
New Techniques for
Obfuscating Conjunctions

0

James Bartusek (Princeton)
Tancrède Lepoint (SRI &)
Fermi Ma (Princeton)
Mark Zhandry (Princeton)

1

Motivating Scenario: Password Check Program

P 𝑥 :
if 𝑥 = “correcthorsebatterystaple”:

output 1 (accept)
else:

output 0 (reject)

Light Blue

HEX 09B6C9

2

Slightly
Better
Solution

P′ 𝑥 :
if SHA256 𝑥 == “cbe6beb26479b568e5f15b

50217c6c83c0ee051dc4e5
22b9840d8e291d6aaf46”:

output 1 (accept)
else:

output 0 (reject)

Compute SHA256(“correcthorsebatterystaple”)
= cbe6beb26479b568e5f15

b50217c6c83c0ee051dc4e5
22b9840d8e291d6aaf46

Light Blue

HEX 09B6C9

3

Obf(P) 𝑥 :
if SHA256 𝑥 == “cbe6beb26479b568e5f
15b50217c6c83c0ee051dc4e522b9840d
8e291d6aaf46”:

output 1 (accept)
else:

output 0 (reject)

This is a simple example of
program obfuscation [BGIRSVY]
for point functions
[Can97,CMR98,LPS04,Wee05,BP12,…]

Informally, want Obf to satisfy:
• (correctness) Obf(P)(𝑥) = P(𝑥) for

all 𝑥
• (virtual black box) Obf(P) reveals

nothing beyond what can be
learned from black box access to P

P 𝑥 :
if x = “correcthorsebatterystaple”

output 1 (accept)
else:

output 0 (reject)

Apply Obf

4

Obfuscation for
General Programs
Many candidates:
[GGHRSW13,AGIS14,AB15,Zim15,LV16,Lin16,GM
MSSZ16,AS16,LT17,FRS17,BGMZ18,CVW18,AJS18,
LM18,Agr18,GJK18,…]

Obfuscation for
Specific Functionalities
• Point Functions

[Can97,CMR98,LPS04,Wee05,CD08,DKL09,GKPV10,
BP12,…]

• Compute-and-Compare Programs
[GKW17,WZ17]

• Hamming Balls [DS05]

• Hyperplane Membership [CRV09]

• Conjunctions [BVWW16,GKW17,WZ17,…]

We study conjunctions, but techniques apply to hamming balls, affine spaces, etc.

Focus of this work: simple
techniques to obfuscate
specific functionalities.

5

𝑝𝑎𝑡 = 1*10*
(match) 11100

(mismatch) 10001
(match) 10101

(mismatch) 01111

𝑃9:; 𝑥 :
if 𝑥 matches 𝑝𝑎𝑡 output 1
else output 0

bitstring 𝑥 matches 𝑝𝑎𝑡 if it
equals 𝑝𝑎𝑡 except on *

Obfuscation for Conjunctions
(“pattern-matching with wildcards”)

6

𝑝𝑎𝑡 = 1*10*
(match) 11100

(mismatch) 10001
(match) 10101

(mismatch) 01111

𝑃9:; 𝑥 :
if 𝑥 matches 𝑝𝑎𝑡 output 1
else output 0

bitstring 𝑥 matches 𝑝𝑎𝑡 if it
equals 𝑝𝑎𝑡 except on *

Obfuscation for Conjunctions
(“pattern-matching with wildcards”)

Our work: Allow
evaluation of 𝑃𝑝𝑎𝑡

without leaking
anything about 𝑝𝑎𝑡

7

𝑝𝑎𝑡 = 1*10*
(match) 11100

(mismatch) 10001
(match) 10101

(mismatch) 01111

𝑃9:; 𝑥 :
if 𝑥 matches 𝑝𝑎𝑡 output 1
else output 0

bitstring 𝑥 matches 𝑝𝑎𝑡 if it
equals 𝑝𝑎𝑡 except on *

Our work: Allow
evaluation of 𝑃𝑝𝑎𝑡

without leaking
anything about 𝑝𝑎𝑡

When is this goal feasible?
A: 𝑝𝑎𝑡 must be drawn from a

distribution where accepting inputs
to 𝑃9:; are hard to find [BBCKPS13]

