New Techniques for Obfuscating Conjunctions

James Bartusek
Tancrède Lepoint
Fermi Ma
Mark Zhandry
(Princeton)
(SRI \& Google)
(Princeton)
(Princeton)

Motivating Scenario: Password Check Program

$$
\begin{aligned}
& \mathrm{P}(x): \\
& \text { if } x=\text { "correcthorsebatterystaple": } \\
& \text { output } 1 \text { (accept) } \\
& \text { else: } \\
& \text { output } 0 \text { (reject) }
\end{aligned}
$$

Slightly
Compute SHA256("correcthorsebatterystaple")

Better Solution

> = cbe6beb26479b568e5f15 b50217c6c83c0ee051dc4e5 22b9840d8e291d6aaf46
if SHA256 $(x)==$ "cbe6beb26479b568e5f15b 50217c6c83c0ee051dc4e5 22b9840d8e291d6aaf46":
output 1 (accept)
else:
output 0 (reject)

This is a simple example of program obfuscation [BGIRSVY] for point functions
[Can97,CMR98,LPS04,Wee05,BP12,...]

Informally, want Obf to satisfy:

- (correctness) $\operatorname{Obf}(\mathrm{P})(x)=\mathrm{P}(x)$ for all x
- (virtual black box) Obf(P) reveals nothing beyond what can be learned from black box access to P

$\mathrm{P}(x)$:

if $\mathrm{x}=$ "correcthorsebatterystaple" output 1 (accept)
else:

Apply Obf

Obf(P) (x) :

if SHA256 (x) == "cbe6beb26479b568e5f 15b50217c6c83c0ee051dc4e522b9840d 8e291d6aaf46": output 1 (accept) else:
output 0 (reject)

Obfuscation for General Programs

Many candidates:
[GGHRSW13,AGIS14,AB15,Zim15,LV16,Lin16,GM MSSZ16,AS16,LT17,FRS17,BGMZ18,CVW18,AJS18, LM18,Agr18,GJK18,...]

Obfuscation for

Specific Functionalities

- Point Functions
[Can97,CMR98,LPS04,Wee05,CD08,DKL09,GKPV10, BP12,...]
- Compute-and-Compare Programs [GKW17,WZ17]
- Hamming Balls [DS05]
- Hyperplane Membership [CRV09]
- Conjunctions [BVWW16,GKW17,WZ17,...]

Focus of this work: simple techniques to obfuscate specific functionalities.

We study conjunctions, but techniques apply to hamming balls, affine spaces, etc.

Obfuscation for Conjunctions

("pattern-matching with wildcards")

$$
\begin{array}{r}
\text { pat }=1^{*} 10^{*} \\
\text { (match) } 11100 \\
\text { (mismatch) } 10001 \\
\text { (match) } 10101 \\
\text { (mismatch) } 01111
\end{array}
$$

bitstring x matches pat if it equals pat except on *

$$
\begin{aligned}
& \qquad P_{\text {pat }}(x) \\
& \text { if } x \text { matches pat output } 1 \\
& \text { else output } 0
\end{aligned}
$$

Obfuscation for Conjunctions

("pattern-matching with wildcards")

Our work: Allow

evaluation of $P_{\text {pat }}$
without leaking anything about pat
bitstring x matches pat if it equals pat except on *

```
P pat (x):
if x matches pat output 1
else output 0
```


Obfuscation for Conjunctions

("pattern-matching with wildcards")

$$
\begin{array}{r}
\text { pat }=1 * 10 * \\
\text { (match) } 11100 \\
\text { (mismatch) } 10001 \\
\text { (match) } 10101 \\
\text { (mismatch) } 01111
\end{array}
$$

Our work: Allow

 evaluation of $P_{\text {pat }}$ without leaking anything about patbitstring x matches pat if it equals pat except on *

$$
P_{p a t}(x):
$$

if x matches pat output 1 else output 0

When is this goal feasible?

