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Why are quantum computers a 
threat to cryptography? 

To answer this, recall how 
cryptographers prove security.
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Computational 
hardness 

assumption

Ex: invert one-way function, factoring, 
discrete log, lattice problems, etc.

Reduction+=

Any efficient attack on the protocol 
→ Break underlying hardness assumption

Crypto 
security proof 

Fundamental formula of cryptography
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Computational 
hardness 

assumption

Ex: invert one-way function, factoring, 
discrete log, lattice problems, etc.

Reduction+=Crypto 
security proof 

Why are quantum computers a threat?

Simple answer: Shor’s algorithm breaks widely-used  
hardness assumptions
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Minimum requirement for post-quantum crypto: 
hard problem must resist quantum attacks
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Reduction+=Crypto 
security proof 

Minimum requirement for post-quantum crypto: 
hard problem must resist quantum attacks
Fortunately, we have candidate hard problems.

Post-quantum cryptography
(classical crypto secure against quantum attack)

Computational 
hardness 

assumption
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Reduction+=Crypto 
security proof 

Minimum requirement for post-quantum crypto: 
hard problem must resist quantum attacks
Fortunately, we have candidate hard problems.

Ex: lattice problems, isogenies, etc.

Post-quantum cryptography
(classical crypto secure against quantum attack)

Post-quantum
hardness 

assumption
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Reduction+=Crypto 
security proof 

Post-quantum cryptography
(classical crypto secure against quantum attack)

Post-quantum
hardness 

assumption

Common misconception: 
Post-quantum assumptions are all we need for post-
quantum cryptography.
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Reduction+=Crypto 
security proof 

Common misconception: 
Post-quantum assumptions are all we need for post-
quantum cryptography.

Key point:
the security reduction must be quantum-compatible!

Post-quantum cryptography
(classical crypto secure against quantum attack)

Post-quantum
hardness 

assumption
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Post-quantum
hardness 

assumption

Quantum-
compatible
reduction

+=Post-quantum
security proof 

Any classical attack on the protocol 
→ (classical) attack on the assumption

Classical 
reduction:

Post-quantum cryptography
(classical crypto secure against quantum attack)
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Post-quantum
hardness 

assumption

Quantum-
compatible
reduction

+=Post-quantum
security proof 

Classical 
reduction:

Any quantum attack on the protocol 
→ (quantum) attack on the assumptionWe need:

Post-quantum cryptography
(classical crypto secure against quantum attack)

Any classical attack on the protocol 
→ (classical) attack on the assumption
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Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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Reduction

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.



21

𝑎
Reduction

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.

𝑟
𝑧

Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.
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Reduction
1) Record (𝑎, 𝑟, 𝑧)

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.

𝑎
𝑟
𝑧

Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.
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𝑎
Reduction

1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind
𝑧′

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break hard 
problem 

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves 
the adversary’s state and runs it on multiple challenges.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break hard 
problem 

Problem: unclear how to rewind a quantum adversary 
since measuring its response may disturb its state.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break hard 
problem 

Problem: unclear how to rewind a quantum adversary 
since measuring its response may disturb its state.

An adversary that detects this disturbance could stop 
giving valid responses!



30

For this talk, the goal of rewinding is to record the 
adversary’s responses to multiple challenges.
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For this talk, the goal of rewinding is to record the 
adversary’s responses to multiple challenges.**

**Disclaimer: 
This is how rewinding is commonly used to prove soundness, 
but it doesn't capture applications such as zero knowledge.
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For this talk, the goal of rewinding is to record the 
adversary’s responses to multiple challenges.

We’ll focus on Kilian’s succinct argument protocol, a 
central result that captures the difficulty of rewinding.
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Succinct Arguments for NP [Kilian92]

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT
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Succinct Arguments for NP [Kilian92]

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

“Succinct” = communication + verifier efficiency is 
poly(𝜆, log 𝑥 + 𝑤 )

“Argument” = sound against efficient cheating            
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Succinct Arguments for NP [Kilian92]

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

[Kilian92] constructs a 4-message succinct argument for 
NP from collision-resistant hash functions (CRHFs).
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Succinct Arguments for NP [Kilian92]

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

[Kilian92] constructs a 4-message succinct argument for 
NP from collision-resistant hash functions (CRHFs).