Obfuscation for Conjunctions
(“pattern-matching with wildcards”)

8

Assumption or Model

[BR13] Multilinear Maps

[BVWW16] Entropic Ring LWE

[GKW17],[WZ17] LWE

[BKMPRS18] Generic Group Model

Prior Conjunction Obfuscators

Our starting point:
the [BKMPRS18]
construction

9

Assumption or
Model

Security holds when
pattern is sampled from:

[BKMPRS18] Generic Group
Model 𝑈=[𝑐𝑛], where 𝑐 < 0.774

Construction 1 Generic Group
Model* 𝑈=[𝑛 − 𝜔 log 𝑛]

Construction 2 Learning Parity with
Noise 𝑈=[𝑐𝑛] where 𝑐 < 1

Construction 3
(see paper)

Information
theoretic* 𝑈=[𝑛K] where 0 ≤ 𝜖 < 1

Our Results: Three Constructions

𝑈=[𝑤] denotes
uniform dist over
length 𝑛 patterns
with 𝑤 wildcards

*can be extended beyond uniform
distributions (see also [BeuWee19])

10

1. Encoding Conjunctions as Inner Products
2. A Group-Based Construction
3. Security from LPN/RLC

Talk Outline

11

What Does “Simple” Mean?

Obfuscation: On input 𝑝𝑎𝑡 ∈ {0,1,∗} =
Output vector 𝒗9:; over 𝔽9

12

What Does “Simple” Mean?

Obfuscation: On input 𝑝𝑎𝑡 ∈ {0,1,∗} =
Output vector 𝒗9:; over 𝔽9

Evaluation: On input 𝑥 ∈ {0,1} =
Write down vector 𝒘W
Accept if 𝒘W

X 𝒗9:; = 0

Encoding Conjunctions as Inner Products

“Obfuscation”:
𝑛 = 3

𝑝𝑎𝑡 = *01

Structure of 𝒆
taken from [BKMPRS18]

Accept!

𝒆 =

0
0
𝑟\
0
0
𝑟]

*

0

1

𝑝𝑎𝑡

13

𝑟 is a
uniformly
random
value in 𝔽9

Encoding Conjunctions as Inner Products

“Obfuscation”:
𝑛 = 3

𝑝𝑎𝑡 = *01

Structure of 𝒆
taken from [BKMPRS18]

𝒘𝑻 ⋅ 𝒆 = 0 $ 0 $ $ 0

0
0
𝑟\
0
0
𝑟]

= 0

𝑥 = 0 0 1

Evaluation: 𝑥 = 001

Accept!

(Accepting input)

𝒆 =

0
0
𝑟\
0
0
𝑟]

*

0

1

𝑝𝑎𝑡

14

𝑟 is a
uniformly
random
value in 𝔽9

$ denotes
arbitrary
non-zero
value in 𝔽9

Encoding Conjunctions as Inner Products

“Obfuscation”:
𝑛 = 3

𝑝𝑎𝑡 = *01

Structure of 𝒆
taken from [BKMPRS18]

𝒘𝑻 ⋅ 𝒆 = 0 $ 0 $ $ 0

0
0
𝑟\
0
0
𝑟]

= 0

𝑥 = 0 0 1
*

0

1

𝑝𝑎𝑡
Evaluation: 𝑥 = 001

Accept!

(Accepting input)

𝒆 =

0
0
𝑟\
0
0
𝑟]

*

0

1

𝑝𝑎𝑡

15

$ denotes
arbitrary
non-zero
value in 𝔽9

𝑟 is a
uniformly
random
value in 𝔽9

Encoding Conjunctions as Inner Products

𝒆 =

0
0
𝑟\
0
0
𝑟]

*

0

1

𝑝𝑎𝑡

“Obfuscation”:
𝑛 = 3

𝑝𝑎𝑡 = *01

Structure of 𝒆
taken from [BKMPRS18]

𝒘𝑻 ⋅ 𝒆 = 0 $ $ 0 $ 0

0
0
𝑟\
0
0
𝑟]

= $𝑟\

𝑥 = 0 1 1
*

0

1

𝑝𝑎𝑡
Evaluation: 𝑥 = 011

Reject!

