New Techniques for Obfuscating Conjunctions

James Bartusek Tancrède Lepoint Fermi Ma Mark Zhandry (Princeton)
(SRI & Google)
(Princeton)
(Princeton)

Motivating Scenario: Password Check Program

Slightly Better Solution

Compute SHA256("correcthorsebatterystaple")

= cbe6beb26479b568e5f15
 b50217c6c83c0ee051dc4e5
 22b9840d8e291d6aaf46

```
P'(x):
if SHA256(x) == "cbe6beb26479b568e5f15b
                50217c6c83c0ee051dc4e5
                22b9840d8e291d6aaf46":
     output 1 (accept)
else:
     output 0 (reject)
```

This is a simple example of *program obfuscation* [BGIRSVY] for point functions [Can97,CMR98,LPS04,Wee05,BP12,...]

Informally, want Obf to satisfy:

- (correctness) Obf(P)(x) = P(x) for all x
- (virtual black box) Obf(P) reveals nothing beyond what can be learned from black box access to P

Obfuscation for General Programs

Many candidates:

[GGHRSW13,AGIS14,AB15,Zim15,LV16,Lin16,GM MSSZ16,AS16,LT17,FRS17,BGMZ18,CVW18,AJS18, LM18,Agr18,GJK18,...]

Focus of this work: simple techniques to obfuscate **specific functionalities**.

Obfuscation for Specific Functionalities

- Point Functions
 [Can97,CMR98,LPS04,Wee05,CD08,DKL09,GKPV10, BP12,...]
- Compute-and-Compare Programs [GKW17,WZ17]
- Hamming Balls [DS05]
- Hyperplane Membership [CRV09]
- Conjunctions [BVWW16,GKW17,WZ17,...]

We study **conjunctions**, but techniques apply to hamming balls, affine spaces, etc.

Obfuscation for Conjunctions ("pattern-matching with wildcards")

pat = 1*10*
(match) 11100
(mismatch) 10001
(match) 10101
(mismatch) 01111

bitstring x matches pat if it equals pat except on *

 $P_{pat}(x)$: if x matches pat output 1 else output 0

Obfuscation for Conjunctions ("pattern-matching with wildcards")

pat = 1*10*
(match) 11100
(mismatch) 10001
(match) 10101
(mismatch) 01111

bitstring x matches pat if it equals pat except on *

 $P_{pat}(x)$: if x matches pat output 1 else output 0

Our work: Allow evaluation of P_{pat} without leaking anything about *pat*

Obfuscation for Conjunctions ("pattern-matching with wildcards")

pat = 1*10*
(match) 11100
(mismatch) 10001
(match) 10101
(mismatch) 01111

bitstring x matches pat if it equals pat except on *

 $P_{pat}(x)$: if x matches pat output 1 else output 0

Our work: Allow evaluation of P_{pat} without leaking anything about *pat*

When is this goal feasible? A: *pat* must be drawn from a distribution where accepting inputs to P_{pat} are hard to find [BBCKPS13]

Prior Conjunction Obfuscators

Assumption or Model

LWE

[BR13]	Multilinear Maps
[BVWW16]	Entropic Ring LWE

Our starting point: the [BKMPRS18] construction

[BKMPRS18]	Generic	Group Model

[GKW17],[WZ17]

Our Results: Three Constructions

	Assumption or Model	Security holds when pattern is sampled from:
[BKMPRS18]	Generic Group Model	$U_n[cn]$, where $c < 0.774$
Construction 1	Generic Group Model*	$U_n[n - \omega(\log n)]$
Construction 2	Learning Parity with Noise	$U_n[cn]$ where $c < 1$
Construction 3 (see paper)	Information theoretic*	$U_n[n^\epsilon]$ where $0 \leq \epsilon < 1$

 $U_n[w]$ denotes uniform dist over length n patterns with w wildcards

*can be extended beyond uniform distributions (see also [BeuWee19])

Talk Outline

I. Encoding Conjunctions as Inner Products
 2. A Group-Based Construction
 3. Security from LPN/RLC

What Does "Simple" Mean?

Obfuscation:

On input $pat \in \{0,1,*\}^n$ Output vector v_{pat} over \mathbb{F}_p What Does "Simple" Mean?

