Post-Quantum Proof Techniques Part 1:

Introduction to Quantum Rewinding

Fermi Ma
(Simons & Berkeley)

Based on:
« “Quantum Proofs of Knowledge” by Dominique Unruh (2012)

« “Computationally Binding Quantum Commitments” by Dominique Unruh (2016)
« “Zero Knowledge Against Quantum Attacks” by John Watrous (2005)

« “Quantum Arthur Merlin Games" by Chris Marriott and John Watrous (2005)

« “Traité des substitutions et des équations algébriques” by Camille Jordan (1870)

Today's Goal:

We want classical cryptography
secure against quantum attacks
(post-quantum cryptography)

What this talk will cover:

What this talk will cover:

1. Is LWE all we need for post-quantum security?

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments
« Unruh’s 1-bit rewinding lemma

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments
« Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments
« Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments
« Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge
« Watrous's ZK rewinding lemma

What this talk will cover:

1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments
« Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge
« Watrous's ZK rewinding lemma

How do cryptographers prove security?

How do cryptographers prove security?

Crypto Security
Proof

(Assumed)
Hard Problem

I

Reduction

How do cryptographers prove security?

Crypto Security | (Assumed)
Proof ~ | Hard Problem
/

I

Reduction

Ex: one-way function, factoring, discrete log, etc.

How do cryptographers prove security?

Crypto Security | (Assumed) .
Proof | Hard Problem T Reduction
/

Ex: one-way function, factoring, discrete log, etc.

efficient A wins security game
— efficient A" solves hard problem

How do cryptographers prove security?

Crypto Security | (Assumed) .
Proof | Hard Problem T Reduction
/

Ex: one-way function, facterdng, diScretedag, etc.

efficient A wins security game
— efficient A" solves hard problem

Key point: problem must be hard for quantum computers!

How do cryptographers prove security?

Crypto Security | Quantum-Hard .
Proof o Problem T Reduction

efficient A wins security game
— efficient A" solves hard problem

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

How do cryptographers prove security?

Crypto Security | Quantum-Hard .
Proof o Problem T Reduction

/
Ex: learning with errors (LWE), isogenies, OWF

efficient A wins security game
— efficient A" solves hard problem

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

How do cryptographers prove security?

Crypto Security | Quantum-Hard .
Proof o Problem T Reduction

/
Ex: learning with errors (LWE), isogenies, OWF

efficient A wins security game
— efficient A" solves hard problem

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

Done?

Conjecture
classical security reduction + quantum-hard problem
— post-quantum security?

Conjecture
classical security reduction + quantum-hard problem
— post-quantum security?

Nol!

Conjecture
classical security reduction + quantum-hard problem
— post-quantum security?

[BCMVV18] Prover Verifier
Protocol : — accept/reject

A

——

Conjecture
classical security reduction + quantum-hard problem
— post-quantum security?

[BCMVV18] Prover Verifier
_~~
Protocol @ ’ — accept/reject

 Efficient classical P cannot make V accept assuming LWE

——

Conjecture
classical security reduction + quantum-hard problem
— post-quantum security?

[BCMVV18] Prover Verifier
_~~
Protocol @ ’ — accept/reject

 Efficient classical P cannot make V accept assuming LWE
« Efficient guantum P can convince V to accept.

——

Conjecture
classical security reduction + quantum-hard problem
— post-quantum security?

[BCMVV18] Prover Verifier
Protocol : — accept/reject

« Efficient classical P cannot make V accept assuming LWE.
« Efficient guantum P can convince V to accept.

——

A

In [BCMVV18] this is presented as a proof of quantumness.

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?

Classical efficient classical A wins security game
reduction: — efficient classical A" solves hard problem

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?

Classical efficient classical A wins security game
reduction: — efficient classical A" solves hard problem
Quantum efficient qguantum A wins security game
reduction: — efficient quantum A’ solves hard problem

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?

Classical efficient classical A wins security game
reduction: — efficient classical A" solves hard problem
Quantum efficient qguantum A wins security game
reduction: — efficient quantum A’ solves hard problem

Crucially, the classical security reduction for the
[BCMVV18] protocol does not handle quantum attacks.

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

[BCMVV18] Reduction

a

Y—
i))

/

2

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

[BCMVV18] Reduction

a
r

y—
’b//u\‘) <

/

2

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

[BCMVV18] Reduction

a
r

y—
’b//u\‘) <

/

2

Z

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction
. 1) Record (a,r, 2)

y—
"a//u\‘) <

/

2

Z

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction
v ; 1) Record (a,r, 2)
&) 2) Rewind
rewind

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction
aw 1 1) Record (a,r, 2)
&) 2) Rewind
rewind

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction
aw 1 1) Record (a,r, 2)
&) 2) Rewind
rewind

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction
aw 1 1) Record (a,r, 2)
&) 2) Rewind
~ < 13) Record (a,r’,2z")
rewind

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?

Classical security of [BCMVV18] relies on rewinding

a

;A‘ ! ”

=) —

Z

»

rewind

[BCMVV18] Reduction

1) Record (a,r, 2)
2) Rewind
3) Record (a,r’,2z")

break
L WE

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction
aw 1 1) Record (a,r, 2) break
& - Z,) 2) Rewind LWE
"~ |3) Record (a,r’,z") ’
rewind

Reduction doesn't work for guantum adversaries because
measuring the response can disturb the adversary's state.

Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction

oy 1 ’ 1) Record (a,r, 2) %
@B >) 2) Rewind

3) Recorer(w+20)

rewind

Reduction doesn't work for guantum adversaries because
measuring the response can disturb the adversary's state.

More generally, classical rewinding reductions do not
capture quantum adversaries.

More generally, classical rewinding reductions do not
capture quantum adversaries. But rewinding is one of the
most common techniques in cryptography!

More generally, classical rewinding reductions do not
capture quantum adversaries. But rewinding is one of the
most common techniques in cryptography!

s it possible that rewinding-based crypto (zero knowledge
proofs, proofs of knowledge, etc.) is quantumly broken?