In other words, under a mild computational assumption, any 
NP statement can be verified poly(𝜆, log 𝑥 + 𝑤 ) time!
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Succinct Arguments for NP [Kilian92]

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

[Kilian92] constructs a 4-message succinct argument for 
NP from collision-resistant hash functions (CRHFs).

Many applications: universal arguments [BG01], zero 
knowledge [Barak01], SNARGs [Micali94, BCS16], …
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However, post-quantum soundness of Kilian’s 
protocol remained an open question.

• Known reductions for Kilian rewind the attacker to get an 
arbitrary polynomial number of accepting transcripts.

• Existing quantum rewinding techniques [U12,DFMS19] 
are fundamentally stuck at a far smaller (constant)
number of rewinds.
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However, post-quantum soundness of Kilian’s 
protocol remained an open question.

• Known reductions for Kilian rewind the attacker to get an 
arbitrary polynomial number of accepting transcripts.

• Existing quantum rewinding techniques [U12,DFMS19] 
are fundamentally stuck at a far smaller (constant)
number of rewinds.

In this work, we resolve this problem.



We give a general technique to rewind any quantum attacker as 
many times as desired.
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• Many other protocols, e.g., [GMW86] 3-coloring, [Blum86] 

Hamiltonicity have optimal post-quantum security.
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This Work

Consequences:
• Kilian is post-quantum sound if the CRHF is quantum-binding*.
• Many other protocols, e.g., [GMW86] 3-coloring, [Blum86] 

Hamiltonicity have optimal post-quantum soundness.

* The CRHF must be collapsing — the standard definition of binding for 
quantum adversaries [Unruh16]. These exist assuming the quantum 
hardness of Learning with Errors (LWE).



Recall Kilian’s protocol
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Compile a probabilistically checkable proof* (PCP) into 
an interactive argument system using cryptography.

*[BFLS91,FGLSS91,AS92,ALMSS92] 
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Kilian’s protocol

PCP π

𝑉(𝑥; 𝑟)
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Kilian’s protocol

PCP π

𝑉(𝑥; 𝑟)



PCP π

Compile a probabilistically checkable proof* (PCP) into 
an interactive argument system using cryptography.

*[BFLS91,FGLSS91,AS92,ALMSS92] 
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𝑉(𝑥; 𝑟) 𝑥, 𝑤 𝑥

P
+ crypto

Kilian’s protocol



P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
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Kilian’s protocol

Encode 𝑤 as PCP 𝜋

PCP π



P sends short commitment to PCP π.
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P
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Kilian’s protocol
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Kilian’s protocol

Encode 𝑤 as PCP 𝜋

PCP π



P sends short commitment to PCP π.
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P
CRHF ℎ
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Kilian’s protocol
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PCP π



P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ
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Kilian’s protocol

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

PCP π



P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ
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com

Kilian’s protocol

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

PCP π



𝑥𝑥, 𝑤

P
CRHF ℎ

samples PCP verifier coins 𝑟 ← 𝑅. 

𝑟
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com

Kilian’s protocol

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

PCP π



𝑥𝑥, 𝑤
CRHF ℎ

𝑟

P sends π[Q"] + opening proofs

Q" = indices PCP verifier 
checks on random coins 𝑟

π Q! , open[Q!]
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com

Kilian’s protocol

π Q!
open Q" =

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

P



Kilian’s protocol
𝑥𝑥, 𝑤

P
CRHF ℎ

𝑟

π Q! , open[Q!]

accepts if openings valid 
+ PCP verifier accepts

accept 
or reject
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com

π Q!
open Q" =

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ



Classical Security

CRHF ℎ

𝑟

π Q! , open[Q!]

accept 
or reject

61

com

𝑥 ∉ 𝐿

Intuition: want to show that the CRHF forces         to 
respond consistently with some PCP string 𝜋.

