Post-Quantum Succinct Arguments: Breaking the Quantum Rewinding Barrier

Fermi Ma
Princeton \rightarrow Simons \& Berkeley

joint work with
Alessandro Chiesa, Nicholas Spooner, and Mark Zhandry

Why are quantum computers a threat to cryptography?

Why are quantum computers a threat to cryptography?

To answer this, recall how cryptographers prove security.

Fundamental formula of cryptography

Fundamental formula of cryptography

Ex: invert one-way function, factoring, discrete log, lattice problems, etc.

Fundamental formula of cryptography

Ex: invert one-way function, factoring, discrete log, lattice problems, etc.

[^0]Why are quantum computers a threat?

Why are quantum computers a threat?

Ex: invert one-way function, disctog, lattice problems, etc.

Simple answer: Shor's algorithm breaks widely-used hardness assumptions

Post-quantum cryptography

(classical crypto secure against quantum attack)

Minimum requirement for post-quantum crypto: hard problem must resist quantum attacks

Post-quantum cryptography

 (classical crypto secure against quantum attack)$\left.\begin{array}{c}\text { Crypto } \\ \text { security proof }\end{array}=\begin{array}{c}\text { Computational } \\ \text { hardness } \\ \text { assumption }\end{array}\right]+$ Reduction

Minimum requirement for post-quantum crypto: hard problem must resist quantum attacks
Fortunately, we have candidate hard problems.

Post-quantum cryptography

 (classical crypto secure against quantum attack)$\left.\begin{array}{c}\text { Crypto } \\ \text { security proof }\end{array}=\begin{array}{c}\text { Post-quantum } \\ \text { hardness } \\ \text { assumption }\end{array}\right]+$ Reduction

Ex: lattice problems, isogenies, etc.
Minimum requirement for post-quantum crypto: hard problem must resist quantum attacks
Fortunately, we have candidate hard problems.

Post-quantum cryptography

(classical crypto secure against quantum attack)
$\left.\begin{array}{|c|}\hline \begin{array}{c}\text { Crypto } \\ \text { security proof }\end{array} \\ \hline\end{array} \begin{array}{|c}\text { Post-quantum } \\ \text { hardness } \\ \text { assumption }\end{array}\right]+$ Reduction

Common misconception:
Post-quantum assumptions are all we need for postquantum cryptography.

Post-quantum cryptography

(classical crypto secure against quantum attack)

Common misconception:
Post-quantum assumptions are all we need for postquantum cryptography.

Key point: the security reduction must be quantum-compatible!

Post-quantum cryptography

(classical crypto secure against quantum attack)
\(\left.$$
\begin{array}{|c|}\hline \text { Post-quantum } \\
\text { security proof }\end{array}
$$=\begin{array}{|c}Post-quantum

hardness

assumption\end{array}\right]+\)| Quantum- |
| :---: |
| compatible |
| reduction |

Classical reduction:

Any classical attack on the protocol \rightarrow (classical) attack on the assumption

Post-quantum cryptography

 (classical crypto secure against quantum attack)\(\left.$$
\begin{array}{|c|}\text { Post-quantum } \\
\text { security proof }\end{array}
$$=\begin{array}{c}Post-quantum

hardness

assumption\end{array}\right]+\)| Quantum- |
| :---: |
| compatible |
| reduction |

Classical reduction:

Any classical attack on the protocol \rightarrow (classical) attack on the assumption

We need:
Any quantum attack on the protocol
\rightarrow (quantum) attack on the assumption

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Some classical reductions are quantum-compatible, but problems arise if the reduction rewinds the adversary.

Ex: midway through an execution, the reduction saves the adversary's state and runs it on multiple challenges.

Problem: unclear how to rewind a quantum adversary since measuring its response may disturb its state.

Problem: unclear how to rewind a quantum adversary since measuring its response may disturb its state.

An adversary that detects this disturbance could stop giving valid responses!

For this talk, the goal of rewinding is to record the adversary's responses to multiple challenges.