More generally, classical rewinding reductions do not
capture quantum adversaries. But rewinding is one of the
most common techniques in cryptography!

s it possible that rewinding-based crypto (zero knowledge
proofs, proofs of knowledge, etc.) is quantumly broken?

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., "quantum rewinding’

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., "quantum rewinding”

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., "quantum rewinding”

Focus: interactive proof systems

Claim: x € 3SAT
Prover Verifier

: — accept/reject

A

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., "quantum rewinding”

Focus: interactive proof systems

Claim: x € 3SAT
Prover Verifier

" — accept/reject

A,

Proof of Knowledge:
If P* convinces V to accept,
then P* must "know"” a witness.

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., "quantum rewinding”

Focus: interactive proof systems

Claim: x € 3SAT
Prover Verifier

" — accept/reject

A,

Proof of Knowledge: Zero Knowledge [GMR85]:
If P* convinces V to accept, View of malicious VV* can be
then P* must “*know” a withess. | |efficiently simulated without P.

What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments
« Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge
« Watrous's ZK rewinding lemma

- Blum’s Protocol for

B> e
6= G Hamiltonian Cycles 6=

(¢) ©

A,
7
Prover (&=} Verifier @

®
G=

A,

Prover (@7)")

Sample m « Sy.

Commit to the
adjacency matrix
of m(G)

Blum's Protocol for
Hamiltonian Cycles

B = ©

> S99 9o

=p
w=f_

@ = @
%

54

Blum’s Protocol for

G = @A@oe@ Hamiltonian Cycles
‘:? ®) = (¢
Prover @;., ;; ;;‘ ED
Sample T « Sy. ” (e “
Commit to the r

adjacency matrix
of m(G)

(&)
)

Verifier

Sample random
r «{0,1}

55

- Blum’s Protocol for

B> e
6= G Hamiltonian Cycles 6=

® ® © €
\

Prover (F2) s oS o Verifier
- _=
@ =7 @

[/ =z
Sample m « Sy. (e
>
Cé).mmit to thet - r Sample random
adjacency matrix r« {0,1
of m(G) b)) o4
1 1 1
T, @ 2o/ @
1 0
(©
17.1’ (ifr =0)

- Blum’s Protocol for

B> e
6= G Hamiltonian Cycles 6=

b)) = () e

. O
Prover) ® 999 m Veritier
&,
@ & @

[/ =l
Sample m « Sy. (e
>
Cé).mmittothet_) r Sample random
adjacency matrix r < {0,1
of m(G) b)) ® © o4
1 /1 1 1/ 1
L@ "of @or@ /@
© ©
E7."(”':1/':0) ‘7.’)(”:7":1)

> 57

@ ﬂﬁaaﬂﬁ@
= =4
P oV
N
) - - &,
= (fr=0) | & (fr=1)
B+ i ®
1 19/ 1 1 1/ 1
T@ "y @ @ /@
(&) (e »

———

Proof of knowledge (intuition)

By binding, the first message

determines a graph H such that:

* H is apermutation of G
« H contains a Ham cycle

58

P Y
N
@R -)
&5 (fr=0) | &5 (ifr=1)
O+ i ®
1 19/ 1 1 1/ 1
T@ 'y @ @ /@
(& (©

———

Proof of knowledge (intuition)
By binding, the first message
determines a graph H such that:
* H is apermutation of G

« H contains a Ham cycle

Zero knowledge (intuition)

First message reveals nothing since
commitments are hiding.

Last message also reveals nothing:
« (r =0) random permutation of G
« (r=1)random cycle

What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol /

3. Post-quantum proof of knowledge (PoK):
« Review: classical proof of knowledge
« How to define post-guantum commitments
« Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge
« Watrous's ZK rewinding lemma

" Blum's Protocol for Hamiltonian Cycle
i ? (c) b)) = (c)

i G = @{'@ = o9 @

: @ nﬂaanﬂ @

! = =

P oV
YN

) - -)
i a5 (fr=0) | =2 (ifr=1)

; B+ i ®

! 1 19/ 1 1 1/ 1
L@ @ @ @

i ' | o

Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

61

" Blum's Protocol for Hamiltonian Cycle
i ? (c) b)) = (c)

i G = @{'@ = o9 @

: @ n!aanﬂ @

! = =

P oV
YN

) - -)
i a5 (fr=0) | =2 (ifr=1)

; B+ i ®

! 1 19/ 1 1 1/ 1
L@ @ @ @

i (&) ()

Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Rewinding: query P* repeatedly
(on random r) until it answers
successfullyonr = 0and 1.

62

" Blum's Protocol for Hamiltonian Cycle
i ? (c) b)) = (c)

i G = @{'@ = o9 @

: @ n!aanﬂ @

! = =

P oV
YN

@ - - &
i a5 (fr=0) | =2 (ifr=1)

; B+ i ®

! 1 19/ 1 1 1/ 1
L@ @ @ @

i (&) ()

Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Rewinding: query P* repeatedly
(on random r) until it answers
successfullyonr = 0and 1.

N L»
&) LN
Z 0 A 1

rewind

63

G == QQ'@ ==l :.’a “ﬁ . =af
@ nﬂgﬁnﬂ@
= =
P , Vv
p N
) - -)
= (fr=0) | & (fr=1)
B+ i ®
1 19/ 1 1 1/ 1
T@ "y @ @ /@
0
(e ©

———

Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Rewinding: query P* repeatedly
(on random r) until it answers
successfullyonr = 0and 1.

