New Techniques for
Obfuscating Conjunctions

James Bartusek (Princeton)
Tancrede Lepoint (SRI & Goaogle)
Fermi Ma (Princeton)
Mark Zhandry (Princeton)

Motivating Scenario: Password Check Program

()

P(x):
if x = “correcthorsebatterystaple”:
output 1 (accept)
else:
output O (reject)

. J

Slightly Compute SHA256(“correcthorsebatterystaple”)

= cbebbeb26479b568e5f15
Bette_r b50217c6c83c0ee051dc4e5
Solution 22h9840d8e291d6aaf46
4)
P'(x):

if SHA256(x) == “cbebbeb26479b568e5f15b
50217c6c83c0ee051dcde5
22b9840d8e291d6aaf46”:
output 1 (accept)
else:

output O (reject)
\ y

This is a simple example of

program obfuscation [BGIRSVY]

for point functions
[Can97,CMR98,LPS04,Wee05,BP12,...]

Informally, want Obf to satisfy:

* (correctness) Obf(P)(x) = P(x) for
all x

e (virtual black box) Obf(P) reveals
nothing beyond what can be
learned from black box access to P

P(x):

if x = “correcthorsebatterystaple”
output 1 (accept)

else:
output O (reject)

N

Apply Obf

Obf(P)(x):

if SHA256(x) == “cbebbeb26479b568e5f
15b50217c6c83c0ee051dc4e522b9840d
8e291d6aaf46”:

output 1 (accept)
else:

output O (reject)

Obfuscation for
General Programs

Many candidates:
[GGHRSW13,AGIS14,AB15,Zim15,LV16,Lin16,GM

MSSZ16,AS16,LT17,FRS17,BGMZ18,CVW18,AJS18,
LM18,Agr18,GJK18S,...]

Focus of this work: simple
techniques to obfuscate
specific functionalities.

Obfuscation for
Specific Functionalities

Point Functions
[Can97,CMR98,LPS04,Wee05,CD08,DKLO9,GKPV10,
BP12,...]

Compute-and-Compare Programs
[GKW17,WZ17]

Hamming Balls [Ds05]

Hyperplane Membership [CRV09]

Conjunctions [BVWW16,GKW17,WZ17,...]

We study conjunctions, but techniques apply to hamming balls, affine spaces, etc.

Obfuscation for Conjunctions
(“pattern-matching with wildcards”)

pat = 1*10*
(match) 11100
(mismatch) 10001
(match) 10101
(mismatch) 01111

bitstring x matches pat if it
equals pat except on *

Ppat(x):
if x matches pat output 1
else output O

Obfuscation for Conjunctions
(“pattern-matching with wildcards”)

pat = 1*10*
(match) 11100
(mismatch) 10001
(match) 10101
(mismatch) 01111

Our work: Allow
evaluation of P,
without leaking
anything about pat

bitstring x matches pat if it
equals pat except on *

Ppat(x):
if x matches pat output 1
else output O

Obfuscation for Conjunctions
(“pattern-matching with wildcards”)

pat = 1*10*
(match) 11100
(mismatch) 10001
(match) 10101
(mismatch) 01111

Our work: Allow
evaluation of P,
without leaking
anything about pat

bitstring x matches pat if it
equals pat except on *

Ppat(x):
if x matches pat output 1
else output O

\

When is this goal feasible?
A: pat must be drawn from a
distribution where accepting inputs
to Pp4¢ are hard to find [BBCKPS13]

S

Prior Conjunction Obfuscators

Assumption or Model

Our starting point:

BR13 Multili M
el uitilinear Maps the [BKMPRS18]
construction
[BVWW16] Entropic Ring LWE
[GKW17],[WZ17] LWE

[BKMPRS18] Generic Group Model

Our Results: Three Constructions

Assumption or Security holds when

Model pattern is sampled from:

Generic Group

BKMPRS18
[] Model

U,|cn], where ¢ < 0.774

Generic Group

Construction 1
Model*

Un[n — w(logn)]

Learning Parity with

Construction 2 U,|cn] wherec < 1

Noise
Construction 3 Information
. U.[nflwhere0 <e<1
(see paper) theoretic* nln°] <

*can be extended beyond uniform
distributions (see also [BeuWee19])

U, |w] denotes
uniform dist over
length n patterns
with w wildcards

Talk Outline

=» 1. Encoding Conjunctions as Inner Products
2. A Group-Based Construction
3. Security from LPN/RLC

What Does “Simple” Mean?