For this talk, the goal of rewinding is to record the adversary's responses to multiple challenges.**

**Disclaimer:
This is how rewinding is commonly used to prove soundness, but it doesn't capture applications such as zero knowledge.

For this talk, the goal of rewinding is to record the adversary's responses to multiple challenges.

We'll focus on Kilian's succinct argument protocol, a central result that captures the difficulty of rewinding.

Succinct Arguments for NP [Kilian92]

Succinct Arguments for NP [Kilian92]

$\begin{aligned} \text { "Succinct" }= & \text { communication }+ \text { verifier efficiency is } \\ & \operatorname{poly}(\lambda, \log (|x|+|w|))\end{aligned}$

Succinct Arguments for NP [Kilian92]

$\begin{aligned} \text { "Succinct" }= & \text { communication }+ \text { verifier efficiency is } \\ & \operatorname{poly}(\lambda, \log (|x|+|w|))\end{aligned}$
"Argument" = sound against efficient cheating

Succinct Arguments for NP [Kilian92]

[Kilian92] constructs a 4-message succinct argument for NP from collision-resistant hash functions (CRHFs).

Succinct Arguments for NP [Kilian92]

[Kilian92] constructs a 4-message succinct argument for NP from collision-resistant hash functions (CRHFs).

In other words, under a mild computational assumption, any NP statement can be verified poly $(\lambda, \log (|x|+|w|))$ time!

Succinct Arguments for NP [Kilian92]

[Kilian92] constructs a 4-message succinct argument for NP from collision-resistant hash functions (CRHFs).

Many applications: universal arguments [BG01], zero knowledge [Barak01], SNARGs [Micali94, BCS16], ...

However, post-quantum soundness of Kilian's protocol remained an open question.

However, post-quantum soundness of Kilian’s protocol remained an open question.

- Known reductions for Kilian rewind the attacker to get an arbitrary polynomial number of accepting transcripts.

However, post-quantum soundness of Kilian’s protocol remained an open question.

- Known reductions for Kilian rewind the attacker to get an arbitrary polynomial number of accepting transcripts.
- Existing quantum rewinding techniques [U12,DFMS19] are fundamentally stuck at a far smaller (constant) number of rewinds.

However, post-quantum soundness of Kilian’s protocol remained an open question.

- Known reductions for Kilian rewind the attacker to get an arbitrary polynomial number of accepting transcripts.
- Existing quantum rewinding techniques [U12,DFMS19] are fundamentally stuck at a far smaller (constant) number of rewinds.

In this work, we resolve this problem.

This Work

We give a general technique to rewind any quantum attacker as many times as desired.

This Work

We give a general technique to rewind any quantum attacker as many times as desired.

Consequences:

- Kilian is post-quantum sound if the CRHF is quantum-binding*.

This Work

We give a general technique to rewind any quantum attacker as many times as desired.

Consequences:

- Kilian is post-quantum sound if the CRHF is quantum-binding*.
* The CRHF must be collapsing - the standard definition of binding for quantum adversaries [Unruh16]. These exist assuming the quantum hardness of Learning with Errors (LWE).

This Work

We give a general technique to rewind any quantum attacker as many times as desired.

Consequences:

- Kilian is post-quantum sound if the CRHF is quantum-binding*.
- Many other protocols, e.g., [GMW86] 3-coloring, [Blum86] Hamiltonicity have optimal post-quantum soundness.
* The CRHF must be collapsing - the standard definition of binding for quantum adversaries [Unruh16]. These exist assuming the quantum hardness of Learning with Errors (LWE).

Recall Kilian’s protocol

Kilian's protocol

Compile a probabilistically checkable proof* (PCP) into an interactive argument system using cryptography. *[BFLS91,FGLSS91,AS92,ALMSS92]

Kilian's protocol

Compile a probabilistically checkable proof* (PCP) into an interactive argument system using cryptography. *[BFLS91,FGLSS91,AS92,ALMSS92]

Kilian's protocol

Compile a probabilistically checkable proof* (PCP) into an interactive argument system using cryptography. *[BFLS91,FGLSS91,AS92,ALMSS92]

Kilian's protocol

Encode w as PCP π

EPB sends short commitment to PCP π.