N L»
&) LN
Z 0 zZ 1

rewind

Get two accepting transcripts
after O (1) rewinds.
&

" Blum's Protocol for Hamiltonian Cycle
i ? (c) b)) = (c)

i G = @{'@ = o9 @

: @ n!aanﬂ @

! = =

P oV
YN

) - -)
i a5 (fr=0) | =2 (ifr=1)

; B+ i ®

! 1 19/ 1 1 1/ 1
L@ @ @ @

i ' | o

Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Observation: two accepting
transcripts - Ham cycle (unless
P* breaks binding)

65

(e) ﬂﬁa’ﬂﬂ
@Eﬁ ’ﬂ!@
P , Vv
p N
@R -)
ﬁ'(lfr=0) E7."(|fr=1)
B+ i ®
1 19/ 1 1 1/ 1
T@ 'y @ @ /@
(&) ()

———

Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Observation: two accepting
transcripts - Ham cycle (unless
P* breaks binding)

@@ @@

1

ﬂ@é@ @@@

66

(e) ﬂﬁa’ﬂ!
@Eﬁ ‘ﬂ!@
P , Vv
p N
@R -)
ﬁ'(lfr=0) E7."(|fr=1)
B+ i ®
1 19/ 1 1 1/ 1
T@ 'y @ @ /@
' I e

———

Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Observation: two accepting
transcripts - Ham cycle (unless
P* breaks binding)

@@ @@

ﬂ@é@ @@1@
()

’ Ham cycle
(&) d) for original G

(&) .

What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol /

3. Post-quantum proof of knowledge (PoK):
 Review: classical proof of knowledge /
« How to define post-quantum commitments
« Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge
« Watrous's ZK rewinding lemma

68

Binding Against Quantum Attack

Classical PoK for Blum relies on the binding property of the commitments.

Binding Against Quantum Attack

Classical PoK for Blum relies on the binding property of the commitments.
But for guantum attackers, we'll need to revisit the definition of binding.

Binding Against Quantum Attack

Classical PoK for Blum relies on the binding property of the commitments.
But for guantum attackers, we'll need to revisit the definition of binding.

‘Commitment sender _ ck receiver

- Syntax ‘ _ .

com = Comy (m; d) @ |

L s Accept |f
m,d

com = Com ,(m; d).

Binding Against Quantum Attack

Classical PoK for Blum relies on the binding property of the commitments.
But for guantum attackers, we'll need to revisit the definition of binding.

Commitment sender ck receiver

! A ,

| Syntax o) com = Comg,(m;d)

| g ’ i

e Accept if
m,d

com = Com ,(m; d).

Classical definition:
PPT adversary can't output com and valid (my, dy), (my,d,) for my # my.

Binding Against Quantum Attack

Classical PoK for Blum relies on the binding property of the commitments.
But for guantum attackers, we'll need to revisit the definition of binding.

‘Commitment sender _ ck receiver

 Syntax ‘ _ .

com = Comy (m; d) @ |

E .. Accept |f
m,d

com = Com ,(m; d). 5

Classical definition:
PPT adversary can't output com and valid (my, dy), (my,d,) for my # my.

Can we just replace PPT with QPT?

Binding Against Quantum Attack

Classical PoK for Blum relies on the binding property of the commitments.
But for guantum attackers, we'll need to revisit the definition of binding.

‘Commitment sender _ ck receiver

 Syntax ‘ _ .

com = Comy (m; d) @ |

E .. Accept |f
m,d

com = Com ,(m; d). 5

Classical definition:
PPT adversary can't output com and valid (my, dy), (my,d,) for my # my.

Can we just replace PPT with QPT?
[ARU14]: No!

What's wrong with this definition?

Naive post-quantum binding def:
QPT attacker can't output com and valid (my, dy), (my, d;) for my #= m;.

What's wrong with this definition?

Naive post-quantum binding def:
QPT attacker can't output com and valid (my, dy), (my, d;) for my #= m;.

[ARUT4]: Quantum attacker* might malicious

produce com, [} such that: sender com
—X

» Can use) to open com to any m '

'
)

What's wrong with this definition?

Naive post-quantum binding def:
QPT attacker can't output com and valid (my, dy), (my, d;) for my #= m;.

[ARUT4]: Quantum attacker* might malicious
produce com, [} such that: sender com
» Can use) to open com to any m '

\

Il/J)nl'n

m, d
A
v
d

What's wrong with this definition?

Naive post-quantum binding def:
QPT attacker can't output com and valid (my, dy), (my, d;) for my #= m;.

[ARUT4]: Quantum attacker* might malicious

produce com, [} such that: sender com
—X

» Can use) to open com to any m '

 But can only do this once! |
Il{))nl’n

A
v
d

m, d

What's wrong with this definition?

Naive post-quantum binding def:
QPT attacker can't output com and valid (my, dy), (my, d;) for my #= m;.

[ARUT4]: Quantum attacker* might malicious

produce com, [} such that: sender com
—X

» Can use) to open com to any m '

 But can only do this once! |
[Y),m
||
*Caveat: assuming a quantum oracle A
!
d

**Qpen: construct example without oracles

m, d

A Better Definition: Collapse-Binding [Unruh16]

——

80

A Better Definition: Collapse-Binding [Unruh16]

——

A Better Definition: Collapse-Binding [Unruh16]

) if reject.

EXptb

Run verifier in superposition on M, D and
-~ _ | measure its output (accept or reject); abort

A Better Definition: Collapse-Binding [Unruh16]

EXptb
Run verifier in superposition on M, D and
-~ com, Ylm)y|d)p _ | measure its output (accept or reject); abort
) If reject. On accept, state looks like

ZCom(m,d):com|m>M|d>D'

A Better Definition: Collapse-Binding [Unruh16]

If b = 1. measure M and return M, D.

i Expt,,

: Run verifier in superposition on M, D and
A~ com, Y. [m)w|d)p _ | measure its output (accept or reject); abort
) if reject. On accept, state looks like

i ZCom(m,d):com|m>M|d>D-

e |fbh=0:retunM,D.

A Better Definition: Collapse-Binding [Unruh16]

If b = 1. measure M and return M, D.

i Expt,,

: Run verifier in superposition on M, D and
A~ com, Y. [m)w|d)p _ | measure its output (accept or reject); abort
& M,D if reject. On accept, state looks like

i : ZCom(m,d):com|m>M|d>D-

e |fbh=0:retunM,D.

A Better Definition: Collapse-Binding [Unruh16]

If b = 1. measure M and return M, D.

i Expt,,

: Run verifier in superposition on M, D and
A~ com, Y. [m)w|d)p _ | measure its output (accept or reject); abort
& M,D if reject. On accept, state looks like

i : ZCom(m,d):com|m>M|d>D-

e |fbh=0:retunM,D.