Obfuscation: Oninput pat € {0,1,%} "
Output vector v, ; over I,

11

What Does “Simple” Mean?

Obfuscation: Oninput pat € {0,1,%} "
Output vector v, ; over I,

Evaluation: Oninputx € {0,1} "
Write down vector w,,

Accept if Wy v, = 0

Encoding Conjunctions as Inner Products

Structure of e
taken from [BKMPRS18]

“Obfuscation”:
(n = 3)
pat = *01

pat

T; 1S a
uniformly
random
value in [F,,

13

Encoding Conjunctions as Inner Products

Structure of e

taken from [BKMPRS18] pat

/8\ * r;is a
“Obfuscation”: [ulniforml
(n = 3) e=| 1|0 !
~ 0 random
pat =*01 |9 _
\()/ . value in [F,,
L)
(Accepting input)
Evaluation: x = 001 $ denotes
. x= 0 E 0 E 1 arbitrary
w = $ 0 $ $ 0) non-zero

value in IFp

14

Encoding Conjunctions as Inner Products

Structure of e

taken from [BKMPRS18] 0 pat
[0)"

“Obfuscation”: (...

pat = *01 O
\/ 1

2

(Accepting input)
pat
Evaluation: x = 001 /O\)
0

x= 0 0 1 e

whe=(0 $:0 $:$ 0|0

= () =P Accept!

r;is a
uniformly
random
value in [F,,

$ denotes
arbitrary
non-zero
value in [F,,

15

Encoding Conjunctions as Inner Products

Structure of e

taken from [BKMPRS18] 07
/()\ * T; is a
“Obfuscation”: [L
(n = 3) _ o uniformly
o1 “T o random
pat = \()/ . value in [F,,
)
(Rejecting input)
pat
NN 0
Evaluation: x =011 /O\ . $ denotes
] =0 1 1 o arbitrary
w'-e= (0 $$ 0$ 0) 0 0 non-zero
\O/ value in IF,
1
)

= $r;=—=Pp Reject! ”

Talk Outline

1. Encoding Conjunctions as Inner Products
=» 2. A Group-Based Construction
3. Security from LPN/RLC

How can we make this
construction secure?

Idea: Avoid giving out e in the
clear, but still allow user to
compute w! - e for any w that
encodes an input x

[pat
0
/ o\ "
“Obfuscation”: |[.....
\./ 1
W)
pat
Evaluation: x = 001 /0\ .
0
x= 0 | 0 | 1 T'
wie=(0 0 $ 0|, |0
: Zn : \...6.)
Ty 1
=0
_

18

Slightly Better Construction

Obfuscation:

1) Encode patine

2) Giveout B -e € F;™" where
B is a public (n + 1)X(2n)
matrix satisfying Property 1.

Evaluation:
On input x = 001 pick k € F}** so that

x= 0 0 1
k"B = (0, $ 0 $ $ 0) encodes x

", _,‘
0 .
. .
L .
. (%

. .

. .

L .

. e .
" ., .
L .

0 .

o o
. .

.
.y o
". o
DX

(i.e. solve for k to make these n entries of kT B equal 0)

Accept if kT Be = 0

27’l O
k
1 2 3 4 5 6/0\

e |17 22 32 42 52 62\ 0
SR SO W

14 2% 3% 4% 5% 6t \0

B e

Property 1: Any (n + 1)xX(n+ 1)
submatrix of B is full rank over I,
(ex: Vandermonde)

Why does B help security?

19

Informal Lemma 1 (No
Linear Attacks): If pat is
drawn with enough entropy,
then for any k € Fp*?,
k' Be is a uniformly
random scalar.

n+1

2 92 92 422 w2 2 \['7
(kl kz k3 k4) 1 2 3 4‘ 5 6 1

kT

2n O

123456/0\

13 23 33 43 53 63 0

14 24 34 44 5% g4 \0/
)
B e

pat

Property 1: Any (n + 1)X(n+ 1)
submatrix of B is full rank over I,
(ex: Vandermonde)

Why does B help security?