(Rejecting input)

16

$ denotes
arbitrary
non-zero
value in 𝔽9

𝑟 is a
uniformly
random
value in 𝔽9

17

1. Encoding Conjunctions as Inner Products
2. A Group-Based Construction
3. Security from LPN/RLC

Talk Outline

18

How can we make this
construction secure?

Idea: Avoid giving out 𝒆 in the
clear, but still allow user to

compute 𝒘𝑻 ⋅ 𝒆 for any 𝒘 that
encodes an input 𝑥 𝒘𝑻 ⋅ 𝒆 = 0 $ 0 $ $ 0

0
0
𝑟\
0
0
𝑟]

= 0

𝒆 =

0
0
𝑟\
0
0
𝑟]

*

0

1

𝑝𝑎𝑡

“Obfuscation”:
𝑛 = 3

𝑝𝑎𝑡 = *01

𝑥 = 0 0 1
*

0

1

𝑝𝑎𝑡
Evaluation: 𝑥 = 001

2𝑛

𝒌𝑻𝑩 = 0 $ 0 $ $ 0

19

Slightly Better Construction

1 2 3 4 5 6
1] 2] 3] 4] 5] 6]
1g 2g 3g 4g 5g 6g
1h 2h 3h 4h 5h 6h

0
0
𝑟\
0
0
𝑟]

𝑩

2𝑛
*

0

1

𝑝𝑎𝑡

𝒆

Obfuscation:
1) Encode 𝑝𝑎𝑡 in 𝒆
2) Give out 𝑩 i 𝒆 ∈ 𝔽9=j\ where

𝑩 is a public 𝑛 + 1 ×(2𝑛)
matrix satisfying Property 1.

Property 1: Any 𝑛 + 1 × 𝑛 + 1
submatrix of 𝑩 is full rank over 𝔽9

(ex: Vandermonde)

𝑛 + 1

Evaluation:
On input 𝑥 = 001 pick 𝒌 ∈ 𝔽9=j\ so that

encodes 𝑥

(i.e. solve for 𝒌 to make these 𝑛 entries of 𝒌𝑻𝑩 equal 0)

Accept if 𝒌𝑻𝑩𝒆 = 𝟎

𝑥 = 0 0 1

Why does 𝑩 help security?

20

Property 1: Any 𝑛 + 1 × 𝑛 + 1
submatrix of 𝑩 is full rank over 𝔽9

(ex: Vandermonde)

Why does 𝑩 help security?

Informal Lemma 1 (No
Linear Attacks): If 𝑝𝑎𝑡 is
drawn with enough entropy,
then for any 𝒌 ∈ 𝔽9=j\,
𝒌𝑻𝑩𝒆 is a uniformly
random scalar.

1 2 3 4 5 6
1] 2] 3] 4] 5] 6]
1g 2g 3g 4g 5g 6g
1h 2h 3h 4h 5h 6h

0
0
𝑟\
0
0
𝑟]

𝑩

2𝑛
*

0

1

𝑝𝑎𝑡

𝒆𝒌𝑻

(𝑘\ 𝑘] 𝑘g 𝑘h)
𝑛 + 1

21

Informal Lemma 1 (No
Linear Attacks): If 𝑝𝑎𝑡 is
drawn with enough entropy,
then for any 𝒌 ∈ 𝔽9=j\,
𝒌𝑻𝑩𝒆 is a uniformly
random scalar.

𝒌𝑻𝑩𝟏 𝒌𝑻𝑩𝟐 𝒌𝑻𝑩𝟑 𝒌𝑻𝑩𝟒 𝒌𝑻𝑩𝟓 𝒌𝑻𝑩𝟔

0
0
𝑟\
0
0
𝑟]

2𝑛

𝒆𝒌𝑻𝑩

(𝑩𝒊 denotes 𝑖th column of 𝑩)
*

0

1

𝑝𝑎𝑡

1) At most 𝑛 out of 2𝑛 entries of 𝒌𝑻𝑩
can be 0 (Property 1).