Collapse-binding: Expty =, Expt;

A Better Definition: Collapse-Binding [Unruh16]

EXptb
Run verifier in superposition on M, D and
-~ com, Ylm)y|d)p _ | measure its output (accept or reject); abort
&) M,D if reject. On accept, state looks like

&
<

ZCom(m,d):com|m>M|d>D'
e Ifb=0:returnM,D.
e |fbh=1:measure M and return M, D.

Collapse-binding: Expty =, Expt;

Intuition: if Com is perfectly binding, Expt, and Expt, are perfectly
indistinguishable since there is only one valid m for any com.

A Better Definition: Collapse-Binding [Unruh16]

EXptb
Run verifier in superposition on M, D and
-~ com, Ylm)y|d)p _ | measure its output (accept or reject); abort
&) M,D if reject. On accept, state looks like

&
<

ZCom(m,d):com|m>M|d>D'
e Ifb=0:returnM,D.
e |fbh=1:measure M and return M, D.

Collapse-binding: Expty =, Expt;

Intuition: if Com is perfectly binding, Expt, and Expt, are perfectly
indistinguishable since there is only one valid m for any com. Collapse-
binding asks for a computational version of this property.

i Expt,, i
o~ com, Y [m)y|d)p | Check if M, D is valid for com; abort if not.
) M.D « Ifb=0,return M,D. i

e Ifb =1, measure M and return M, D.

Collapse-binding: Expty =, Expt,
Why this definition?

EXptb
o, Om XMy ld)p | Check if M, D is valid for com; abort if not.

o) M,D Ifb=0,returnM,D.
) |fb =1, measure M and return M, D.

Collapse-binding: Expty =, Expt,

Why this definition?

« Many good reasons: avoids [ARU14] attack, implies other proposed
definitions, composable, easy to construct (implied by LWE), etc.

EXptb
o, Om XMy ld)p | Check if M, D is valid for com; abort if not.

o) M,D Ifb=0,returnM,D.
) |fb =1, measure M and return M, D.

Collapse-binding: Expty =, Expt,

Why this definition?

« Many good reasons: avoids [ARU14] attack, implies other proposed
definitions, composable, easy to construct (implied by LWE), etc.

« But most importantly, this definition makes rewinding possiblel!

EXptb i
-~ com, Yi[m)y|d)p _ |Check if M, D is valid for com; abort if not. ~ |:
& M,D + If b =0, return M, D. i

e Ifb =1, measure M and return M, D.

Collapse-binding: Expty =, Expt,
Why this definition?

« Many good reasons: avoids [ARU14] attack, implies other proposed
definitions, composable, easy to construct (implied by LWE), etc.

« But most importantly, this definition makes rewinding possiblel!

[U12,U16]: Blum is a post-quantum PoK if the underlying commitments are
collapse-binding.*

EXptb i
-~ com, Yi[m)y|d)p _ |Check if M, D is valid for com; abort if not. ~ |:
& M,D + If b =0, return M, D. i

e Ifb =1, measure M and return M, D.

Collapse-binding: Expty =, Expt,
Why this definition?

« Many good reasons: avoids [ARU14] attack, implies other proposed
definitions, composable, easy to construct (implied by LWE), etc.

« But most importantly, this definition makes rewinding possiblel!

[U12,U16]: Blum is a post-quantum PoK if the underlying commitments are
collapse-binding.*

*[U12,U16] analyze a slightly modified version of Blum’s protocol, but later on [LMS22]
showed the original Blum protocol is post-quantum secure.

What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol /

3. Post-quantum proof of knowledge (PoK):
 Review: classical proof of knowledge /
+ How to define post-quantum commitments
* Unruh's 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge
« Watrous's ZK rewinding lemma

How do collapse-binding commitments help with rewinding?

How do collapse-binding commitments help with rewinding?

—Y

 Difficulty: recording response disturbs adversary’s state.

How do collapse-binding commitments help with rewinding?

y o~y

 Difficulty: recording response disturbs adversary’s state.

How do collapse-binding commitments help with rewinding?

Vo~
/74 m’d=

 Difficulty: recording response disturbs adversary’s state.

How do collapse-binding commitments help with rewinding?

Y—
/74 m’d=

Difficulty: recording response disturbs adversary’s state.

But if the response is the opening to a collapse-binding
commitment, we can “lazily” measure m.

How do collapse-binding commitments help with rewinding?

VY VA
A,

commitment, we can “lazily” measure m.

“Lazy” Measurement:

Difficulty: recording response disturbs adversary’s state.
But if the response is the opening to a collapse-binding

How do collapse-binding commitments help with rewinding?

“Lazy” Measurement:

ceeeeeTmmmmemee 2o ommmmm=======2- [(1) Run adversary's unitary to
1Y) r 1Y) r generate superposition of

)~ Va~y responses on registers M, D.
S| Y Bty [

Difficulty: recording response disturbs adversary’s state.

But if the response is the opening to a collapse-binding
commitment, we can “lazily” measure m.

How do collapse-binding commitments help with rewinding?

“Lazy” Measurement:

ceeeeeTmmmmemee 2o ommmmm=======2- [(1) Run adversary's unitary to
1Y) r 1Y) r generate superposition of

—< Y responses on reqgisters M, D.
) m,d) 2lmyld)p | I
A > & > |(2) Check if M, D is valid.

Difficulty: recording response disturbs adversary’s state.

But if the response is the opening to a collapse-binding
commitment, we can “lazily” measure m.

How do collapse-binding commitments help with rewinding?

“Lazy” Measurement:

ceeeeeTmmmmemee 2o ommmmm=======2- [(1) Run adversary's unitary to
1Y) r 1Y) r generate superposition of

—< Y responses on reqgisters M, D.
) m,d) 2lmyld)p | I
A > & > |(2) Check if M, D is valid.

(3) If so, measure M.

Difficulty: recording response disturbs adversary’s state.

But if the response is the opening to a collapse-binding
commitment, we can “lazily” measure m.