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ



CRHF ℎ

𝑟

π Q! , open[Q!]

accept 
or reject
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com

Intuition: want to show that the CRHF forces         to 
respond consistently with some PCP string 𝜋.
Formalize by rewinding last two messages many times.

repeat

Classical Security
𝑥 ∉ 𝐿

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ



CRHF ℎ

𝑟"

𝑧"

accept 
or reject
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com

repeat

Classical Security
𝑥 ∉ 𝐿

Reduction’s goal: record many accepting transcripts (𝑟# , 𝑧#)

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ



CRHF ℎ

𝑟"

𝑧"

accept 
or reject
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com

repeat

Classical Security
𝑥 ∉ 𝐿

Reduction’s goal: record many accepting transcripts (𝑟# , 𝑧#)
Eventually finds impossible π OR collision.

Pr[ PCP verifier accepts π ] > PCP soundness error

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ



CRHF ℎ

𝑟"

𝑧"

accept 
or reject

65

com

repeat

Classical Security
𝑥 ∉ 𝐿

rest of talk: consider “challenge-response” game

S

S = internal state before last two messages 
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𝑟
𝑧|S⟩

Define success probability of |S⟩ ≔ Pr
!←$

[ wins]

1) sample 𝑟 ← 𝑅.
2) win if 𝑉 𝑟, 𝑧 = 1.

The Challenge-Response Game

|S⟩
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𝑧|S⟩

Define success probability of |S⟩ ≔ Pr
!←$

[ wins]

1) sample 𝑟 ← 𝑅.
2) win if 𝑉 𝑟, 𝑧 = 1.

The Challenge-Response Game

|S⟩

Goal: Given |S⟩ with success probability 1/poly(𝜆), 
output many accepting transcripts (𝑟" , 𝑧")

𝑟
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𝑟%
𝑧%S

𝑟&
𝑧&S …

𝑟'
𝑧'S

When S is classical, can run many trials by resetting the 
prover’s state.
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𝑟%
𝑧%|S⟩

𝑟&
𝑧&|S⟩ …𝑧'

𝑟'
|S⟩

If S is quantum, we can’t reset the state since a single 
trial requires measuring 𝑧, which disturbs |S⟩.
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If S is quantum, we can’t reset the state since a single 
trial requires measuring 𝑧, which disturbs |S⟩.

𝑟%
𝑧%|S⟩

|S′⟩

success 
prob 𝑝

success 
prob ≪ 𝑝
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𝑟%
𝑧%|S⟩

|S′⟩

success 
prob 𝑝

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝
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𝑟%
𝑧%

success 
prob 𝑝

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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𝑟%
𝑧%

success 
prob 𝑝

repair 
step

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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𝑟%
𝑧%

success 
prob 𝑝

success 
prob ≈ 𝑝

repair 
step

|S%⟩

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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𝑟%
𝑧%

success 
prob 𝑝

success 
prob ≈ 𝑝

repair 
step

𝑟&
𝑧&|S%⟩

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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𝑟%
𝑧%

success 
prob 𝑝

success 
prob ≈ 𝑝

repair 
step

𝑟&
𝑧&|S%⟩

|S%′⟩

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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𝑟%
𝑧%

success 
prob 𝑝

success 
prob ≈ 𝑝

repair 
step

𝑟&
𝑧&|S%⟩

|S%′⟩
repair 
step

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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𝑟%
𝑧%

success 
prob 𝑝

success 
prob ≈ 𝑝

repair 
step

𝑟&
𝑧&|S%⟩

|S%′⟩

…
repair 
step

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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First, we’ll need to recall a technique of [Unruh12] 
to reduce measuring the prover’s response to 

measuring the verifier’s decision.
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𝑟
𝑧|S⟩

Recording the Verifier’s Decision [Unruh12]

Naïve Measurement:
Measure ∑|𝑧⟩ right away.
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𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.
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𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

Recording the Verifier’s Decision [Unruh12]

[U12]: For protocols with unique responses, measurement in 
step (2) causes no disturbance!