2) If 𝑝𝑎𝑡 has enough entropy, then with
overwhelming probability one of the
𝑛 non-zero entries of 𝒌𝑻𝑩 will
coincide with a non-zero entries in 𝒆.

3) If so, (𝒌𝑻𝑩)𝒆 will be a random scalar.

Property 1: Any 𝑛 + 1 × 𝑛 + 1
submatrix of 𝑩 is full rank over 𝔽9

(ex: Vandermonde)

Why does 𝑩 help security?

22

Group-Based* Construction
Obfuscation: Encode 𝑝𝑎𝑡 as 𝒆, compute

𝑩𝒆 and output:

𝑔𝑩𝒆 = 𝑔 𝑩𝒆 x, 𝑔 𝑩𝒆 y, … . , 𝑔 𝑩𝒆 {|x

(same evaluation procedure works in exponent)

*Idea due to [BKMPRS18]: this construction can be viewed as “dual” to their construction.
**Can be extended to more general distributions (see our paper and [BeuWee19])

Theorem: Generic Group adversary [Nac94,Sho97] cannot distinguish 𝑔𝑩𝒆 from 𝑛 + 1
random group elements if 𝑝𝑎𝑡 is uniformly random** with 𝑛 − 𝜔(log 𝑛) wildcards.

Proof: generic adversaries limited to linear attacks

Informal Lemma 1 (No
Linear Attacks): If 𝑝𝑎𝑡 is
drawn with enough entropy,
then for any 𝒌 ∈ 𝔽9=j\,
𝒌𝑻𝑩𝒆 is a uniformly
random scalar.

23

1. Encoding Conjunctions as Inner Products
2. A Group-Based Construction
3. Security from LPN/RLC

Talk Outline

Step 1: Sample a length 2𝑛 vector 𝒆:

If 𝑝𝑎𝑡^ = ∗,
𝑒]^~\
𝑒]^ = 0

0

If 𝑝𝑎𝑡^ = 0,
𝑒]^~\
𝑒]^ = 𝑟

0 for 𝑟 ← 𝔽9

If 𝑝𝑎𝑡^ = 1,
𝑒]^~\
𝑒]^ = 0

𝑟 for 𝑟 ← 𝔽9

24

Step 2: Define 𝑩 ∈ 𝔽9
=j\ ×]= whose

𝑖, 𝑗 th entry is:
𝑩^,� = 𝑗^

Compute the vector 𝑩𝒆 ∈ 𝔽9=j\

Obfuscation: 𝑔𝑩𝒆

𝑣\
𝑣]
𝑣g
𝑣h

=

1 2 3 4 5 6
1] 2] 3] 4] 5] 6]
1g 2g 3g 4g 5g 6g
1h 2h 3h 4h 5h 6h

0
0
𝑟\
0
0
𝑟]

𝑩
𝒆

𝒗
*

0

1

Group-Based Construction

(𝑩 is a fixed public matrix)

Step 1: Sample a length 2𝑛 vector 𝒆:

If 𝑝𝑎𝑡^ = ∗,
𝑒]^~\
𝑒]^ = 0

0

If 𝑝𝑎𝑡^ = 0,
𝑒]^~\
𝑒]^ = 𝑟

0 for 𝑟 ← 𝔽9

If 𝑝𝑎𝑡^ = 1,
𝑒]^~\
𝑒]^ = 0

𝑟 for 𝑟 ← 𝔽9

25

Step 2: Define 𝑩 ∈ 𝔽9
=j\ ×]= whose

𝑖, 𝑗 th entry is:
𝑩^,� = 𝑗^

Compute the vector 𝑩𝒆 ∈ 𝔽9=j\

Obfuscation: 𝑩𝒆?