How do collapse-binding commitments help with rewinding?

“Lazy” Measurement:

ceeeeeTmmmmemee 2o ommmmm=======2- [(1) Run adversary's unitary to
1Y) r 1Y) r generate superposition of

—< Y responses on reqgisters M, D.
) m,d) 2lmyld)p | I
A > & > |(2) Check if M, D is valid.

(3) If so, measure M.

 Difficulty: recording response disturbs adversary’s state.

« But if the response is the opening to a collapse-binding
commitment, we can “lazily” measure m. Collapse-binding
guarantees that step (3) is computationally undetectable!

How do collapse-binding commitments help with rewinding?

“Lazy” Measurement:

ceeeeeTmmmmemee 2o ommmmm=======2- [(1) Run adversary's unitary to
¥ r 1Y) r generate superposition of

—< Y responses on reqgisters M, D.
& m, d S Im)uld) onregisters 1
A > & > |(2) Check if M, D is valid.

(3) If so, measure M.

 Difficulty: recording response disturbs adversary’s state.

« But if the response is the opening to a collapse-binding
commitment, we can “lazily” measure m. Collapse-binding
guarantees that step (3) is computationally undetectable!

Key point: with collapse-binding commitments, we just need
to consider measuring the 1-bit decision (accept/reject).

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h/})”z = p3

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h/})”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h:b)”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.

Aside: I1,. = U,JL(ZVer(m,d):llm, d){m, d|)U, where U, is the adversary's
unitary for challenge r.

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h:b)”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.
o |f adversary’s state is |¢), its success probability is p = E,p||TL-|W)]|?.

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h/})”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.
o |f adversary’s state is |¢), its success probability is p = E,p||TL-|W)]|?.

P o e e e e e e e e e e e e e e e e e e R e e R R e e R R e e e R R e R R e e e R e e e R e e e R e e R e e e e R e e e R e e e e e e e e e e e e e e)

By [U12], if we run the adversary on two random
challenges, it succeeds twice w/ prob > p3.

———

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h/})”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.
o |f adversary’s state is |¢), its success probability is p = E,p||TL-|W)]|?.

P o e e e e e e e e e e e e e e e e e e R e e R R e e R R e e e R R e R R e e e R e e e R e e e R e e R e e e e R e e e R e e e e e e e e e e e e e e)

By [U12], if we run the adversary on two random -
challenges, it succeeds twice w/ prob > p3. acc/rej

|
)

———

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h/})”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.
o |f adversary’s state is |¢), its success probability is p = E,p||TL-|W)]|?.

P o e e e e e e e e e e e e e e e e e e R e e R R e e R R e e e R R e R R e e e R e e e R e e e R e e R e e e e R e e e R e e e e e e e e e e e e e e)

By [U12], if we run the adversary on two random -
challenges, it succeeds twice w/ prob > p3. acc/rej

'
Wy s

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h:b)”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.
o |f adversary’s state is |¢), its success probability is p = E,p||TL-|W)]|?.

P o e e e e e e e e e e e e e e e e e e R e e R R e e R R e e e R R e R R e e e R e e e R e e e R e e R e e e e R e e e R e e e e e e e e e e e e e e)

r
By [U12], if we run the adversary on two random ‘l,i)‘
challenges, it succeeds twice w/ prob > p?>. acc/re X
If adversary is opening a collapse-binding |IZ') S

commitment, then we record two accepting
transcripts w/ prob > p3.

———

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h:b)”z = p3

« Define (I1,., I — I1,.) to measure whether adversary succeeds onr.
o |f adversary’s state is |¢), its success probability is p = E,p||TL-|W)]|?.

P o e e e e e e e e e e e e e e e e e e R e e R R e e R R e e e R R e R R e e e R e e e R e e e R e e R e e e e R e e e R e e e e e e e e e e e e e e)

By [U12], if we run the adversary on two random -
challenges, it succeeds twice w/ prob > p3. acc/rej

If adversary is opening a collapse-binding |IZ') S
commitment, then we record two accepting)
transcripts w/ prob > p3.

———

Annoying detail: this is only useful if r # s. For Blum (R = {0,1}), we only
extract a witness with Q(¢) probability when p > 1/4/2 + «.

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h/})”z = p3

We won't prove this lemma, but it is reminiscent of “gentle measurement”:

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h/})”z = p3

We won't prove this lemma, but it is reminiscent of “gentle measurement”:

« Ifpiscloseto 1, thenIl.|y)is not too far from |y) (in expectation).

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h:b)”z = p3

We won't prove this lemma, but it is reminiscent of “gentle measurement”:

« Ifpiscloseto 1, then Il |y) is not too far from |y) (in expectation). So if
we perform another random measurement (Ilg, I — I1y), it should still have

a reasonable chance of accepting.

1-bit Rewinding Lemma [Unruh12]: For any state |) and set of projectors
{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h:b)”z = p3

We won't prove this lemma, but it is reminiscent of “gentle measurement”:

« Ifpiscloseto 1, then Il |y) is not too far from |y) (in expectation). So if
we perform another random measurement (Ilg, I — I1y), it should still have

a reasonable chance of accepting.
(However, this bound is much stronger than a gentle measurement bound)

Put

Step 1: Collapsing
commitments [U16]:

recording adversary’s
response =, recording 1-bit
decision

|

ing It Together

Step 2: 1-bit-rewinding lemma [U12]:

If we run a p-successful adversary on
2 random challenges (and only

measure the 1-bit decision), then:
Pr[succeed twice] = p3

119

Putting It Together

Step 1: Collapsing Step 2: 1-bit-rewinding lemma [U12)]:

commitments [U16]: 4+ |If werun a p-successful adversary on

recording adversary’s 2 random challenges (and only
response =, recording 1-bit measure the 1-bit decision), then:
decision Pr[succeed twice] > p3

Theorem: If a quantum P* convinces V to accept with probability >
1/4/2 + &, we can extract a witness with probability Q(¢).