Obfuscation:On input $pat \in \{0,1,*\}^n$ Output vector v_{pat} over \mathbb{F}_p

Evaluation:

On input $x \in \{0,1\}^n$ Write down vector w_x Accept if $w_x^T v_{pat} = 0$

r_i is a uniformly value in \mathbb{F}_p

Talk Outline

1. Encoding Conjunctions as Inner Products
 2. A Group-Based Construction
 3. Security from LPN/RLC

How can we make this construction secure?

Idea: Avoid giving out e in the clear, but still allow user to compute $w^T \cdot e$ for any w that encodes an input x

Slightly Better Construction

Obfuscation:

- 1) Encode *pat* in *e*
- 2) Give out $B \cdot e \in \mathbb{F}_p^{n+1}$ where *B* is a public $(n + 1) \times (2n)$ matrix satisfying **Property 1**.

Evaluation:

On input
$$x = 001$$
 pick $k \in \mathbb{F}_p^{n+1}$ so that

$$k^{T}B = (0, \$, 0, 1)$$
 encodes x

(i.e. solve for \boldsymbol{k} to make these n entries of $\boldsymbol{k}^T \boldsymbol{B}$ equal 0)

Accept if $k^T B e = 0$

 $n+1\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 1^2 & 2^2 & 3^2 & 4^2 & 5^2 & 6^2\\ 1^3 & 2^3 & 3^3 & 4^3 & 5^3 & 6^3\\ 1^4 & 2^4 & 3^4 & 4^4 & 5^4 & 6^4 \end{pmatrix}\begin{pmatrix} 0 \\ 0 \\ r_1 \\ 0 \\ 0 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ 0 \\ 0 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r_2 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_1 \\ r_2 \\ r_2 \\ r_2 \\ r_2 \\ r_2 \end{pmatrix} \begin{pmatrix} n \\ r_1 \\ r_2 \\ r$

Property 1: Any $(n + 1) \times (n + 1)$ submatrix of **B** is full rank over \mathbb{F}_p (ex: Vandermonde)

Why does *B* help security?

pat

Informal Lemma 1 (No Linear Attacks): If *pat* is drawn with enough entropy, then for any $\mathbf{k} \in \mathbb{F}_p^{n+1}$, $\mathbf{k}^T \mathbf{B} \mathbf{e}$ is a uniformly random scalar.

$$2n$$

$$(k_{1} k_{2} k_{3} k_{4}) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 1^{3} & 2^{3} & 3^{3} & 4^{3} & 5^{3} & 6^{3} \\ 1^{4} & 2^{4} & 3^{4} & 4^{4} & 5^{4} & 6^{4} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{2} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{2} \\ r_{2} \\ r_{2} \end{pmatrix} \begin{pmatrix} n \\ r_{1} \\ r_{2} \\ r_{2}$$

Property 1: Any $(n + 1) \times (n + 1)$ submatrix of **B** is full rank over \mathbb{F}_p (ex: Vandermonde)

Why does *B* help security?

pat

Informal Lemma 1 (No Linear Attacks): If *pat* is drawn with enough entropy, then for any $\mathbf{k} \in \mathbb{F}_p^{n+1}$, $\mathbf{k}^T \mathbf{B} \mathbf{e}$ is a uniformly random scalar.

 $(B_{i} \text{ denotes } i \text{ th column of } B)$ $(k^{T}B_{1} \quad k^{T}B_{2} \quad k^{T}B_{3} \quad k^{T}B_{4} \quad k^{T}B_{5} \quad k^{T}B_{6}) \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{1} \\ 0 \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ r_{2} \\ 0 \\ r_{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r_{2} \\ 0 \\ 0 \\ r_{2} \\ 0 \\$

- 1) At most n out of 2n entries of $k^T B$ can be 0 (**Property 1**).
- 2) If *pat* has enough entropy, then with overwhelming probability one of the n non-zero entries of $k^T B$ will coincide with a non-zero entries in e.
- 3) If so, $(k^T B)e$ will be a random scalar.

Property 1: Any $(n + 1) \times (n + 1)$ submatrix of **B** is full rank over \mathbb{F}_p (ex: Vandermonde)

Why does *B* help security?

pat

Informal Lemma 1 (No Linear Attacks): If *pat* is drawn with enough entropy, then for any $\mathbf{k} \in \mathbb{F}_p^{n+1}$, $\mathbf{k}^T B \mathbf{e}$ is a uniformly random scalar.