𝑣\
𝑣]
𝑣g
𝑣h

=

1 2 3 4 5 6
1] 2] 3] 4] 5] 6]
1g 2g 3g 4g 5g 6g
1h 2h 3h 4h 5h 6h

0
0
𝑟\
0
0
𝑟]

𝑩
𝒆

𝒗
*

0

1

Group-Based Construction

(𝑩 is a fixed public matrix)

Step 1: Sample a length 2𝑛 vector 𝒆:

If 𝑝𝑎𝑡^ = ∗,
𝑒]^~\
𝑒]^ = 0

0

If 𝑝𝑎𝑡^ = 0,
𝑒]^~\
𝑒]^ = 𝑟

0 for 𝑟 ← 𝔽9

If 𝑝𝑎𝑡^ = 1,
𝑒]^~\
𝑒]^ = 0

𝑟 for 𝑟 ← 𝔽9

26

Obfuscation: 𝑩,𝑩𝒆

𝑣\
𝑣]
𝑣g
𝑣h

=

1 2 3 4 5 6
1] 2] 3] 4] 5] 6]
1g 2g 3g 4g 5g 6g
1h 2h 3h 4h 5h 6h

0
0
𝑟\
0
0
𝑟]

𝑩
𝒆

𝒗
*

0

1

New Construction

Step 2: Sample a uniformly random
matrix 𝑩 ← 𝔽9

=j\ ×]=.

Compute the vector 𝑩𝒆 ∈ 𝔽9=j\

random 𝑩

Idea: Randomize 𝑩!

Why would this be secure?

27

Learning Parity with Noise Assumption over 𝔽9
(Random Linear Codes Assumption)

𝑒′ ≈�𝐴 +,

Standard LPN
set each entry
• 0 w/ prob 1 − 𝛼
• 𝑒^� ← 𝔽9 w/ prob 𝛼

uniform

𝑠𝐴𝑛

𝑛K

uniform

𝑢,𝐴
uniform

uniform
uniform

28

≈�𝐴 +,
uniform

𝑠𝐴𝑛

𝑛K

uniform

𝑢,𝐴
uniform

uniform
uniform

Exact LPN [JKPT12]
set exactly 𝛼𝑛 entries
non-zero
(polynomially equivalent)

𝑒′

Learning Parity with Noise Assumption over 𝔽9
(Random Linear Codes Assumption)

Standard LPN
set each entry
• 0 w/ prob 1 − 𝛼
• 𝑒^� ← 𝔽9 w/ prob 𝛼

29

≈�𝐴 +,
uniform

𝑠𝐴𝑛

𝑛K

uniform

𝑢,𝐴
uniform

uniform
uniform

Exact LPN [JKPT12]
set exactly 𝛼𝑛 entries
non-zero
(polynomially equivalent)

Last modification: switch to “dual”

𝑒′

Learning Parity with Noise Assumption over 𝔽9
(Random Linear Codes Assumption)

Standard LPN
set each entry
• 0 w/ prob 1 − 𝛼
• 𝑒^� ← 𝔽9 w/ prob 𝛼

30

𝐴

𝑛K

𝐻
𝑛

Compute 𝑯 with full row-rank such that:

𝑛 − 𝑛K = 𝟎

Last modification: switch to “dual”

31

𝐴 +
uniform

𝑠

𝑛K

𝐻𝑛

𝑛 − 𝑛K

𝐴

𝑛K

𝐻
𝑛

Compute 𝑯 with full row-rank such that:

𝑛 − 𝑛K = 𝟎
Observe

= 𝐻

Last modification: switch to “dual”

𝑒′ 𝑒′

32

(Dual) Exact LPN Assumption
(polynomially equivalent to LPN)

≈�𝐻,
uniform

𝐻𝑛− 𝑛K
𝑛

uniform
𝑢,𝐻

uniform

uniformexactly 𝛼𝑛 non-zero values

Notice 𝑯,𝑯𝒆′ looks like the obfuscation 𝑩,𝑩𝒆

𝑒′

33

𝑣\
𝑣]
𝑣g
𝑣h

=

1 2 3 4 5 6
1] 2] 3] 4] 5] 6]
1g 2g 3g 4g 5g 6g
1h 2h 3h 4h 5h 6h

0
0
𝑟\
0
0
𝑟]