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.
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𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

Recording the Verifier’s Decision [Unruh12]

[U12]: For protocols with unique responses, measurement in 
step (2) causes no disturbance!

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

• Kilian’s protocol doesn’t have this property. 
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𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

Recording the Verifier’s Decision [Unruh12]

[U12]: For protocols with unique responses, measurement in 
step (2) causes no disturbance!

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

• Kilian’s protocol doesn’t have this property. 
• However, if the CRHF ℎ is quantum-binding (collapsing [U16]), 

then step (2) is computationally undetectable.
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𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

It therefore suffices to only perform step (1) and simply try to 
make the verifier accept on many random challenges.
This implies a full reduction that performs step (1) and (2), since 
(2) is computationally undetectable.
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It therefore suffices to only perform step (1) and simply try to 
make the verifier accept on many random challenges.
This will imply a full reduction that performs step (1) and (2), 
since (2) is computationally undetectable.

𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.
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Takeaway: can just measure the verifier’s decision, 
so we only have to “repair” one-bit disturbance.

With this in mind, let’s turn to state repair.
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State Repair Intuition: Alternating Projections

S(

S
𝑟
𝑏

one-bit 
outcome

success 
prob 𝑝
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State Repair Intuition: Alternating Projections

S(

S
𝑟
𝑏

one-bit 
outcome

success 
prob 𝑝

State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))



90

State Repair Intuition: Alternating Projections

S(

S
𝑟
𝑏

one-bit 
outcome

success 
prob 𝑝

State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))



91

State Repair Intuition: Alternating Projections

S(

S
𝑟
𝑏

one-bit 
outcome

success 
prob 𝑝

State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))



92

State Repair Intuition: Alternating Projections

S(

S
𝑟
𝑏

one-bit 
outcome

success 
prob 𝑝

State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))



93

S(

S
success 
prob 𝑝

State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))



94

measure
Π)

S(

S
success 
prob 𝑝

State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))
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1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))
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State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 
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State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))
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State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))
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State Repair (High-Level Idea)
1) Identify a “good subspace” Π) where S ∈ Π) , and moreover 

all states in Π) have success prob ≥ 𝑝.
2) Alternate two projective measurements until the state is in Π):
• the binary measurement (Π! , 𝕀 − Π!) that disturbed S
• the binary measurement (Π), 𝕀 − Π))

S%
success 
prob ≥ 𝑝
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Missing Details
1) How do we know this process terminates?
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Missing Details
1) How do we know this process terminates?
2) How do we define Π)? (In particular, we need to be 
able to measure Π) efficiently.)

S%
success 
prob ≥ 𝑝
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Missing Pieces
1) How do we know this process terminates?
𝑝?

S%
success 
prob ≥ 𝑝
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To see why alternating Π) and Π! measurements eventually 
produces a state in Π) , consider the 2-dim case:

Π*

𝕀 − Π)



106

To see why alternating Π) and Π! measurements eventually 
produces a state in Π) , consider the 2-dim case:

Π!

Π*

𝕀 − Π)
𝕀 − Π!

𝜃

𝜃



107

Π!

Π*

𝕀 − Π)
𝕀 − Π!

𝜃

𝜃
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To see why alternating Π) and Π! measurements eventually 
produces a state in Π) , consider the 2-dim case:
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To see why alternating Π) and Π! measurements eventually 
produces a state in Π) , consider the 2-dim case:
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Π!

Π*

𝕀 − Π)
𝕀 − Π!