Kilian's protocol

Encode w as PCP π

EPB sends short commitment to PCP π.

Kilian's protocol

Encode w as PCP π

\&ir sends short commitment to PCP π.

Kilian's protocol

$\sum_{3}^{m 3}$ sends short coommitment to PCP T.

Kilian's protocol

\sum_{i}^{2} sends short commitment to PCP π.

Kilian's protocol

\sum_{3}^{m} sends short coommitmento PCP π.

Kilian's protocol

\sum_{3}^{m} sends short coommitmento PCP π.

Kilian's protocol

samples PCP verifier coins $r \leftarrow R$.

Kilian's protocol

$\mathrm{Q}_{r}=$ indices PCP verifier checks on random coins r

Kilian's protocol

accepts if openings valid + PCP verifier accepts

Classical Security

Intuition: want to show that the CRHF forces to respond consistently with some PCP string π.

Classical Security

Intuition: want to show that the CRHF forces respond consistently with some PCP string π.
Formalize by rewinding last two messages many times.

Classical Security

Reduction's goal: record many accepting transcripts $\left(r_{i}, z_{i}\right)$

Classical Security

Reduction's goal: record many accepting transcripts (r_{i}, z_{i})
Eventually finds $\underbrace{\text { impossible } \pi}$ OR collision.
$\operatorname{Pr}[$ PCP verifier accepts $\pi]>$ PCP soundness error

S = internal state before last two messages
rest of talk: consider "challenge-response" game

The Challenge-Response Game

$$
\begin{aligned}
& \text { Define success probability of }|\mathrm{S}\rangle:=\underset{r \leftarrow R}{\operatorname{Pr}}\left[\text { \{ }|S\rangle^{\prime} \text { wins }\right]
\end{aligned}
$$

The Challenge-Response Game

$$
\begin{cases}\text { |S| } \\
\underbrace{r}_{z} & \begin{array}{l}
\text { 1) sample } r \leftarrow R . \\
\text { 2) win if } V(r, z)=1 .
\end{array}\end{cases}
$$

Goal: Given $|S\rangle$ with success probability $1 / \operatorname{poly}(\lambda)$, output many accepting transcripts $\left(r_{i}, z_{i}\right)$

When $|\mathrm{S}\rangle$ is classical, can run many trials by resetting the prover's state.

If $|S\rangle$ is quantum, we can't reset the state since a single trial requires measuring z, which disturbs $|\mathrm{S}\rangle$.

success

prob p

prob << p
If $|\mathrm{S}\rangle$ is quantum, we can't reset the state since a single trial requires measuring z, which disturbs $|\mathrm{S}\rangle$.

success

prob p

success
prob << p
Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!

success

prob p

prob << p
Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!
This work: we devise a "repair" procedure to restore the original success probability.

success

prob p

prob << p
Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!
This work: we devise a "repair" procedure to restore the original success probability.
success
prob p

success

prob $\approx p$

prob $\ll p$
Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!
This work: we devise a "repair" procedure to restore the original success probability.

Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!
This work: we devise a "repair" procedure to restore the original success probability.

Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!
This work: we devise a "repair" procedure to restore the original success probability.

Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!
This work: we devise a "repair" procedure to restore the original success probability.

Problem: $\left|S^{\prime}\right\rangle$ might not be a successful adversary!
This work: we devise a "repair" procedure to restore the original success probability.

First, we'll need to recall a technique of [Unruh12] to reduce measuring the prover's response to measuring the verifier's decision.

Recording the Verifier's Decision [Unruh12]

Naïve Measurement:
Measure $\sum|z\rangle$ right away.

Recording the Verifier's Decision [Unruh12]

Naïve Measurement:
Measure $\sum|z\rangle$ right away.