A: pat must be drawn from a distribution where accepting inputs to $P_{p a t}$ are hard to find [BBCKPS13]

Prior Conjunction Obfuscators

Assumption or Model

[BR13]	Multilinear Maps
[BVWW16]	Entropic Ring LWE
$[$ GKW17],[WZ17]	LWE
$[$ BKMPRS18]	Generic Group Model

Our starting point: the [BKMPRS18] construction

Our Results: Three Constructions

	Assumption or Model	Security holds when pattern is sampled from:
[BKMPRS18]	Generic Group Model	$U_{n}[c n]$, where $c<0.774$
Construction 1	Generic Group Model*	$U_{n}[n-\omega(\log n)]$
Construction 2	Learning Parity with Noise	$U_{n}[c n]$ where $c<1$
Construction 3 (see paper)	Information theoretic*	$U_{n}\left[n^{\epsilon}\right]$ where $0 \leq \epsilon<1$

[^0]$U_{n}[w]$ denotes uniform dist over length n patterns with w wildcards

Talk Outline

\rightarrow 1. Encoding Conjunctions as Inner Products
2. A Group-Based Construction
3. Security from LPN/RLC

What Does "Simple" Mean?

Obfuscation: On input pat $\in\{0,1, *\}^{n}$ Output vector $\boldsymbol{v}_{\text {pat }}$ over \mathbb{F}_{p}

What Does "Simple" Mean?

Obfuscation: On input pat $\in\{0,1, *\}^{n}$
Output vector $\boldsymbol{v}_{\text {pat }}$ over \mathbb{F}_{p}

Evaluation: On input $x \in\{0,1\}^{n}$
Write down vector \boldsymbol{w}_{x} Accept if $\boldsymbol{w}_{x}^{T} \boldsymbol{v}_{\text {pat }}=0$

Encoding Conjunctions as Inner Products

r_{i} is a uniformly random value in \mathbb{F}_{p}

Encoding Conjunctions as Inner Products

$$
\begin{gathered}
\text { Structure of } \boldsymbol{e} \\
\text { taken from [BKMPRS18] } \\
\text { "Obfuscation": } \\
(n=3) \\
\text { pat }=* 01
\end{gathered}
$$

$$
\left.\boldsymbol{e}=\left(\begin{array}{c}
0 \\
0 \\
\cdots \\
r_{1} \\
0 \\
\cdots \\
0 \\
r_{2}
\end{array}\right)_{1}^{p a t}\right)_{1}^{*}
$$

r_{i} is a uniformly random value in \mathbb{F}_{p}
(Accepting input)
Evaluation: $x=001$

$$
\boldsymbol{w}^{\boldsymbol{T}}: \begin{array}{cc:c:c}
x= & 0 & 0 & 1 \\
0 & \$ & 0 & \$
\end{array}
$$

\$ denotes arbitrary non-zero value in \mathbb{F}_{p}

Encoding Conjunctions as Inner Products

Structure of \boldsymbol{e} taken from [BKMPRS18]

$$
\begin{gathered}
\text { "Obfuscation": } \\
(n=3) \\
\text { pat }=* 01
\end{gathered}
$$

r_{i} is a uniformly random value in \mathbb{F}_{p}
(Accepting input)
Evaluation: $x=001$
$\boldsymbol{w}^{\boldsymbol{T}} \cdot \boldsymbol{e}=\left(\begin{array}{ll:ll:ll}0 & \$ & 0 & \$ & \$ & 0\end{array}\right)\left(\begin{array}{c}0 \\ \hdashline r_{1} \\ 0 \\ \hdashline 0 \\ r_{2}\end{array}\right) \begin{aligned} & 0 \\ & 1\end{aligned}$ $=0$ Accept!

Encoding Conjunctions as Inner Products

Structure of \boldsymbol{e} taken from [BKMPRS18]

$$
\begin{gathered}
\text { "Obfuscation": } \\
(n=3) \\
\text { pat }=* 01
\end{gathered}
$$

r_{i} is a uniformly random value in \mathbb{F}_{p}
(Rejecting input)
Evaluation: $x=011$
$\boldsymbol{w}^{\boldsymbol{T}} \cdot \boldsymbol{e}=\left(\begin{array}{ll:ll:ll}0 & \$ & \$ & 0 & \$ & 0\end{array}\right)\left(\begin{array}{c}0 \\ \hdashline r_{1} \\ 0 \\ \hdashline 0 \\ r_{2}\end{array}\right){ }^{2}$.
\$ denotes arbitrary non-zero value in \mathbb{F}_{p}
$=\$ r_{1} \longrightarrow$ Reject!

