Function Obfuscation

[Wee05] proves that strong assumptions are necessary for point function obfuscation

$$C_{y}(x) = \begin{cases} 1 \text{ if } x = y \\ 0 \text{ if } x \neq y \end{cases}$$

Security: Implementation of  $Obf(C_y)$  should hide y

# Non-Malleable Point Function Obfuscation [CV08]

**[KY18] Observation**: Given a [Canetti97] obfuscation  $Obf(C_y)$ , adversary can "maul" to get obfuscation that accepts on related point f(y), i.e.  $Obf(C_{f(y)})$ .

[KY18] Goal: Make  $Obf(C_y)$  non-malleable.

## Strong Power DDH [KY18]

If x is drawn from any well-spread\* distribution,

$$(g, g^x, g^{x^2}, ..., g^{x^k}) \approx_C (g, g^{r_1}, g^{r_2}, ..., g^{r_k})$$
 for uniformly random  $r_1, r_2, ..., r_k \leftarrow \mathbb{Z}_q$ .

\*super-logarithmic min-entropy (hard to guess)

[KY18] shows Strong Power DDH implies non-malleable obfuscation for point functions.

## This work: Revisiting Non-Malleable Point Obfuscation

Strong Power DDH [KY18]

If x is drawn from any well-spread\* distribution,

$$(g,g^x,g^{x^2},\ldots,g^{x^k})\approx_C(g,g^{r_1},g^{r_2},\ldots,g^{r_k})$$
 for uniformly random  $r_1,r_2,\ldots,r_k\leftarrow\mathbb{Z}_q$ .

\*super-logarithmic min-entropy (hard to guess)

**Observation**: If g is a fixed generator, the assumption is false

Pick x so that  $g^x$  begins with 0.

## Non-Malleable Point Obfuscation from a New Assumption

Our New Assumption (a toy version)

If x is drawn from any well-spread distribution and  $a, r \leftarrow \mathbb{Z}_q$   $\left(a, g^{ax+x^2}\right) \approx_{\mathcal{C}} (a, g^r)$ .

## Non-Malleable Point Obfuscation from a New Assumption

Our New Assumption (a toy version)

If x is drawn from any well-spread distribution and  $a, r \leftarrow \mathbb{Z}_q$   $\left(a, g^{ax+x^2}\right) \approx_C (a, g^r)$ .

Theorem: Our assumption holds in the generic group model, even if the distribution is picked after the generic group labels are fixed.

## Non-Uniform Assumptions in the Generic Group Model

- All existing generic group proofs of DDH-II assume the generic group labeling function is sampled *independently* of the well-spread distribution.
- This enables proving false assumptions hold in the GGM!

# Non-Uniform Assumptions in the Generic Group Model

- All existing generic group proofs of DDH-II assume the generic group labeling function is sampled *independently* of the well-spread distribution.
- This enables proving false assumptions hold in the GGM!
- We give a new GGM proof of DDH-II where the well-spread distribution is picked after the labeling is fixed.

Thank you!

Questions?

slides: cs.princeton.edu/~fermim/talks/crypto-2019.pdf

character art: Eysa Lee