20

Informal Lemma 1 (No
Linear Attacks): If pat is
drawn with enough entropy,
then for any k € Fp*?,
k' Be is a uniformly
random scalar.

1) At most n out of 2n entries of kT B
can be 0 (Property 1).

2) If pat has enough entropy, then with
overwhelming probability one of the
n non-zero entries of kI B will
coincide with a non-zero entries in e.

3) If so, (kT B)e will be a random scalar.

pat
(B; denotes ith column of B) /0\
*
(kTBl kTBZ kTBg kTB4. kTBS kTB6) 01 O
e
\/ 1
k"B e

Property 1: Any (n + 1)xX(n+ 1)
submatrix of B is full rank over [F,,
(ex: Vandermonde)

Why does B help security?

21

Informal Lemma 1 (No Group-Based* Construction
Linear Attacks): If pat is Obfuscation: Encode pat as e, compute
drawn with enough entropy, Be and output:

then for any k € Fp*?,

k' Be is a uniformly
random scalar.

gBe —_ g(Be)l’g(Be)Z, _’g(Be)n+1

(same evaluation procedure works in exponent)

Proof: generic adversaries limited to linear attacks

Theorem: Generic Group adversary [Nac94,5h097] cannot distinguish gBe fromn+1

random group elements if pat is uniformly random** with n — w(logn) wildcards.

*Idea due to [BKIVIPRS18]: this construction can be viewed as “dual” to their construction.
**Can be extended to more general distributions (see our paper and [BeuWee19])

22

Talk Outline

1. Encoding Conjunctions as Inner Products
2. A Group-Based Construction
=» 3. Security from LPN/RLC

Group-Based Construction

(Step 1: Sample a length 2n vector e: A
If pat; = *, (eziz_il) = (8)
If pat; = 0, (eziz_il) = (6) forr « I,
If pat; =1, (eziz_il) = (S) forr « F,

\ J

7

Step 2: Define B € IFI(,nH)xzn whose
(i,j)th entry is:
B;;=j
Compute the vector Be € Fj*!

B

1 2 3 4 5 6
12 22 32 42 52 62

13 23 33 43 53 63
14 24 34 44 54 64

Obfuscation: g€

(B is a fixed public matrix)

24

Group-Based Construction

(Step 1: Sample a length 2n vector e: A
If pat; = *, (eziz_il) = (8)
If pat; = 0, (eziz_il) = (6) forr « I,
If pat; =1, (eziz_il) = (S) forr « F,

\ J

7

Step 2: Define B € IFI(,nH)xzn whose
(i,j)th entry is:
B;;=j
Compute the vector Be € Fj*!

B

1 2 3 4 5 6
12 22 32 42 52 62
13 23 33 43 53 63
14 24 34 44 54 64

Obfuscation: Be?

(B is a fixed public matrix)

25

New Construction

(Step 1: Sample a length 2n vector e:)
If pat; = *, (eziz_il) = (8)
If pat; = 0, (eziz_il) = (6) forr « I,
If pat; =1, (eziz_il) = (S) forr « F,

\ J

Step 2: Sample a uniformly random

matrix B « IF;”H)XZ”.

Compute the vector Be € Fj*!

e
zf RO
»|=| randomB |
: :

Obfuscation: B, Be

|dea: Randomize B!

Why would this be secure?

26

Learning Parity with Noise Assumption over [F,,
(Random Linear Codes Assumption)

7,L(:'

uniform

A

uniform

| A |s|He

/

uniform /

Standard LPN
set each entry

Ow/probl —«
e; « IF, w/ prob

A

uniform

uniform

‘I

u

27

Learning Parity with Noise Assumption over [F,,
(Random Linear Codes Assumption)

7,L(:'

uniform

A

uniform

A

uniform

/

S

|

\ uniform

uniform

‘I

~C A |, u

Exact LPN [JkpT12]

set exactly an entries
non-zero

(polynomially equivalent)