"Lazy" Measurement:
(1) Compute + measure $V(r, z)$.
(2) Measure z if $V(r, z)=1$.

Recording the Verifier's Decision [Unruh12]

Naïve Measurement:
Measure $\sum|z\rangle$ right away.

"Lazy" Measurement:
(1) Compute + measure $V(r, z)$.
(2) Measure z if $V(r, z)=1$.
[U12]: For protocols with unique responses, measurement in step (2) causes no disturbance!

Recording the Verifier's Decision [Unruh12]

Naïve Measurement:
Measure $\sum|z\rangle$ right away.

"Lazy" Measurement:
(1) Compute + measure $V(r, z)$.
(2) Measure z if $V(r, z)=1$.
[U12]: For protocols with unique responses, measurement in step (2) causes no disturbance!

- Kilian's protocol doesn't have this property.

Recording the Verifier's Decision [Unruh12]

Naïve Measurement:
Measure $\sum|z\rangle$ right away.

"Lazy" Measurement:
(1) Compute + measure $V(r, z)$.
(2) Measure z if $V(r, z)=1$.
[U12]: For protocols with unique responses, measurement in step (2) causes no disturbance!

- Kilian's protocol doesn't have this property.
- However, if the CRHF h is quantum-binding (collapsing [U16]), then step (2) is computationally undetectable.

Recording the Verifier's Decision [Unruh12]

Naïve Measurement:
Measure $\sum|z\rangle$ right away.

"Lazy" Measurement:
(1) Compute + measure $V(r, z)$.
(2) Measure z if $V(r, z)=1$.

It therefore suffices to only perform step (1) and simply try to make the verifier accept on many random challenges.

Recording the Verifier's Decision [Unruh12]

Naïve Measurement:
Measure $\sum|z\rangle$ right away.

"Lazy" Measurement:
(1) Compute + measure $V(r, z)$.
(2) Measure z if $V(r, z)=1$.

It therefore suffices to only perform step (1) and simply try to make the verifier accept on many random challenges.
This will imply a full reduction that performs step (1) and (2), since (2) is computationally undetectable.

Takeaway: can just measure the verifier's decision, so we only have to "repair" one-bit disturbance.

With this in mind, let's turn to state repair.

State Repair Intuition: Alternating Projections

State Repair Intuition: Alternating Projections

State Repair (High-Level Idea)
 1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.

State Repair Intuition: Alternating Projections

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

State Repair Intuition: Alternating Projections

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|\mathrm{S}\rangle$

State Repair Intuition: Alternating Projections

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|\mathrm{S}\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|\mathrm{S}\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|S\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|S\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|S\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|S\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|S\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|S\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|\mathrm{S}\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

State Repair (High-Level Idea)

1) Identify a "good subspace" Π_{p} where $|S\rangle \in \Pi_{p}$, and moreover all states in Π_{p} have success prob $\geq p$.
2) Alternate two projective measurements until the state is in Π_{p} :

- the binary measurement $\left(\Pi_{r}, \mathbb{I}-\Pi_{r}\right)$ that disturbed $|S\rangle$
- the binary measurement $\left(\Pi_{p}, \mathbb{I}-\Pi_{p}\right)$

Missing Details

1) How do we know this process terminates?

Missing Details

1) How do we know this process terminates?
2) How do we define Π_{p} ? (In particular, we need to be able to measure Π_{p} efficiently.)

3) How do we know this process terminates?

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

- State "jumps" between the 4 labeled states.
- If we start at $|S\rangle \in \Pi_{p}$, we return to Π_{p} in expected $O(1)$ steps for any θ.

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

- State "jumps" between the 4 labeled states.
- If we start at $|S\rangle \in \Pi_{p}$, we return to Π_{p} in expected $O(1)$ steps for any θ.
- Jordan's lemma extends this to higher dimensions.

To see why alternating Π_{p} and Π_{r} measurements eventually produces a state in Π_{p}, consider the 2-dim case:

- State "jumps" between the 4 labeled states.
- If we start at $|S\rangle \in \Pi_{p}$, we return to Π_{p} in expected $O(1)$ steps for any θ.
- Jordan's lemma extends this to higher dimensions.