𝜃

𝜃
|S⟩

|S′⟩

|S+⟩
|S′+⟩

To see why alternating Π) and Π! measurements eventually 
produces a state in Π) , consider the 2-dim case:

• State “jumps” between the 4 
labeled states.
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𝜃
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|S′+⟩

To see why alternating Π) and Π! measurements eventually 
produces a state in Π) , consider the 2-dim case:

• State “jumps” between the 4 
labeled states.

• If we start at S ∈ Π) , we 
return to Π) in expected 
𝑂(1) steps for any 𝜃.
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• If we start at S ∈ Π) , we 
return to Π) in expected 
𝑂(1) steps for any 𝜃.

• Jordan’s lemma extends this 
to higher dimensions.
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Π!

Π*

𝕀 − Π)
𝕀 − Π!

𝜃

𝜃
|S⟩

|S′⟩

|S+⟩
|S′+⟩

• State “jumps” between the 4 
labeled states.

• If we start at S ∈ Π) , we 
return to Π) in expected 
𝑂(1) steps for any 𝜃.

• Jordan’s lemma extends this 
to higher dimensions.

Note: this works for any two binary projective measurements.

To see why alternating Π) and Π! measurements eventually 
produces a state in Π) , consider the 2-dim case:
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Missing Details
1) How do we know this process terminates?
2) How do we define Π)? (In particular, we need to be 
able to measure Π) efficiently.)

measure
Π)

reject

measure
Π!

accept

measure
Π)

accept ✓

S(

S
success 
prob 𝑝 S%

success 
prob ≥ 𝑝
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Missing Details
1) How do we know this process terminates?
2) How do we define Π)? (In particular, we need to be 
able to measure Π) efficiently.)

As currently specified, a projection Π) onto states with 
success prob ≥ 𝑝 is unlikely to be efficient. 

However, we can achieve a relaxed version of this 
guarantee using a technique of [MW05].
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guarantee using a technique of [MW05].



Recap: The Marriott-Watrous Procedure

Given a binary-output quantum circuit 𝐶 and an input |S⟩, [MW05] 
gives a procedure to estimate Pr[ 𝐶 |S⟩ → 1] to any precision.

116

([MW05] use this procedure for QMA amplification)
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We’ll use [MW05] to estimate success probability.



Recap: The Marriott-Watrous Procedure

Given a binary-output quantum circuit 𝐶 and an input |S⟩, [MW05] 
gives a procedure to estimate Pr[ 𝐶 |S⟩ → 1] to any precision.

𝐶(|S⟩):
1) Prepare the superposition of challenges ∑!∈$ |𝑟⟩.
2) Compute (in superposition) the response of adversary |S⟩.
3) Output 𝑉(𝑟, 𝑧).
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We’ll use [MW05] to estimate success probability.
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For this talk, we’ll only need to know 
two things about the MW estimator.
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success 
prob 𝑝

For this talk, we’ll only need to know 
two things about the MW estimator.
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success 
prob 𝑝

For this talk, we’ll only need to know 
two things about the MW estimator.

Key Properties
1) 𝔼 𝑝 = 𝑝-
2) If we apply MW twice, the two 
outcomes 𝑝, 𝑞 are close with high 
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(%
.
, log %

/
) runtime.
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For this talk, we’ll only need to know 
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probability. Formally, MW achieves
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𝑝 Key Properties
1) 𝔼 𝑝 = 𝑝-
2) If we apply MW twice, the two 
outcomes 𝑝, 𝑞 are close with high 
probability. Formally, MW achieves
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MW
Estimator

|S0⟩

𝑞

success 
prob 𝑝

success 
prob 𝑞

For this talk, we’ll only need to know 
two things about the MW estimator.



124

As in [Zha20], we call this 
“ 𝜀, 𝛿 -almost-projective.”

Key Properties
1) 𝔼 𝑝 = 𝑝-
2) If we apply MW twice, the two 
outcomes 𝑝, 𝑞 are close with high 
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(%
.
, log %

/
) runtime.

For this talk, we’ll only need to know 
two things about the MW estimator.



Let’s see how [MW05] fits into our approach.