𝑩
𝒆

𝒗
*

0

1

random 𝑩
𝑣\
𝑣]
…

𝑣=~=�
=

1 2 3 4
1] 2] 3] 4]
1g 2g 3g 4g
1h 2h 3h 4h

𝑟\
0
𝑟]
𝑟g
0

𝒆′𝒗

random𝑯

𝑯

Dual Exact LPN Assumption:
(𝑯,𝑯𝒆′) looks random

Obfuscation

𝑩 is 𝑛 + 1 × 2𝑛
• Sample random 𝑩 over 𝔽9
• Sample 𝒆 as uniformly random 2𝑛

dimensional vector with exactly 𝛼𝑛
non-zero entries, conditioned on each
pair of positions 2i − 1, 2i having at
least one 0 entry.

𝑯 is (𝑛 − 𝑛K) × 𝑛
• Sample random𝑯 over 𝔽9
• Sample 𝒆′ as uniformly random 𝑛

dimensional vector with exactly 𝛼𝑛
non-zero entries.

random length 𝑛 pattern,
1 − 𝛼 𝑛 wildcards

LPN for poly samples, field 𝔽9
constant noise 𝛼, [JKPT12] “exact” error

(Dual) Exact LPN

34

uniformly random 2𝑛-
dimensional vector with
exactly 𝛼𝑛 non-zero
entries conditioned on
each pair of positions
2i − 1, 2i having at least
one 0 entry.

uniformly random 𝑛-
dimensional vector with
exactly 𝛼𝑛 non-zero
entries.

“unstructured error”
“structured error”

0
0

0

0

𝑒\

0

𝑒]
𝑒g
0

0

𝑒\�
0
𝑒]�
𝑒g�
0
𝒆′

𝒆

(Dual) Exact LPN Obfuscation

This distribution arises
if 𝑝𝑎𝑡 is uniformly random
with 1 − 𝛼 𝑛 wildcards.

Theorem: Assuming LPN over 𝔽9 (noise rate 𝛼), obfuscation 𝑩,𝑩𝒆 looks uniformly
random if 𝑝𝑎𝑡 is uniformly at random with 1 − 𝛼 𝑛 wildcards, for 0 < 𝛼 < 1.

36

𝑢 ≈�𝐻
𝑛

𝑛 − 𝑛K 𝐻 𝐻𝑒′,,

𝐵
Want to show:

2𝑛

𝐵 𝑢𝑛 + 1 𝐵𝑒≈�

(Dual) Exact LPN:

, ,

𝒆′ unstructured error

𝒆 structured error

uniform

uniform

uniform

uniform uniform

uniform

Theorem: Assuming LPN over 𝔽9 (noise rate 𝛼), obfuscation 𝑩,𝑩𝒆 looks uniformly
random if 𝑝𝑎𝑡 is uniformly at random with 1 − 𝛼 𝑛 wildcards, for 0 < 𝛼 < 1.

37

𝐻\ 𝐻] 𝐻g 𝐻h 𝐻�

𝑛

𝑛 − 𝑛K

Easy Step: Sample 𝑛 random columns 𝑈\,…𝑈=. Replace 𝑯 with 𝑲 where
each pair of indices (2𝑖 − 1,2𝑖) is either 𝐻^, 𝑈^ or 𝑈^, 𝐻^ (pick randomly).

𝐻\ 𝑈\ 𝑈] 𝐻] 𝑈g 𝐻g 𝐻h 𝑈h 𝑈� 𝐻�

2𝑛

𝑛 − 𝑛K

𝐾𝐻

Claim: 𝑯𝒆′ = 𝑲𝒆 where 𝒆′ is unstructured error and 𝒆 is
structured error.