28

Learning Parity with Noise Assumption over [F,,
(Random Linear Codes Assumption)

n

€

uniform

A

A

uniform uniform

/

S

Last modification: switch to “dual”

|

\ uniform

uniform

‘I

~C A |, u

Exact LPN [JkpT12]

set exactly an entries
non-zero

(polynomially equivalent)

29

Compute H with full row-rank such that:

nE

n—nt H A

|
-

Last modification: switch to “dual”

30

Compute H with full row-rank such that:

nE

n—nt H A

|
-

Observe
r nt R
n—nt
n H A s+el|l= H
uniform
- Y,

Last modification: switch to “dual”

exactly an non-zero values

‘f

NS

~C

H

uniform

uniform

J

u

(Dual) Exact LPN Assumption
(polynomially equivalent to LPN)

n
uniform uniform
Notice H,H

looks like the obfuscation B, Be

(Dual) Exact LPN

v H €
4]
V1 0
2 |=(random H || »,
3

Un-n¢
0

LPN for poly samples, field IF,,
constant noise «a, [JKPT12] “exact” error

® Sample random H over [F,, —
* Sample e’ as uniformly random-n.

dimensional vector with exactly an
non-zero entries.

Obfuscation

Dual Exact LPN Assumption:
(H,He") looks random

B e
(% 0
v (o)
1=l randomB || |0
” o

random length n pattern, \7”2

(1 — a)n wildcards

Bisi(n + 1) X 2n!

Sample random B over [F) —
Sample e as uniformly random: 2N |

[p—— |
dimensional vector with exactly an
non-zero entries, conditioned on each
pair of positions 21 — 1, 2i having at

least one O entry.

33

(Dual) Exact LPN

4

“unstructured error’

uniformly random n-
dimensional vector with
exactly an non-zero
entries.

Obfuscation o
L0
e] “structured error” 8
L - 0 |
e, uniformly random 2n-
e, dimensional vector with L2
0 exactly an non-zero €3
; entries conditioned on L0
e each pair of positions 0
21 — 1, 21 having at least 0
one 0 entry. e

This distribution arises
if pat is uniformly random
with (1 — a)n wildcards.

34

Theorem: Assuming LPN over IF,, (noise rate a), obfuscation B, Be looks uniformly
random if pat is uniformly at random with (1 — a)n wildcards, for0 < a < 1.

Theorem: Assuming LPN over IF,, (noise rate a), obfuscation B, Be looks uniformly
random if pat is uniformly at random with (1 — a)n wildcards, for0 < a < 1.

(Dual) Exact LPN:

s
n—n¢t H u
uniform
Want to show:
2n
n+1 B u
uniform \

uniform

uniform

e’ unstructured error

/

%C H) He'
uniform
e structured error
~C B)| Be
uniform

36

Easy Step: Sample n random columns Uy, ... U,,. Replace H with K where
each pair of indices (2i — 1,2i) is either H;, U; or U;, H; (pick randomly).

structured error.

n 2n
u u
“|Hy|H, Hs|Hy|Hs|p| or |y 70— 1 |H. U, U, |H|US |HS|H, UL US| Hs | 2| OF
H H
H K
Claim: He = Ke where e is unstructured error and e is

37

or
Ke

e structured error
non-zero entries in an randomly

e unstructured error

non-zero entries in an randomly

—_ ~

chosen positions, each pair €

chosen positions has at least one O

-

I~

m\

(NS

S
oé

0 /
ez
es 0
0 0
H , K
e 0
e

Claim: He' = Ke where e’ is unstructured error and e is
structured error.

2n

38

(Dual) Exact LPN:

uniform

S
e H Ul ~c
uniform
LPN gives us n — n¢
rows “for free” .
uniform
2n f
n_nEH1U1U2H2U3H3H4U4U5H5 u zC

e’ unstructured error

/

H)He'
uniform
e structured error
H,|U,|U,|H,|Us|H5|H,|U,|Us|Hs |y | K e
K

39

(Dual) Exact LPN: . uniform e’ unstructured error
/ /
nen Hooblul =gl H e

uniform uniform

LPN gives us n — n¢

rows “for free” .
uniform e structured error

2n
¢ ¥
n—né | k ''U %C | k) Ke

unifor unifor

NSl Need n€ + 1 additional rows . Need n€ + 1 additional rows .