125



measure
Π)

reject

measure
Π!

accept

measure
Π)

accept ✓

S( S%

S

disturb 
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S# ∈ Π$

S ∈ Π$

Recall: our high-level approach assumed we could measure Π) , 
a projection onto states with success prob ≥ 𝑝.



In reality, the closest thing we have is a binary measurement 
MW) that runs MW and accepts if the output is ≥ 𝑝. 
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measure
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Π)
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S
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S ∈ Π$



In reality, the closest thing we have is a binary measurement 
MW) that runs MW and accepts if the output is ≥ 𝑝. 

We can easily swap out the Π) measurements for MW) , but we 
also need to update the invariant that we want a state ∈ Π).
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accept accept ✓

S( S%

S

disturb 
with Π!

S# ∈ Π$

S ∈ Π$

measure
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measure
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In reality, the closest thing we have is a binary measurement 
MW) that runs MW and accepts if the output is ≥ 𝑝. 
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reject

measure
Π!

accept accept ✓

S( S%

S

disturb 
with Π!

S# ∈ Π$

S ∈ Π$

measure
MW)

measure
MW)

Fortunately, there’s a natural MW-analogue:
𝔼[MW)(|S⟩)] = 1 − 𝛿.

This implies success prob of |S⟩ is 𝔼0←12(|5⟩) 𝑞 ≥ 𝑝 − 𝛿.
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Fortunately, there’s a natural MW-analogue of S ∈ Π):

𝔼[MW)(|S⟩)] = 1 − 𝛿.

This implies success prob of |S⟩ is 𝔼0←12(|5⟩) 𝑞 ≥ 𝑝 − 𝛿.

In reality, the closest thing we have is a binary measurement 
MW) that runs MW and accepts if the output is ≥ 𝑝. 

measure
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measure
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accept

measure
MW)
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S(

S

disturb 
with Π!

𝔼[MW$(|S⟩)] = 1 − 𝛿

S%
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Fortunately, there’s a natural MW-analogue of S ∈ Π):

𝔼[MW)(|S⟩)] = 1 − 𝛿.

This implies success prob of |S⟩ is 𝔼0←12(|5⟩) 𝑞 ≥ 𝑝 − 𝛿.

measure
MW)

reject

measure
Π!

accept

measure
MW)

accept ✓

S(

S

disturb 
with Π!

𝔼[MW$(|S⟩)] = 1 − 𝛿

S%

Note that the guarantee degrades: for |S%⟩, the best we can hope 
for using (𝜀, 𝛿)-almost-projectivity is 𝔼[MW)8.(|S%⟩)] = 1 − 𝛿.

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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This approach seems promising, but we have a problem:
Our proof that this procedure terminates requires the 

measurements to be projective, but MW) is not! 

measure
MW)

reject

measure
Π!

accept

measure
MW)

accept ✓

S(

S

disturb 
with Π!

𝔼[MW$(|S⟩)] = 1 − 𝛿
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𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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𝔼[MW$(|S⟩)] = 1 − 𝛿

S%

This approach seems promising, but we have a problem:
Our proof that this procedure terminates requires the 

measurements to be projective, but MW) is not! 

(running it twice may give different outcomes)

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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measure
MW)

accept ✓

S(

S

disturb 
with Π!

𝔼[MW$(|S⟩)] = 1 − 𝛿

S%

This approach seems promising, but we have a problem:
Our proof that this procedure terminates requires the 

measurements to be projective, but MW) is not! 

Easy(?) fix: Make MW) projective by expanding the Hilbert space.

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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measure
MW)

accept ✓
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S

disturb 
with Π!

𝔼[MW$(|S⟩)] = 1 − 𝛿

S%

Measuring |S′⟩ with MW) can be implemented as a projective 
measurement of some Π)∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

adversary state register workspace/ancilla

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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𝔼[MW$(|S⟩)] = 1 − 𝛿
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Measuring |S′⟩ with MW) can be implemented as a projective 
measurement of some Π)∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

But we need to be careful: the outcome of measuring Π)∗ only 
corresponds to MW) when the 𝑊 register is |0⟩. 