𝑢
or
𝐻𝑒′
, 𝑢

or
𝐻𝑒′
, 𝑢

or
𝐾𝑒

=

38

𝐻\ 𝐻] 𝐻g 𝐻h 𝐻� 𝐻\ 𝑈\ 𝑈] 𝐻] 𝑈g 𝐻g 𝐻h 𝑈h 𝑈� 𝐻�

0
0

0

0

𝑒\�

0

𝑒]�

𝑒g�

0

0

𝒆 unstructured error
non-zero entries in 𝛼𝑛 randomly
chosen positions

𝒆 structured error
non-zero entries in 𝛼𝑛 randomly
chosen positions, each pair
has at least one 0

𝑛

𝑛 − 𝑛K

2𝑛𝑒\�
0
𝑒]�
𝑒g�
0

=
𝐾𝐻

2𝑛
𝑛

Claim: 𝑯𝒆′ = 𝑲𝒆 where 𝒆′ is unstructured error and 𝒆 is
structured error.

𝒆′
𝒆

𝐻\ 𝑈\ 𝑈] 𝐻] 𝑈g 𝐻g 𝐻h 𝑈h 𝑈� 𝐻�

39

𝑢 ≈�𝐻
𝑛

𝑛 − 𝑛K 𝐻 𝐻𝑒′,,
(Dual) Exact LPN: 𝑒′ unstructured erroruniform

uniform uniform
LPN gives us 𝑛 − 𝑛K
rows “for free”

𝑢 ≈� 𝐾𝑒,,
𝑒 structured erroruniform

𝐻\ 𝑈\ 𝑈] 𝐻] 𝑈g 𝐻g 𝐻h 𝑈h 𝑈� 𝐻�𝑛 − 𝑛K

2𝑛

𝐾𝐾

40

𝑢 ≈�𝐻
𝑛

𝑛 − 𝑛K 𝐻 ,,
uniform

uniform uniform

𝑢 ≈� ,,
uniform

𝑛 − 𝑛K

We need 𝑛 + 1 rows for the obfuscation construction.

Need 𝑛K + 1 additional rows Need 𝑛K + 1 additional rows𝑛K + 1

𝐻𝑒′

𝑒′ unstructured error

𝐾𝑒

𝑒 structured error2𝑛

uniform uniform𝐾 𝐾

(Dual) Exact LPN:

LPN gives us 𝑛 − 𝑛K
rows “for free”

41

𝑢 ≈� 𝐾𝑒,,
uniform

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform uniform𝐾 𝐾
𝑈 𝑈𝑢’ ?

Issue: If we sample additional rows 𝑈 uniformly at random,
we can’t fill in 𝑈𝑒 without 𝑒.

𝑒 structured error

42

Observation: We know 𝐾^𝑒 for
any row 𝐾^ of 𝐾.

So we can use random linear
combinations of rows of 𝐾.

𝑢 ≈� 𝐾𝑒,,
𝑒 structured erroruniform

𝑛 − 𝑛K

2𝑛

uniform uniform𝐾 𝐾

43

𝑢 ≈� ,,
uniform

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform uniform

𝑅𝑛K + 1
𝑛 − 𝑛K

Sample random
matrix 𝑅:

𝑅𝐾 𝑅𝐾𝑅𝑢

So are we done?

Observation: We know 𝐾^𝑒 for
any row 𝐾^ of 𝐾.

So we can use random linear
combinations of rows of 𝐾.

𝐾𝑒

𝑒 structured error

𝐾 𝐾
𝑅𝐾𝑒

44

𝑢 ≈� ,,
uniform

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform uniform𝐾 𝐾

𝑅𝑛K + 1
𝑛 − 𝑛K

Sample random
matrix 𝑅:

𝑅𝐾 𝑅𝐾𝑅𝑢 𝑅𝐾𝑒

Observation: We know 𝐾^𝑒 for
any row 𝐾^ of 𝐾.

So we can use random linear
combinations of rows of 𝐾.

𝐾𝑒

𝑒 structured error

The matrix isn’t random!
(rank is at most 𝑛 − 𝑛K)

45

One last idea: we
know half the

entries of 𝑒 since
we implicitly

“inserted” 𝑛 zeros.

𝑢 ≈� ,,
uniform

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform uniform

𝑅𝐾 𝑅𝐾𝑅𝑢

𝐾𝑒

𝑒 structured error

𝐾 𝐾
𝑅𝐾𝑒

46

One last idea: we
know half the

entries of 𝑒 since
we implicitly

“inserted” 𝑛 zeros.