Group-Based* Construction

Obfuscation: Encode *pat* as *e*, compute *Be* and output:

$$g^{Be} = g^{(Be)_1}, g^{(Be)_2}, \dots, g^{(Be)_{n+1}}$$

(same evaluation procedure works in exponent)

Proof: generic adversaries limited to linear attacks

Theorem: Generic Group adversary [Nac94,Sho97] cannot distinguish g^{Be} from n + 1 random group elements if *pat* is uniformly random^{**} with $n - \omega(\log n)$ wildcards.

*Idea due to [BKMPRS18]: this construction can be viewed as "dual" to their construction. **Can be extended to more general distributions (see our paper and [BeuWee19])

Talk Outline

1. Encoding Conjunctions as Inner Products
2. A Group-Based Construction
3. Security from LPN/RLC

Group-Based Construction

Step 1: Sample a length 2n vector e: If $pat_i = *$, $\binom{e_{2i-1}}{e_{2i}} = \binom{0}{0}$ If $pat_i = 0$, $\binom{e_{2i-1}}{e_{2i}} = \binom{r}{0}$ for $r \leftarrow \mathbb{F}_p$ If $pat_i = 1$, $\binom{e_{2i-1}}{e_{2i}} = \binom{0}{r}$ for $r \leftarrow \mathbb{F}_p$

Step 2: Define $B \in \mathbb{F}_p^{(n+1) \times 2n}$ whose (*i*, *j*)th entry is: $B_{i,j} = j^i$ Compute the vector $Be \in \mathbb{F}_p^{n+1}$

(*B* is a fixed public matrix)

Group-Based Construction

Step 1: Sample a length 2n vector e: If $pat_i = *$, $\binom{e_{2i-1}}{e_{2i}} = \binom{0}{0}$ If $pat_i = 0$, $\binom{e_{2i-1}}{e_{2i}} = \binom{r}{0}$ for $r \leftarrow \mathbb{F}_p$ If $pat_i = 1$, $\binom{e_{2i-1}}{e_{2i}} = \binom{0}{r}$ for $r \leftarrow \mathbb{F}_p$

Step 2: Define $B \in \mathbb{F}_p^{(n+1) \times 2n}$ whose (*i*, *j*)th entry is: $B_{i,j} = j^i$ Compute the vector $Be \in \mathbb{F}_p^{n+1}$

(*B* is a fixed public matrix)

New Construction

Step 1: Sample a length 2n vector e: If $pat_i = *$, $\binom{e_{2i-1}}{e_{2i}} = \binom{0}{0}$ If $pat_i = 0$, $\binom{e_{2i-1}}{e_{2i}} = \binom{r}{0}$ for $r \leftarrow \mathbb{F}_p$ If $pat_i = 1$, $\binom{e_{2i-1}}{e_{2i}} = \binom{0}{r}$ for $r \leftarrow \mathbb{F}_p$

Step 2: Sample a *uniformly random* matrix $\boldsymbol{B} \leftarrow \mathbb{F}_p^{(n+1) \times 2n}$.

Compute the vector $Be \in \mathbb{F}_p^{n+1}$

Idea: Randomize **B**!

Why would this be secure?

Learning Parity with Noise Assumption over \mathbb{F}_p (Random Linear Codes Assumption)

Learning Parity with Noise Assumption over \mathbb{F}_p (Random Linear Codes Assumption)

Learning Parity with Noise Assumption over \mathbb{F}_p (Random Linear Codes Assumption)

Last modification: switch to "dual"

Compute *H* with full row-rank such that:

Last modification: switch to "dual"

Compute *H* with full row-rank such that:

Last modification: switch to "dual"

(Dual) Exact LPN Assumption

(polynomially equivalent to LPN)

Notice H, He' looks like the obfuscation B, Be

(Dual) Exact LPN

1) $\begin{pmatrix} v_2 \\ \dots \end{pmatrix} = (random H)$ r_2 r_3

LPN for poly samples, field \mathbb{F}_p constant noise α , [JKPT12] "exact" error

H is $(n - n^{\epsilon}) \times n$

- Sample random H over \mathbb{F}_p
- Sample e' as uniformly random n dimensional vector with exactly αn non-zero entries.