Putting It Together

Step 1: Collapsing Step 2: 1-bit-rewinding lemma [U12)]:

commitments [U16]: 4+ |If werun a p-successful adversary on

recording adversary’s 2 random challenges (and only
response =, recording 1-bit measure the 1-bit decision), then:
decision Pr[succeed twice] > p3

Theorem: If a quantum P* convinces V to accept with probability >
1/\/7\ + &, we can extract a witness with probability Q(e).

\

Remember that for classical P*, we just need 1/2 + &, and we
extract with probability = 1.

Putting It Together

Step 1: Collapsing Step 2: 1-bit-rewinding lemma [U12)]:

commitments [U16]: 4+ |If werun a p-successful adversary on

recording adversary’s 2 random challenges (and only
response =, recording 1-bit measure the 1-bit decision), then:
decision Pr[succeed twice] > p3

Theorem: If a quantum P* convinces V to accept with probability >
1/\/7\ + &, we can extract a witness with probability Q(e).

\

Remember that for classical P*, we just need 1/2 + &, and we
extract with probability = 1.

In the next talk, we'll see a different quantum rewinding
technique that achieves the original classical guarantees.

What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol /

3. Post-quantum proof of knowledge (PoK):
 Review: classical proof of knowledge /
+ How to define post-quantum commitments
« Unruh’s 1-bit rewinding lemma /

4. Post-quantum ZK for Blum'’s protocol
« Review: classical zero knowledge
« Watrous's ZK rewinding lemma

Classical Zero Knowledge

Blum’s Protocol for Hamiltonian Cycle

B L ® = ©

(3
G = @ﬂe@ S sy
(e) = = @

=af i

= = :

P , Vo
= 2
o)) <« T :
a5 (fr=0) | &= (ifr=1) :
B+ | ® i

1 ™/ 1 1 1./ 1 |
@'y @ @ /@ |
© i @

Key Property: can simulate honest
verifier that sends random bit

124

Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

Blum’s Protocol for Hamiltonian Cycle

() () b)) = (c) i
(S |

G = & s, ! HVSim:
@ = = I

o g,@ | 1) Sample r’ « {0,1}

P , Vo
—~ 2\ |
o) < 7” :
@ (fr=0 @ & (fr=1)
O+ i ® i
1 "y~ /1 1 1/ 1 :
T@ 'y @ @ /@ |
© i @

125

Classical Zero Knowledge

Blum’s Protocol for Hamiltonian Cycle

B L ® = ©

(3
G = @ﬂe@ S sy
(e) = = @

=5f
= =
p oV
N .
(o)) < 7‘ @
= (fr=0) | & (fr=1)
B+ i ®
1 =/ 1 & 1 1/ 1
T@ 'y @ @ /@
(e ©

———

Key Property: can simulate honest
verifier that sends random bit

HVSim:
1) Sample r’" « {0,1}
2) Generate transcript (c,r’, 2):

126

Classical Zero Knowledge

Blum’s Protocol for Hamiltonian Cycle

B L ® = ©

(3
G = @ﬂe@ S sy
(e) = = @

mf
= =
p oV
A, .
(o)) < 7‘ @
a5 (fr=0) | &5 (ifr=1)
B+ i ®
1 =/ 1 & 1 1/ 1
T@ 'y @ @ /@
(e ©

———

Key Property: can simulate honest
verifier that sends random bit

HVSim:
1) Sample r’" « {0,1}

2) Generate transcript (c,r’, 2):

e |fr’' =0, generate ¢,z using a
random permutation of G

127

Classical Zero Knowledge

Blum’s Protocol for Hamiltonian Cycle

B L ® = ©

(3
G = @ﬂe@ S sy
(e) = = @

=z
=/ =/
P oV
A, .
(o)) < 7‘ @
a5 (fr=0) | &5 (ifr=1)
B+ i ®
1 11 1 1 1 1
T@ 'y @ @ /@
(&) (&)

———

Key Property: can simulate honest
verifier that sends random bit

HVSim:
1) Sample r’ « {0,1}

2) Generate transcript (c,r’, 2):

« Ifr’ =0, generatec,z using a
random permutation of G

« |fr' =1, generate ¢,z using a
random cycle graph

Classical Zero Knowledge

Blum’s Protocol for Hamiltonian Cycle

B L ® = ©

(3
G = @ﬂe@ S sy
(e) = = @

=z
=/ =/
P oV
A, .
(o)) < 7‘ @
a5 (fr=0) | &5 (ifr=1)
B+ i ®
1 11 1 1 1 1
T@ 'y @ @ /@
(&) (&)

———

Key Property: can simulate honest
verifier that sends random bit

HVSim:
1) Sample r’ « {0,1}

2) Generate transcript (c,r’, 2):

« Ifr’ =0, generatec,z using a
random permutation of G

« |fr' =1, generate ¢,z using a
random cycle graph

By hiding, (¢, r’,z) « HVSim
looks like honest-verifier view.

Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Observation: can simulate malicious V* w/ prob = 1/2 by guessing r.

Guess(V™):

Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Observation: can simulate malicious V* w/ prob = 1/2 by guessing r.

Guess(V™):
1) Sample (c,r’,z) « HVSim '

Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Observation: can simulate malicious V* w/ prob = 1/2 by guessing r.

Guess(V™): C _
e \~

1) Sample (c,r’,z) « HVSim r
V*

Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Observation: can simulate malicious V* w/ prob = 1/2 by guessing r.

Guess(V™): C

1) Sample (c,r’,z) « HVSim r ‘

2) If r =7r', output (¢, 7', 2). Z V*
Otherwise, output L. (ifr=1r"

Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Observation: can simulate malicious V* w/ prob = 1/2 by guessing r.

Guess(V™): C

1) Sample (c,r’,z) « HVSim r ‘

2) If r =7r', output (¢, 7', 2). Z V*
Otherwise, output L. (ifr=1r"

Since cis hiding, Pr[r =r'] = 1/2

Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Observation: can simulate malicious V* w/ prob = 1/2 by guessing r.