Note: this works for any two binary projective measurements.

Missing Details

7) How do we know this process terminates?
8) How do we define Π_{p} ? (In particular, we need to be able to measure Π_{p} efficiently.)

As currently specified, a projection Π_{p} onto states with success prob $\geq p$ is unlikely to be efficient.
2) How do we define Π_{p} ? (In particular, we need to be able to measure Π_{p} efficiently.)

As currently specified, a projection Π_{p} onto states with

 success prob $\geq p$ is unlikely to be efficient. However, we can achieve a relaxed version of this guarantee using a technique of [MW05].2) How do we define Π_{p} ? (In particular, we need to be able to measure Π_{p} efficiently.)

Recap: The Marriott-Watrous Procedure

Given a binary-output quantum circuit C and an input $|\mathrm{S}\rangle$, [MW05] gives a procedure to estimate $\operatorname{Pr}[C(|S\rangle) \rightarrow 1]$ to any precision.
([MW05] use this procedure for QMA amplification)

Recap: The Marriott-Watrous Procedure

Given a binary-output quantum circuit C and an input $|S\rangle$, [MW05] gives a procedure to estimate $\operatorname{Pr}[C(|S\rangle) \rightarrow 1]$ to any precision.

We'll use [MW05] to estimate success probability.

Recap: The Marriott-Watrous Procedure

Given a binary-output quantum circuit C and an input $|S\rangle$, [MW05] gives a procedure to estimate $\operatorname{Pr}[C(|S\rangle) \rightarrow 1]$ to any precision.

We'll use [MW05] to estimate success probability.

$C(|\mathrm{~S}\rangle)$:

1) Prepare the superposition of challenges $\sum_{r \in R}|r\rangle$.
2) Compute (in superposition) the response of adversary $|S\rangle$.
3) Output $V(r, z)$.

For this talk, we'll only need to know two things about the MW estimator.

For this talk, we'll only need to know two things about the MW estimator.

For this talk, we'll only need to know two things about the MW estimator.

Key Properties

1) $\mathbb{E}[p]=p_{0}$

For this talk, we'll only need to know two things about the MW estimator.

Key Properties

1) $\mathbb{E}[p]=p_{0}$
2) If we apply MW twice, the two outcomes p, q are close with high probability.

For this talk, we'll only need to know two things about the MW estimator.

Key Properties

1) $\mathbb{E}[p]=p_{0}$
2) If we apply MW twice, the two outcomes p, q are close with high probability. Formally, MW achieves

$$
\operatorname{Pr}[|p-q| \leq \varepsilon] \geq 1-\delta
$$

with $\operatorname{poly}\left(\frac{1}{\varepsilon}, \log \left(\frac{1}{\delta}\right)\right)$ runtime.

For this talk, we'll only need to know two things about the MW estimator.

Key Properties

1) $\mathbb{E}[p]=p_{0}$
2) If we apply MW twice, the two outcomes p, q are close with high probability. Formally, MW achieves

$$
\operatorname{Pr}[|p-q| \leq \varepsilon] \geq 1-\delta
$$

with $\operatorname{poly}\left(\frac{1}{\varepsilon}, \log \left(\frac{1}{\delta}\right)\right)$ runtime.

Let's see how [MW05] fits into our approach.

Recall: our high-level approach assumed we could measure Π_{p}, a projection onto states with success prob $\geq p$.

In reality, the closest thing we have is a binary measurement MW_{p} that runs MW and accepts if the output is $\geq p$.

In reality, the closest thing we have is a binary measurement MW_{p} that runs MW and accepts if the output is $\geq p$.
We can easily swap out the Π_{p} measurements for MW_{p}, but we also need to update the invariant that we want a state $\in \Pi_{p}$.

In reality, the closest thing we have is a binary measurement MW_{p} that runs MW and accepts if the output is $\geq p$.