Talk Outline

\author{

1. Encoding Conjunctions as Inner Products
 \rightarrow 2. A Group-Based Construction
 3. Security from LPN/RLC
}

How can we make this

 construction secure?Idea: Avoid giving out e in the clear, but still allow user to compute $\boldsymbol{w}^{\boldsymbol{T}} \cdot \boldsymbol{e}$ for any \boldsymbol{w} that encodes an input x
"Obfuscation":

$$
\begin{gathered}
(n=3) \\
\text { pat }=* 01
\end{gathered}
$$

$$
\boldsymbol{e}=\left(\begin{array}{c}
0 \\
0 \\
\cdots \cdots \cdots \\
r_{1} \\
0 \\
\cdots \cdots \\
0 \\
r_{2}
\end{array}\right)_{1}^{p a t}{ }_{0} \text { 0 }
$$

Evaluation: $x=001$

$$
\begin{aligned}
& \left.\boldsymbol{w}^{\boldsymbol{T}} \cdot \boldsymbol{e}=\begin{array}{ll:c:cc}
x= & 0 & 0 & 1 \\
0 & \$ & \$ & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
\cdots \\
r_{1} \\
0 \\
\cdots \\
0 \\
r_{2}
\end{array}\right) . \begin{array}{c}
\\
0
\end{array} \\
& =0
\end{aligned}
$$

Slightly Better Construction

Obfuscation:

1) Encode pat in e
2) Give out $B \cdot \boldsymbol{e} \in \mathbb{F}_{p}^{n+1}$ where B is a public $(n+1) \times(2 n)$ matrix satisfying Property 1.

Evaluation:

On input $x=001$ pick $\boldsymbol{k} \in \mathbb{F}_{p}^{n+1}$ so that

$$
\boldsymbol{k}^{\boldsymbol{T}} \boldsymbol{B}=\left(\left.\begin{array}{cc}
x= & 0 \\
0 & \$
\end{array} 0^{0} \$ \right\rvert\, \begin{array}{c}
1 \\
\$ 0
\end{array}\right) \text { encodes } x
$$

(i.e. solve for \boldsymbol{k} to make these n entries of $\boldsymbol{k}^{T} B$ equal 0)

Property 1: Any $(n+1) \times(n+1)$ submatrix of B is full rank over \mathbb{F}_{p} (ex: Vandermonde)

Why does B help security?

Accept if $\boldsymbol{k}^{\boldsymbol{T}} \boldsymbol{B e}=\mathbf{0}$

> Informal Lemma 1 (No Linear Attacks): If pat is drawn with enough entropy, then for any $\boldsymbol{k} \in \mathbb{F}_{p}^{n+1}$, $\boldsymbol{k}^{\boldsymbol{T}} B e$ is a uniformly random scalar.

Property 1: Any $(n+1) \times(n+1)$ submatrix of B is full rank over \mathbb{F}_{p} (ex: Vandermonde)

Why does B help security?

Informal Lemma 1 (No

 Linear Attacks): If pat is drawn with enough entropy, then for any $\boldsymbol{k} \in \mathbb{F}_{p}^{n+1}$, $\boldsymbol{k}^{\boldsymbol{T}} \mathrm{Be}$ is a uniformly random scalar.1) At most n out of $2 n$ entries of $\boldsymbol{k}^{\boldsymbol{T}} \boldsymbol{B}$ can be 0 (Property 1).
2) If pat has enough entropy, then with overwhelming probability one of the n non-zero entries of $\boldsymbol{k}^{\boldsymbol{T}} B$ will coincide with a non-zero entries in e.
3) If so, $\left(\boldsymbol{k}^{\boldsymbol{T}} B\right) \boldsymbol{e}$ will be a random scalar.