We combine this with rewinding to get the full ZK simulator:

—— e e e R e R e R e R e R M R M R M M R R M R R R M M e R e M M R e M M R M M M M M M M R e R e e e e e e ey

e Sim(V*) s
G V).
: it — @ Ifr #r' rewind
. | 1) Sample (¢,7',z) « HVSim | 17 ° and try again
| 2) If r = 7', output (¢, 7', 2). _z v i
| Otherwise, output L. (ifr =1"

Since cis hiding, Pr[r =r'] = 1/2

136

What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol /

3. Post-quantum proof of knowledge (PoK):
 Review: classical proof of knowledge /
+ How to define post-quantum commitments
« Unruh’s 1-bit rewinding lemma /

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge v/
« Watrous's ZK rewinding lemma

Unfortunately, this simulator won't suffice for post-quantum ZK! If a
malicious V* has an unknown initial state |¢) running Guess(V*, [y))
may irreversibly disturb it.

—— e e e R e R e R e R e R M R M R M M R R M R R R M M e R e M M R e M M R M M M M M M M R e R e e e e e e ey

e Sim(V*) s
G V).
: it — @ Ifr #r' rewind
. | 1) Sample (¢,7',z) « HVSim | 17 ° and try again
| 2) If r = 7', output (¢, 7', 2). _z v i
| Otherwise, output L. (ifr =1"

Since cis hiding, Pr[r =r'] = 1/2

138

Unfortunately, this simulator won't suffice for post-quantum ZK! If a
malicious V* has an unknown initial state |¢) running Guess(V*, [y))
may irreversibly disturb it.

—— e e e R e R e R e R e R M R M R M M R R M R R R M M e R e M M R e M M R M M M M M M M R e R e e e e e e ey

e Sim(V*) s
i Guess(V™): C , . i
= — @ Yespe |
1) sample (¢, 7', z) « HVSim | _ 1 M :
1 2) If r =7, output (¢, 7', 2). _z i
| Otherwise, output L. (ifr =1"

Since cis hiding, Pr[r =r'] = 1/2

139

Unfortunately, this simulator won't suffice for post-quantum ZK! If a
malicious V* has an unknown initial state |¢) running Guess(V*, [y))
may irreversibly disturb it.

But there is a different simulator due to [Watrous05] that works.

—— e e e R e R e R e R e R M R M R M M R R M R R R M M e R e M M R e M M R M M M M M M M R e R e e e e e e ey

e Sim(V*) s
i Guess(V™): C , . i
= — @ Yespe |
1) sample (¢, 7', z) « HVSim | _ 1 M :
1 2) If r =7, output (¢, 7', 2). _z i
| Otherwise, output L. (ifr =1"

Since cis hiding, Pr[r =r'] = 1/2

140

[Watrous05]: If commitment scheme is hiding, then
the Blum protocol is post-quantum ZK.

Post-Quantum ZK of Blum [Watrous05]

c
Guess(V7, [Y)): . 2
1) Sample (c,r’, z) « HVSim —r
2) If r = 7', output (¢, 7, 2). Otherwise 1. | —2— V' ([¥D)
(ifr =171

It commitments are hiding, can still simulate with probability 1/2.

Post-Quantum ZK of Blum [Watrous05]

C

Guess(V7, [Y)): - 2

1) Sample (¢, r', z) « HVSim —r

2) If r = 7', output (¢, 7, 2). Otherwise 1. | —2— V' ([¥D)
(ifr =171

It commitments are hiding, can still simulate with probability 1/2.

We'll write this process as a quantum circuit on).

Post-Quantum ZK of Blum [Watrous05]

C

Guess(V7, [Y)): v . 2
1) Sample (c,r’, z) « HVSim —r
2) If r = 7', output (¢, 7, 2). Otherwise 1. | —2— V' ([¥D)
(I]c r=r1)
0 0 0)., |0
C,R,Z,R h’l,J)V | |>R | |>CZ | I>R | I)H
correspond U

‘V R CZ R’ H

D l ;
Verifier's view |

(state + transcript) HVSim (workspace + output)

1 1
| 1
1 1
1 1
1 1
| 1
1 1
1 1
1 / I
. toc,r,zr ! ! ! ! ! !
1 1
1 1
1 1
| 1
1 1
1 1
1 1
| 1
1 1

« Computing Ug|y)|0) and checking if R = R’ is the same as
running Guess(V™, [y)).

144

Post-Quantum ZK of Blum [Watrous05]

. C,RZFR i
. correspond Ug
. tocr,z1 | | | | | |

‘V R CZ R’ H

D l l
Verifier's view |

(state + transcript) HVSim (workspace + output)

« Computing Ug|y)|0) and checking if R = R’ is the same as
running Guess(V™, [y)).

145

Post-Quantum ZK of Blum [Watrous05]

Define projector Il := U;FHR:R/UG.
Intuition: (T, I — II;) measures whether simulation succeeds.

. C,RZFR i
. correspond Ug
. tocr,z1 | | | | | |

‘V R CZ R’ H

D l l
Verifier's view |

(state + transcript) HVSim (workspace + output)

« Computing Ug|y)|0) and checking if R = R’ is the same as
running Guess(V™, [y)).

146

Post-Quantum ZK of Blum [Watrous05]

Define projector Il := U;FHR:R/UG.
Intuition: (T, I — II;) measures whether simulation succeeds.

Our goal: Produce the state I [Y¥)y | 0) 4

. C,RZFR i
. correspond Ug
. tocr,z1 | | | | | |

‘V R CZ R’ H

D l l
Verifier's view |

(state + transcript) HVSim (workspace + output)

« Computing Ug|y)|0) and checking if R = R’ is the same as
running Guess(V™, [y)).

147

Post-Quantum ZK of Blum [Watrous05]

Define projector Il := U&LHR:R/UG.
Intuition: (T, I — II;) measures whether simulation succeeds.

Our goal: Produce the state I [Y¥)y | 0) 4

Rough Intuition:

« Each (Il;, I — 1) measurement is one simulation attempit.

Post-Quantum ZK of Blum [Watrous05]

Define projector Il := U&LHR:R/UG.
Intuition: (T, I — II;) measures whether simulation succeeds.