Fortunately, there's a natural MW-analogue:

$$
\mathbb{E}\left[\mathrm{MW}_{p}(|\mathrm{~S}\rangle)\right]=1-\delta .
$$

This implies success prob of $|\mathrm{S}\rangle$ is $\mathbb{E}_{q \leftarrow \mathrm{MW}(|\mathrm{S}\rangle)}[q] \geq p-\delta$.

In reality, the closest thing we have is a binary measurement MW_{p} that runs MW and accepts if the output is $\geq p$.

Fortunately, there's a natural MW-analogue of $|S\rangle \in \Pi_{p}$:

$$
\mathbb{E}\left[\mathrm{MW}_{p}(|\mathrm{~S}\rangle)\right]=1-\delta .
$$

This implies success prob of $|\mathrm{S}\rangle$ is $\mathbb{E}_{q \leftarrow \mathrm{MW}(|\mathrm{S}\rangle)}[q] \geq p-\delta$.

Note that the guarantee degrades: for $\left|S_{1}\right\rangle$, the best we can hope for using (ε, δ)-almost-projectivity is $\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right]=1-\delta$.

Fortunately, there's a natural MW-analogue of $|S\rangle \in \Pi_{p}$:

$$
\mathbb{E}\left[\mathrm{MW}_{p}(|\mathrm{~S}\rangle)\right]=1-\delta .
$$

This implies success prob of $|\mathrm{S}\rangle$ is $\mathbb{E}_{q \leftarrow \mathrm{MW}(|\mathrm{S}\rangle)}[q] \geq p-\delta$.

This approach seems promising, but we have a problem:
Our proof that this procedure terminates requires the measurements to be projective, but MW_{p} is not!

This approach seems promising, but we have a problem:
Our proof that this procedure terminates requires the measurements to be projective, but MW_{p} is not!
(running it twice may give different outcomes)

This approach seems promising, but we have a problem: Our proof that this procedure terminates requires the measurements to be projective, but MW_{p} is not!

Easy(?) fix: Make MW_{p} projective by expanding the Hilbert space.

Measuring $\left|S^{\prime}\right\rangle$ with MW_{p} can be implemented as a projective measurement of some Π_{p}^{*} on $\left|\mathrm{S}^{\prime}\right\rangle_{A}|0\rangle_{W} \in A \otimes W$. adversary state register workspace/ancilla

Measuring $\left|S^{\prime}\right\rangle$ with MW_{p} can be implemented as a projective measurement of some Π_{p}^{*} on $\left|S^{\prime}\right\rangle_{A}|0\rangle_{W} \in A \otimes W$.
But we need to be careful: the outcome of measuring Π_{p}^{*} only corresponds to MW_{p} when the W register is $|0\rangle$.

Measuring $\left|S^{\prime}\right\rangle$ with MW_{p} can be implemented as a projective measurement of some Π_{p}^{*} on $\left|S^{\prime}\right\rangle_{A}|0\rangle_{W} \in A \otimes W$.

But we need to be careful: the outcome of measuring Π_{p}^{*} only corresponds to MW_{p} when the W register is $|0\rangle$.
(even if we start with $\left|S^{\prime}\right\rangle_{A}|0\rangle_{W}$, measuring Π_{p}^{*} once may ruin W)

Our solution is re-define Π_{r} to $\Pi_{r}^{*}:=\Pi_{r} \otimes|0\rangle\left\langle\left. 0\right|_{W}\right.$, so that each measurement of Π_{r}^{*} attempts to "reset" the W to $|0\rangle_{W}$.

This is essentially the full repair procedure!
Our solution is re-define Π_{r} to $\Pi_{r}^{*}:=\Pi_{r} \otimes|0\rangle\left\langle\left. 0\right|_{W}\right.$, so that each measurement of Π_{r}^{*} attempts to "reset" the W to $|0\rangle_{W}$.

However, proving that we satisfy $\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right]=1-\delta$ requires more work (in fact, we get a weaker guarantee).