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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measure
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measure
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accept ✓
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S

disturb 
with Π!

𝔼[MW$(|S⟩)] = 1 − 𝛿
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Measuring |S′⟩ with MW) can be implemented as a projective 
measurement of some Π)∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

But we need to be careful: the outcome of measuring Π)∗ only 
corresponds to MW) when the 𝑊 register is |0⟩. 

(even if we start with S( : 0 ; , measuring Π)∗ once may ruin 𝑊)

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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measure
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measure
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S

disturb 
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𝔼[MW$(|S⟩)] = 1 − 𝛿

S%

Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each 
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;. 

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:
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measure
Π)∗

reject

measure
Π!∗

accept

measure
Π)∗

accept ✓

S( : 0 ;

S
𝔼[MW$(|S⟩)] = 1 − 𝛿

𝜓 :,;

Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each 
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;. 

(discard 𝑊)
S% :

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿Hope:

This is essentially the full repair procedure!
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However, proving that we satisfy 𝔼[MW)8.(|S%⟩)] = 1 − 𝛿
requires more work (in fact, we get a weaker guarantee). 
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However, proving that we satisfy 𝔼[MW)8.(|S%⟩)] = 1 − 𝛿
requires more work (in fact, we get a weaker guarantee). 

In 2-D, the guarantee depends on
𝛾 = cos& 𝜃 = 𝔼[MW)(|S(⟩)].

Repair outputs |S%⟩ = Tr;(|𝜓⟩⟨𝜓|) where
𝔼[MW)8.(|S%⟩)] ≥ 1 − 𝛿/𝛾

Π!∗

Π)∗
|𝜓⟩

𝛾

S( |0⟩

𝜃
𝜃
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However, proving that we satisfy 𝔼[MW)8.(|S%⟩)] = 1 − 𝛿
requires more work (in fact, we get a weaker guarantee). 

In 2-D, the guarantee depends on
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However, proving that we satisfy 𝔼[MW)8.(|S%⟩)] = 1 − 𝛿
requires more work (in fact, we get a weaker guarantee). 

In 2-D, the guarantee depends on
𝛾 = cos& 𝜃 = 𝔼[MW)(|S(⟩)].

Repair outputs |S%⟩ = Tr;(|𝜓⟩⟨𝜓|) where
𝔼[MW)8.(|S%⟩)] ≥ 1 − 𝛿/𝛾

Π!∗

Π)∗
|𝜓⟩

𝛾

S( |0⟩

𝜃
𝜃

For the general case, we use Jordan’s lemma and prove that 
on most 2-D subspaces, 𝛾 = 𝔼[MW)(|S(⟩)] is not too small 
(since we had 𝔼[MW)(|S⟩)] = 1 − 𝛿 before disturbance).
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|S⟩

Recap: The Full Rewinding Procedureinitial 
adversary
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adversary



146

|S⟩
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𝑝

Recap: The Full Rewinding Procedureinitial 
adversary

𝔼[MW$%&(|S#⟩)] = 1 − 𝛿

|S%⟩
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𝔼[MW$%&(|S#⟩)] = 1 − 𝛿

𝑟%
𝑧%|S%⟩

|S%′⟩

|S⟩

MW
estimator

𝑝

Recap: The Full Rewinding Procedureinitial 
adversary
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Conclusions

• Much of cryptography deals with interactive protocols. In this 
setting, security is fragile in the presence of quantum 
adversaries because classical rewinding is inapplicable.

• Rewinding is often used to record an adversary’s responses 
across multiple challenges.

• We address this issue by solving an abstract problem: if a 
stateful quantum adversary wins a challenge-response game 
once, we extend it to win the game many times.

• Next steps: other use cases for rewinding? We give some 
answers in upcoming work [LMS21].
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