Property 1: Any $(n+1) \times(n+1)$ submatrix of B is full rank over \mathbb{F}_{p} (ex: Vandermonde)

Why does B help security?

Informal Lemma 1 (No

Linear Attacks): If pat is
drawn with enough entropy, then for any $\boldsymbol{k} \in \mathbb{F}_{p}^{n+1}$, $\boldsymbol{k}^{\boldsymbol{T}} \mathrm{Be}$ is a uniformly random scalar.

Group-Based* Construction

Obfuscation: Encode pat as \boldsymbol{e}, compute Be and output:

$$
g^{B e}=g^{(B e)_{1}}, g^{(B e)_{2}}, \ldots, g^{(B e)_{n+1}}
$$

(same evaluation procedure works in exponent)

Proof: generic adversaries limited to linear attacks

Theorem: Generic Group adversary [Nac94,Sho97] cannot distinguish $g^{B e}$ from $n+1$ random group elements if pat is uniformly random** with $n-\omega(\log n)$ wildcards.

Talk Outline

\author{

1. Encoding Conjunctions as Inner Products
 2. A Group-Based Construction
 \rightarrow 3. Security from LPN/RLC
}

Group-Based Construction

Step 1: Sample a length $2 n$ vector \boldsymbol{e} :
If $p a t_{i}=*,\binom{e_{2 i-1}}{e_{2 i}}=\binom{0}{0}$
If $p a t_{i}=0,\binom{e_{2 i-1}}{e_{2 i}}=\binom{r}{0}$ for $r \leftarrow \mathbb{F}_{p}$
If $p a t_{i}=1,\binom{e_{2 i-1}}{e_{2 i}}=\binom{0}{r}$ for $r \leftarrow \mathbb{F}_{p}$

$$
\begin{gathered}
\boldsymbol{v} \\
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} \\
1^{3} & 2^{3} & 3^{3} & 4^{3} & 5^{3} & 6^{3} \\
1^{4} & 2^{4} & 3^{4} & 4^{4} & 5^{4} & 6^{4}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
r_{1} \\
0 \\
0 \\
0 \\
r_{2}
\end{array}\right) * \\
\mathbf{0}
\end{gathered}
$$

Obfuscation: $g^{B e}$
(B is a fixed public matrix)

Step 2: Define $B \in \mathbb{F}_{p}^{(n+1) \times 2 n}$ whose
(i, j)th entry is:

$$
B_{i, j}=j^{i}
$$

Compute the vector $B \boldsymbol{e} \in \mathbb{F}_{p}^{n+1}$

Group-Based Construction

Step 1: Sample a length $2 n$ vector \boldsymbol{e} :
If $p a t_{i}=*,\binom{e_{2 i-1}}{e_{2 i}}=\binom{0}{0}$
If $p a t_{i}=0,\binom{e_{2 i-1}}{e_{2 i}}=\binom{r}{0}$ for $r \leftarrow \mathbb{F}_{p}$
If $p a t_{i}=1,\binom{e_{2 i-1}}{e_{2 i}}=\binom{0}{r}$ for $r \leftarrow \mathbb{F}_{p}$

$$
\begin{gathered}
\boldsymbol{v} \\
\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} \\
1^{3} & 2^{3} & 3^{3} & 4^{3} & 5^{3} & 6^{3} \\
1^{4} & 2^{4} & 3^{4} & 4^{4} & 5^{4} & 6^{4}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
r_{1} \\
r_{1} \\
0 \\
0 \\
r_{2}
\end{array}\right) * \\
0
\end{gathered}
$$

Obfuscation: $B e$?
(B is a fixed public matrix)

Step 2: Define $B \in \mathbb{F}_{p}^{(n+1) \times 2 n}$ whose
(i, j)th entry is:

$$
B_{i, j}=j^{i}
$$

Compute the vector $B \boldsymbol{e} \in \mathbb{F}_{p}^{n+1}$

New Construction

Step 1: Sample a length $2 n$ vector \boldsymbol{e} :
If pat $_{i}=*,\binom{e_{2 i-1}}{e_{2 i}}=\binom{0}{0}$
If $p a t_{i}=0,\binom{e_{2 i-1}}{e_{2 i}}=\binom{r}{0}$ for $r \leftarrow \mathbb{F}_{p}$
If $p a t_{i}=1,\binom{e_{2 i-1}}{e_{2 i}}=\binom{0}{r}$ for $r \leftarrow \mathbb{F}_{p}$

Obfuscation: B, Be

Idea: Randomize \boldsymbol{B} !