Dual Exact LPN Assumption: (H, He') looks random

Obfuscation

 $\begin{array}{c} \boldsymbol{\mathcal{V}} \\ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \left(\begin{array}{c} \end{array} \right)$

random length n pattern, $(1 - \alpha)n$ wildcards

- $m{B}$ is (n+1) imes 2n
- Sample random B over \mathbb{F}_p
- Sample *e* as uniformly random 2*n* dimensional vector with exactly *αn* non-zero entries, conditioned on each pair of positions 2i 1, 2i having at least one 0 entry.

(Dual) Exact LPN

"unstructured error"

uniformly random ndimensional vector with exactly αn non-zero entries.

Obfuscation

"structured error"

uniformly random 2ndimensional vector with exactly αn non-zero entries conditioned on each pair of positions 2i - 1, 2i having at least one 0 entry.

This distribution arises if *pat* is uniformly random with $(1 - \alpha)n$ wildcards. **Theorem:** Assuming LPN over \mathbb{F}_p (noise rate α), obfuscation B, Be looks uniformly random if *pat* is uniformly at random with $(1 - \alpha)n$ wildcards, for $0 < \alpha < 1$.

Theorem: Assuming LPN over \mathbb{F}_p (noise rate α), obfuscation B, Be looks uniformly random if *pat* is uniformly at random with $(1 - \alpha)n$ wildcards, for $0 < \alpha < 1$.

Easy Step: Sample *n* random columns $U_1, ..., U_n$. Replace *H* with *K* where each **pair of indices** (2i - 1, 2i) is either H_i, U_i or U_i, H_i (pick randomly).

e unstructured error

non-zero entries in αn randomly chosen positions

n

Η

 $n - n^{\epsilon} H_1 H_2 H_3 H_4 H_5$

 e_1

U

 e_2'

 e'_3

0

P

n

e structured error

Claim: He' = Ke where e' is unstructured error and e is structured error.

We need n + 1 rows for the obfuscation construction.

Issue: If we sample additional rows U uniformly at random, we can't fill in Ue without e.

Observation: We know K_ie for any row K_i of K.
So we can use random linear combinations of rows of K.

Observation: We know K_ie for any row K_i of K.
So we can use random linear combinations of rows of K.

Sample random matrix *R*:

$$n - n^{\epsilon}$$

 $n^{\epsilon} + 1$ **R**

So are we done?

Observation: We know K_ie for any row K_i of K.
So we can use random linear combinations of rows of K.

Sample random matrix *R*:

$$n - n^{\epsilon}$$

 $n^{\epsilon} + 1$ **R**

The matrix isn't random! (rank is at most $n - n^{\epsilon}$)

One last idea: we know half the entries of *e* since we implicitly "inserted" *n* zeros.

One last idea: we Sample matrix V with n uniformly random non-zero columns coinciding with n known zero entries of e. (i.e. Ve = 0) know half the entries of *e* since 2nwe implicitly n^{ϵ} = V"inserted" *n* zeros. uniformly random columns all 0's column uniform e structured error 2nKe $n-n^{\epsilon}$ uniform uniform $n^{\epsilon} + 1$ Ru *RKe*

Another Perspective: Structured Error LPN

For what h is (B, Be) pseudorandom?

• Pseudorandom if $h = n - n^{\epsilon}$, $\epsilon < 1$ (perfectly equivalent to Exact LPN)

• [AroraGe12] Can solve for e if $h = 2n - n^{\delta}$, $\delta < 1/2$

Another Perspective: Structured Error LPN

For what h is (B, Be) pseudorandom?

- Pseudorandom if $h = n n^{\epsilon}$, $\epsilon < 1$ (perfectly equivalent to Exact LPN)
- **[This work]** Pseudorandom if $h = n + n^{\gamma}$, $\gamma < 1/2$ (statistically equivalent to Exact LPN)
- [AroraGe12] Can solve for e if $h = 2n n^{\delta}$, $\delta < 1/2$

Conclusion

- In the GGM: obfuscate conjunctions by encoding in a vector and multiplying by a structured matrix.
- If we multiply by a random matrix, we can avoid groups and rely on LPN.

In the paper:

 An information theoretic conjunction obfuscator consisting of a sequence of matrices; evaluation is done by taking a subset-sum of matrices and computing the determinant.

ePrint: ia.cr/2018/936 slides: cs.princeton.edu/~fermim/talks/crypto-day.pdf