We need n + 1 rows for the obfuscation construction.

40

Issue: If we sample additional rows U uniformly at random,

we can’t fill in Ue without e.

- uniform
" J
| K U =~c
uniform | -
U u

e structured error

unifi

rm

§

Ke

?

41

Observation: We know K;e for
any row K; of K.
So we can use random linear
combinations of rows of K.

uniform e structured error

2n
V ¥
n—n¢ | k U zC | k) Ke

uniform | ° uniform | |

42

Observation: We know K;e for Sample random
any row K; of K. matrix R: e
So we can use random linear non
combinations of rows of K. n“+1 R

uniform e structured error

2|7’l| f *
nen . K U zC ' k) Ke

uniform | °| | uniform | °|

n°+1 RK Ru RK |RK6|

So are we done?

43

Observation: We know K;e for
any row K; of K.

So we can use random linear

combinations of rows of K.

uniform

2|Tl| f
K u

RK Ru

NS

~C

The matrix isn’t random!
(rank is at most n — n°®)

Sample random

matrix R:

n —nt

nt+1

R

e structured error

] ¥

K Ke
uniform | |

RK

RKe

44

One last idea: we
know half the
entries of e since
we implicitly
“inserted” n zeros.

uniform

2|n I f
K
uniform | -
n€ +1 RK Ru

e structured error

] ¥

K
uniform | |

RK RKe

45

One last idea: we
know half the
entries of e since
we implicitly
“inserted” n zeros.

2n

NN
NN

_

- uniform
m f
K U~
;'E'P L
RK 4V R

uniformly random columns

S

=V

At

Sample matrix V with n uniformly random non-zero columns
coinciding with n known zero entries of e. (i.e. Ve = 0)

nE-I;L

all O’s column

e structured error

§

K r
RK+V) | ki

46

B

n+1

27?7
~S |uniform

S
H

UIf rm
R

w —
h +
w
< <
)lVl
>~ €
w+ o &
Q =0
OKnd
O S C
_.lka
< O *
(O

47

2n 2n

Does) N+ 1
(K,RK +V) " n | B
i 2?7

look unifor;nly u ;;ﬂ"] i . I
random? n® +1 %;ﬁRKé—h V/éé ™S |uniform
2|n I matrices over [, log q = n°
€ K Heuristic Argument: Entropy Counting
uniform | = ° H,(K)+H, (R)+ H,(V)

— 0 : o) .
E ?? n° (# entries in K) + n°(# entriesin R)
nt+1 éé

7 + n® (# nonzero entries in V) + n
| _ 2€+8
n— € f =H,(B) —n“¢*° +n

R all 0's If 2 + 6 < 1, LHLyields (K, RK + V)
uniform statistically close to uniform. 48

<
N
N\

n® +1

uniform

e structured error

e structured error

2n

uniform

n+1

49

uniform

Another Perspective: Structured Error LPN

2n

e structured error

uniform

B

\

Be

For what h is (B, Be) pseudorandom?

* Pseudorandom if h = n — n€, € < 1 (perfectly equivalent to Exact LPN)

 [AroraGel2] Cansolveforeifh =2n—n?, 8 < 1/2

50

Another Perspective: Structured Error LPN

N e structured error

h B g

uniform

For what h is (B, Be) pseudorandom?
* Pseudorandom if h = n — n€, € < 1 (perfectly equivalent to Exact LPN)

 [This work] Pseudorandom if h = n +n", y < 1/2 (statistically equivalent to
Exact LPN)

 [AroraGel2] Cansolveforeifh =2n—n?, 8 < 1/2

51

Conclusion

* |nthe GGM: obfuscate conjunctions by encoding in a vector
and multiplying by a structured matrix.

* If we multiply by a random matrix, we can avoid groups and
rely on LPN.

In the paper:

 An information theoretic conjunction obfuscator consisting
of a sequence of matrices; evaluation is done by taking a
subset-sum of matrices and computing the determinant.

ePrint: ia.cr/2018/936 Thank Youl!

slides: cs.princeton.edu/~fermim/talks/crypto-day.pdf

52