𝑢 ≈� ,,
uniform

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform uniform
𝑅𝑢

𝐾𝑒

𝑒 structured error

Sample matrix 𝑉 with 𝑛 uniformly random non-zero columns
coinciding with 𝑛 known zero entries of 𝑒. (i.e. 𝑉𝑒 = 0)

2𝑛
𝑛K + 1 = 𝑉

all 0’s column uniformly random columns

𝑅𝐾 + 𝑉 𝑅𝐾 + 𝑉
𝐾 𝐾

𝑅𝐾𝑒

47

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform 𝐾
𝑅𝐾 + 𝑉

𝐵≈�

𝑛+ 1

2𝑛

uniform

???

Does
(𝐾, 𝑅𝐾 + 𝑉)

look uniformly
random?

48

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform 𝐾
𝑅𝐾 + 𝑉

𝐵≈�

𝑛+ 1

2𝑛

uniform

???

Heuristic Argument: Entropy Counting
𝑯� 𝐾 +𝑯� 𝑅 +𝑯�(𝑉)
= 𝑛� # entries in 𝐾 + 𝑛� # entries in 𝑅

+ 𝑛� # nonzero entries in 𝑉 + 𝑛
= 𝑯� 𝐵 − 𝑛]Kj� + 𝑛
If 2𝜖 + 𝛿 < 1, LHL yields (𝐾, 𝑅𝐾 + 𝑉)
statistically close to uniform.

𝑅𝑛K + 1

𝑛 − 𝑛K

2𝑛

𝑛K + 1 𝑉

Does
(𝐾, 𝑅𝐾 + 𝑉)

look uniformly
random?

𝑛 − 𝑛K

2𝑛

𝐾

all 0’s

uniform

uniform

uniform

matrices over 𝔽�, log 𝑞 = 𝑛�

49

𝐵𝐵 𝑢 𝐵𝑒≈�, ,

uniform

uniform uniform

≈�

𝑛+ 1

2𝑛

𝑢 ≈� ,,
uniform

𝑛 − 𝑛K

2𝑛

𝑛K + 1

uniform uniform
𝑅𝑢

𝐾𝑒

𝑒 structured error

𝑒 structured error

𝑅𝐾 + 𝑉 𝑅𝐾 + 𝑉
𝐾 𝐾

𝑅𝐾𝑒

Another Perspective: Structured Error LPN

For what ℎ is (𝐵, 𝐵𝑒) pseudorandom?

• Pseudorandom if ℎ = 𝑛 − 𝑛K, 𝜖 < 1 (perfectly equivalent to Exact LPN)

• [This work] Pseudorandom if ℎ = 𝑛 + 𝑛¡, 𝛾 < 1/2 (statistically equivalent to
Exact LPN)

• [AroraGe12] Can solve for 𝑒 if ℎ = 2𝑛 − 𝑛�, 𝛿 < 1/2
50

𝐵 𝐵𝑒,
uniform

2𝑛 𝑒 structured error

ℎ

Another Perspective: Structured Error LPN

For what ℎ is (𝐵, 𝐵𝑒) pseudorandom?

• Pseudorandom if ℎ = 𝑛 − 𝑛K, 𝜖 < 1 (perfectly equivalent to Exact LPN)

• [This work] Pseudorandom if ℎ = 𝑛 + 𝑛¡, 𝛾 < 1/2 (statistically equivalent to
Exact LPN)

• [AroraGe12] Can solve for 𝑒 if ℎ = 2𝑛 − 𝑛�, 𝛿 < 1/2
51

𝐵 𝐵𝑒,
uniform

2𝑛 𝑒 structured error

ℎ

52

Conclusion
• In the GGM: obfuscate conjunctions by encoding in a vector

and multiplying by a structured matrix.
• If we multiply by a random matrix, we can avoid groups and

rely on LPN.

In the paper:

• An information theoretic conjunction obfuscator consisting
of a sequence of matrices; evaluation is done by taking a
subset-sum of matrices and computing the determinant.

Thank You!ePrint: ia.cr/2018/936
slides: cs.princeton.edu/~fermim/talks/crypto-day.pdf