Why would this be secure?
Compute the vector $\boldsymbol{B} \boldsymbol{e} \in \mathbb{F}_{p}^{n+1}$

Learning Parity with Noise Assumption over \mathbb{F}_{p} (Random Linear Codes Assumption)

Standard LPN

set each entry

- $0 \mathrm{w} /$ prob $1-\alpha$
- $e_{i}^{\prime} \leftarrow \mathbb{F}_{p} \mathbf{w} / \operatorname{prob} \alpha$

Learning Parity with Noise Assumption over \mathbb{F}_{p} (Random Linear Codes Assumption)

Standard LPN

set each entry

- $0 \mathrm{w} /$ prob $1-\alpha$
- $e_{i}^{\prime} \leftarrow \mathbb{F}_{p} \mathrm{w} / \operatorname{prob} \alpha$

Exact LPN [JKPT12]

set exactly αn entries non-zero
(polynomially equivalent)

Learning Parity with Noise Assumption over \mathbb{F}_{p} (Random Linear Codes Assumption)

Standard LPN

set each entry

- $0 \mathrm{w} /$ prob $1-\alpha$
- $e_{i}^{\prime} \leftarrow \mathbb{F}_{p} \mathrm{w} / \operatorname{prob} \alpha$

Exact LPN [JKPT12]

 set exactly αn entries non-zero (polynomially equivalent)Compute \boldsymbol{H} with full row-rank such that:

Compute \boldsymbol{H} with full row-rank such that:

Observe

Last modification: switch to "dual"

(Dual) Exact LPN Assumption

(polynomially equivalent to LPN)
Notice $\boldsymbol{H}, \boldsymbol{H} e^{\prime}$ looks like the obfuscation $\boldsymbol{B}, \boldsymbol{B} \boldsymbol{e}$
(Dual) Exact LPN
 constant noise α, [JKPT12] "exact" error
\boldsymbol{H} is ${ }^{\stackrel{r}{(}\left(n-n^{\epsilon}\right) \times n}$

- Sample random \boldsymbol{H} over \mathbb{F}_{p}
- Sample e^{\prime} as uniformly randomin dimensional vector with exactly αn non-zero entries.

Dual Exact LPN Assumption:

 ($\boldsymbol{H}, \boldsymbol{H} e^{\prime}$) looks random
random length n pattern,
 $(1-\alpha) n$ wildcards
B is $(n+1) \times 2 n$

- Sample random \boldsymbol{B} over \mathbb{F}_{p}
- Sample e as uniformly random $2 n$ dimensional vector with exactly αn non-zero entries, conditioned on each pair of positions $2 i-1$, 2 i having at least one 0 entry.
(Dual) Exact LPN
"unstructured error"
uniformly random n dimensional vector with exactly αn non-zero entries.

This distribution arises
if pat is uniformly random with $(1-\alpha) n$ wildcards.

Theorem: Assuming LPN over \mathbb{F}_{p} (noise rate α), obfuscation $\boldsymbol{B}, \boldsymbol{B e}$ looks uniformly random if pat is uniformly at random with $(1-\alpha) n$ wildcards, for $0<\alpha<1$.

Theorem: Assuming LPN over \mathbb{F}_{p} (noise rate α), obfuscation $\boldsymbol{B}, \boldsymbol{B e}$ looks uniformly random if pat is uniformly at random with $(1-\alpha) n$ wildcards, for $0<\alpha<1$.

e^{\prime} unstructured error

Want to show:

Easy Step: Sample n random columns $U_{1}, \ldots U_{n}$. Replace \boldsymbol{H} with \boldsymbol{K} where each pair of indices $(2 i-1,2 i)$ is either H_{i}, U_{i} or U_{i}, H_{i} (pick randomly).

