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Obfuscatlon and New Multilinear Maps
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CLT13 Maps

— “small” secret prime

m; + Tigi
plaintext

secret mask /

Chinese “small” random
Remainder
Theorem

“zero-test parameter”\ a (mod N )

Zero Test: p, - a (mod N) < N?
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Zeroizing Attack on CLT13 [CHLRS15]

Setting (1) (2)
p) =<...,Bi ,...),b@) =(...,Bi )

Z Z
a®, ..., a®, W . ™

Where each o' - bU) . ¢ js encoding of zero

Attack Steps

1. Form matrices W, Y by zero-testing each a") - pU) . ¢(F).
2. Compute eigenvalues of W~1Y:

B®
-y

3. GCD on eigenvalues reveal secret parameters.
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Observation: CHLRS15 computes char-poly(M) where entries
of M are zero-test results. Roots are numerators a; + 1; g;.

Solving polynomial for CLT13 numerators is only known attack
Strategy. [See also: CGHLMMRST15, CLLT16]

K CLT13 numerators
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* QU }pHp1Si}) #O

formal variable
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Generic Model
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] Extend Generic Model to allow adversary to
Step 1: Weak Model { perform a zeroizing attack. }

(inspired by MSZ16 and GMMSSZ16)

Generic Model + Zeroizing Attacks

{h(}, Plaintexts m®, ..., m®%),
< _ Handles h(D, ..., h(%).
p({h}) » Zero Test Queries Return “zero” if
C “zero” / “non-zero” . p({m(‘)}i) =0
p * degree k.
New: Return post-zero-test handle “T”
if zero.

QUT;}j, {8} )> Post Zero Test Return “WIN” if
“successful”/ ° Q({tj}j,{si}i) =0
< unsuccessful ° Q({tj}j»{si}i) % ()
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] Extend Generic Model to allow adversary to
Step 1: Weak Model { perform a zeroizing attack. J

Step 2: Annihilation If you can perform a zeroizing attack, you
Theorem can annihilate “zero-test polynomials”.

If x,y are CLT13 encodings, and x* + xy is a top-level zero, the
zero-test polynomial is the formal polynomial x* + xy.

Theorem: If __ can mount a zeroizing attack, can “cancel
out” linearly independent zero-test polynomials.
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] Extend Generic Model to allow adversary to
Step 1: Weak Model { perform a zeroizing attack.

Theorem can annihilate “zero-test polynomials”.

Step 2: Annihilation { If you can perform a zeroizing attack, you }

Step 3: Zeroizing- Obtain constructions where annihilating
Immune Schemes zero-test polynomials is hard.

« For BMSZ16 Obfuscation and BLRSZZ16 ORE it is provably hard to
annihilate zero-test polynomials (from standard assumptions [GMMSSZ16])
* New multilinear map hard to annihilate (under new non-standard assumption).
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[Vector in left kernel gives algebraic relation on secrets! ]
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Statistical Zeroizing Attack: Cryptanalysis of Candidates of BP

Obfuscation over GGH15 Multilinear Map
Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim, and Changmin Lee

ePrint: 2018/1081

First polynomial-time, non-algebraic zeroizing attack on GGH15-
based obfuscation!

Lp [CCHKL18]
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CCHKL18 updated
ePrint 23 hours ago:

Note: We temporarily add the disclaimer not to mislead the readers and audiences of TCC.

Disclaimer

The authors of BGMZ obfuscation [4] (TCC’18) report that there are flaws of
cryptanalysis of BGMZ obfuscation in Section 5. In particular, the current optimal
parameter choice of BGMZ obfuscation is robust against our attack, while the attack
lies outside the provable security of BGMZ obfuscation.

The flaws in the analysis in Section 5 are as follows:

e v is chosen to poly(\) in this paper whereas the original paper [4] chooses v = 2*
(or at least super-polynomial of ).

h
e The analysis of our attack claims that (1 + %) is polynomial of A, but it is

not true since g = 5 is constant.

We remark that our attack gives a constraint on the parameters; BGMZ obfuscation
with o = exp(A)® can be broken in the same manner with slightly modified proof.
We will update the paper as soon as possible.

“ Interestingly, this choice gives a countermeasure of CVW obfuscation.




. Extend Generic Model to allow adversary to
GGH_-'? Algebraic { perform an algebraic zeroizing attack. }
Zeroizing Model

Generic Model + GGH15 Attacks
Graph G, Plaintexts {S;, u; - v;}

{hl} Di «— EnC(Si,ui — Ul')
< Handles {h; - (D;, S;, u; = v;)}
pj(hi}i) Zero Test Queries: if
> .
(“ZerO”, “Tj”) ¢ p] edge-reSpeCtlng
</ “non-zero” « p;j({D;};) = (T;,“is zero”)

Return post-zero-test handle “T;”

Q ({Tj}, {S i})> Post Zero Test Return “WIN” if
suecesstur) |+ Q({Ti}(51}) = 0
el . ({1} 4511) 2 0, Q({T;}, {8:3) = 0
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Our GGH15 Variant

DU,—>U

B injects entropy

{ algebraic relation involving {T;} — annihilation of zero-test polynomials {p;} }




Our GGH15 Variant

Du—m

GGH15 Annihilation Theorem B injects entropy

{ hardness of annihilating zero-test polynomials — security in our model!




Branching Program (BP) Obfuscation
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Construction:
Encode S; ;, matrices with
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p-Bounded Speedup
Hypothesis [MSW14]
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Simple Obfuscation
Construction:
Encode S; ;, matrices with
our new GGH15 variant

GGH15 Annihilation
Theorem

Annihilation of
Successful Zero-Test

9 Polynomials P Thank you!

p-Bounded Speedup . o
Hypothesis [MSW14] Questions™

Annihilation of (read Distinguisher for
many) BP evaluations any PRF in NC1