However, proving that we satisfy $\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right]=1-\delta$ requires more work (in fact, we get a weaker guarantee).

$$
\begin{aligned}
& \text { In 2-D, the guarantee depends on } \\
& \qquad \gamma=\cos ^{2} \theta=\mathbb{E}\left[\operatorname{MW}_{p}\left(\left|S^{\prime}\right\rangle\right)\right] .
\end{aligned}
$$

However, proving that we satisfy $\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right]=1-\delta$ requires more work (in fact, we get a weaker guarantee).

$$
\begin{aligned}
& \text { In 2-D, the guarantee depends on } \\
& \qquad \gamma=\cos ^{2} \theta=\mathbb{E}\left[\operatorname{MW}_{p}\left(\left|S^{\prime}\right\rangle\right)\right] .
\end{aligned}
$$

Repair outputs $\left|\mathrm{S}_{1}\right\rangle=\operatorname{Tr}_{W}(|\psi\rangle\langle\psi|)$ where
$\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right] \geq 1-\delta / \gamma$

However, proving that we satisfy $\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right]=1-\delta$ requires more work (in fact, we get a weaker guarantee).

$$
\begin{aligned}
& \text { In 2-D, the guarantee depends on } \\
& \qquad \gamma=\cos ^{2} \theta=\mathbb{E}\left[\operatorname{MW}_{p}\left(\left|S^{\prime}\right\rangle\right)\right] .
\end{aligned}
$$

Repair outputs $\left|\mathrm{S}_{1}\right\rangle=\operatorname{Tr}_{W}(|\psi\rangle\langle\psi|)$ where

$$
\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right] \geq 1-\delta / \gamma
$$

For the general case, we use Jordan's lemma and prove that on most 2-D subspaces, $\gamma=\mathbb{E}\left[\mathrm{MW}_{p}\left(\left|\mathrm{~S}^{\prime}\right\rangle\right)\right]$ is not too small (since we had $\mathbb{E}\left[\mathrm{MW}_{p}(|\mathrm{~S}\rangle)\right]=1-\delta$ before disturbance).
initial adversary

Recap: The Full Rewinding Procedure

initial adversary Recap: The Full Rewinding Procedure

$$
\mathbb{E}\left[\mathrm{MW}_{p-\varepsilon}\left(\left|\mathrm{S}_{1}\right\rangle\right)\right]=1-\delta \quad \mathbb{E}\left[\mathrm{MW}_{p-2 \varepsilon}\left(\left|\mathrm{~S}_{2}\right\rangle\right)\right]=1-\delta
$$

initial adversary

Recap: The Full Rewinding Procedure

Conclusions

- Much of cryptography deals with interactive protocols. In this setting, security is fragile in the presence of quantum adversaries because classical rewinding is inapplicable.

Conclusions

- Much of cryptography deals with interactive protocols. In this setting, security is fragile in the presence of quantum adversaries because classical rewinding is inapplicable.
- Rewinding is often used to record an adversary's responses across multiple challenges.

Conclusions

- Much of cryptography deals with interactive protocols. In this setting, security is fragile in the presence of quantum adversaries because classical rewinding is inapplicable.
- Rewinding is often used to record an adversary's responses across multiple challenges.
- We address this issue by solving an abstract problem: if a stateful quantum adversary wins a challenge-response game once, we extend it to win the game many times.

Conclusions

- Much of cryptography deals with interactive protocols. In this setting, security is fragile in the presence of quantum adversaries because classical rewinding is inapplicable.
- Rewinding is often used to record an adversary's responses across multiple challenges.
- We address this issue by solving an abstract problem: if a stateful quantum adversary wins a challenge-response game once, we extend it to win the game many times.
- Next steps: other use cases for rewinding? We give some answers in upcoming work [LMS21].

Thank You!

Questions?

Slide Artwork by Eysa Lee

[^0]: Any efficient attack on the protocol
 \rightarrow Break underlying hardness assumption