Claim: $\boldsymbol{H} e^{\prime}=\boldsymbol{K} \boldsymbol{e}$ where \boldsymbol{e}^{\prime} is unstructured error and \boldsymbol{e} is structured error.
e unstructured error non-zero entries in αn randomly chosen positions

\boldsymbol{e} structured error

non-zero entries in αn randomly chosen positions, each pair has at least one 0
$=$

Claim: $\boldsymbol{H} e^{\prime}=\boldsymbol{K} \boldsymbol{e}$ where \boldsymbol{e}^{\prime} is unstructured error and \boldsymbol{e} is structured error.
(Dual) Exact LPN:

LPN gives us $n-n^{\epsilon}$ rows "for free"
(Dual) Exact LPN:

LPN gives us $n-n^{\epsilon}$ rows "for free"

We need $n+1$ rows for the obfuscation construction.

Issue: If we sample additional rows U uniformly at random, we can't fill in $U e$ without e.

Observation: We know $K_{i} e$ for any row K_{i} of K.
So we can use random linear combinations of rows of K.

Observation: We know $K_{i} e$ for any row K_{i} of K.
So we can use random linear combinations of rows of K.

So are we done?

Observation: We know $K_{i} e$ for any row K_{i} of K.
So we can use random linear combinations of rows of K.

Sample random matrix R :

$$
n-n^{\epsilon}
$$

$$
n^{\varepsilon}+1 \quad R
$$

The matrix isn't random!
(rank is at most $n-n^{\epsilon}$)

One last idea: we

 know half the entries of e since we implicitly "inserted" n zeros.

One last idea: we know half the entries of e since we implicitly "inserted" n zeros.

Sample matrix V with n uniformly random non-zero columns coinciding with n known zero entries of e. (i.e. $V e=0$)

all 0's column uniformly random columns

Does $(K, R K+V)$ look uniformly random?

B

uniform

matrices over $\mathbb{F}_{q}, \log q=n^{\delta}$
Heuristic Argument: Entropy Counting
$\boldsymbol{H}_{\infty}(K)+\boldsymbol{H}_{\infty}(R)+\boldsymbol{H}_{\infty}(V)$
$=n^{\delta}(\#$ entries in $K)+n^{\delta}(\#$ entries in $R)$
$+n^{\delta}(\#$ nonzero entries in $V)+n$
$=\boldsymbol{H}_{\infty}(B)-n^{2 \epsilon+\delta}+n$
If $2 \epsilon+\delta<1$, LHL yields $(K, R K+V)$ statistically close to uniform.

Another Perspective: Structured Error LPN

For what h is $(B, B e)$ pseudorandom?

- Pseudorandom if $h=n-n^{\epsilon}, \epsilon<1$ (perfectly equivalent to Exact LPN)
- [AroraGe12] Can solve for e if $h=2 n-n^{\delta}, \delta<1 / 2$

Another Perspective: Structured Error LPN

For what h is $(B, B e)$ pseudorandom?

- Pseudorandom if $h=n-n^{\epsilon}, \epsilon<1$ (perfectly equivalent to Exact LPN)
- [This work] Pseudorandom if $h=n+n^{\gamma}, \gamma<1 / 2$ (statistically equivalent to Exact LPN)
- [AroraGe12] Can solve for e if $h=2 n-n^{\delta}, \delta<1 / 2$

Conclusion

- In the GGM: obfuscate conjunctions by encoding in a vector and multiplying by a structured matrix.
- If we multiply by a random matrix, we can avoid groups and rely on LPN.
In the paper:
- An information theoretic conjunction obfuscator consisting of a sequence of matrices; evaluation is done by taking a subset-sum of matrices and computing the determinant.
ePrint: ia.cr/2018/936

Thank You!

 slides: cs.princeton.edu/~fermim/talks/crypto-day.pdf
[^0]: *can be extended beyond uniform
 distributions (see also [BeuWee19])