Our goal: Produce the state I [Y¥)y | 0) 4

Rough Intuition:
« Each (Il;, I — 1) measurement is one simulation attempit.

* Applying (Il;, T — I;) twice in a row gives the same outcome
(no help).

Post-Quantum ZK of Blum [Watrous05]

Define projector Il := U&LHR:R/UG.
Intuition: (T, I — II;) measures whether simulation succeeds.

Our goal: Produce the state I [Y¥)y | 0) 4

Rough Intuition:
« Each (Il;, I — 1) measurement is one simulation attempit.

* Applying (Il;, T — I;) twice in a row gives the same outcome
(no help).

« We'll write down an My, measurement to “reset” each attempt.

The Post-Quantum ZK Simulator [mwo5, wos]

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [W)y|0) gu. LEt Ty = [0)(0] 4ur.

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

v -

|O>Aux —

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

W)y —

|O>Aux — —

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

W)y —

|O>Aux — —

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

W)y —

|O>Aux — —

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

W)y —

|O>Aux — —

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

W)y

|O>Aux — —

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.

Yy
|O>A MG Mo MG M() MG HGll/))VlO)Aux
ux —

(we'll see why)

——

The Post-Quantum ZK Simulator [mwo5, wos]
Sim(V7, [¢))

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y
2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.
3) Generate verifier's view (apply Ug).

Yy
|O>A MG Mo MG M() MG HGll/))VlO)Aux
ux —

(we'll see why)

——

The Post-Quantum ZK Simulator [mwo5, wos]

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y

2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.
3) Generate verifier's view (apply Ug).

1Y)y
Mg M Mg M
|O>Aux -
v v v v
0 1 0 0

Mg |¥)v10) aux
(we'll see why)

Sim(V7, [¥))

——

But why does this simulator work? Need to resolve:

The Post-Quantum ZK Simulator [mwo5, wos]

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y

2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.
3) Generate verifier's view (apply Ug).

1Y)y
Mg M Mg M
|O>Aux -
v v v v
0 1 0 0

Mg |¥)v10) aux
(we'll see why)

Sim(V7, [¥))

——

But why does this simulator work? Need to resolve:

« Efficiency: How long (if ever) until M; — 17

The Post-Quantum ZK Simulator [mwo5, wos]

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y

2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.
3) Generate verifier's view (apply Ug).

1Y)y
Mg M Mg M
|O>Aux -
v v v v
0 1 0 0

Mg |¥)v10) aux
(we'll see why)

Sim(V7, [¥))

——

But why does this simulator work? Need to resolve:

« Efficiency: How long (if ever) until M; — 17

« Simulation: After M — 1, why is the state is ¢ [Y)y|0) 4y ?

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

I—TI
I—T1l, g

12, I,

[

166

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,

we jump between four states
]I - HB
-1,

12, I,

[

167

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,
we jump between four states

168

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,
we jump between four states

p = |[g[v)lI* ¥
= cos?(6)

169

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

p = |[g[v)lI* ¥
= cos?(6)

When we alternate measurements,
we jump between four states

p p
vy 5 lw) 7 |v)
1-p 1-p

vty = lwh) = [vh)

170

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,

we jump between four states
]I - HB

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
1—-p 1—-p

vty = lwh) = [vh)

p = |[g[v)ll* %
= cos*(6)

171

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

H_HB

-1,

p = |[g[v)lI* ¥
= cos*(6)

When we alternate measurements,
we jump between four states

v -, |v)
- P

Ly Ly
v=) =

_p>

w) v)

p

172

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,
we jump between four states

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
1—-p 1—-p

vty = lwh) = [vh)

el el

p = |[g[v)lI* 5
= cos*(6) !

173

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,
we jump between four states

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
1—-p 1—-p

vty = lwh) = [vh)

el el

p = |[g[v)ll* 5
= cos*(6) !

174

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

When we alternate measurements,
we jump between four states

v -, |v)
- P

Ly Ly
v=) =

_p;

w) v)

p

el el

p = |[g[v)lI* %
= cos*(6) !

175

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,
we jump between four states

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
1—-p 1—-p

vty = lwh) = [vh)

— ——— o — —

p = |[g[v)lI* %
= cos*(6) !

176

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,
we jump between four states

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
1—-p 1—-p

vty = lwh) = [vh)

el el

p = |[g[v)lI* 5
= cos*(6) !

177

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,
we jump between four states

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
1—-p 1—-p

vty = lwh) = [vh)

el el

p = |[g[v)ll* 5
= cos*(6) !

178

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,

we jump between four states
]I - HB

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
1—-p 1—-p

vty = lwh) = [vh)

p = |[g[v)ll* %
= cos*(6)

179

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

H_HB

-1,

p = |[g[v)lI* ¥
= cos*(6)

When we alternate measurements,
we jump between four states

v -, |v)
- P

Ly Ly
v=) =

_p>

w) v)

p

180

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

-1,

p = |[lIg|v)|?
= cos*(6)

H_HB

— ——— o — —

When we alternate measurements,
we jump between four states

p p
vy 5 lw) 7 |v)
1-p 1-p

vty = lwh) = [vh)

181

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

p = |[lIg|v)|?
= cos?(6)

When we alternate measurements,
we jump between four states

p p
vy 5 lw) 7 |v)
1-p 1-p

vty = lwh) = [vh)

Claim 1: (Ilg, I — II) accepts in
A/p steps with prob 1 — 270,

182

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

p = |[lIg|v)|?
= cos?(6)

When we alternate measurements,
we jump between four states

P
vy 7 lw)
1—-p 1-p

vty = lwh) = [vh)

Claim 1: (Ilg, I — II) accepts in
A/p steps with prob 1 — 270,

Claim 2: When (Ilg, I — IIg)
accepts, state is |w) « IIz|v).

183

Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [live in 2D

I—II, These are the guarantees we
I =1, want, but ITy, [, don't live in 2D!

| Claim 1: (Ilg, I — Ig) accepts in
' |w) A/p steps with prob 1 — 2704,
)

v Claim 2: When (Ilg, I — IIg)
VP accepts, state is |w) o Mz|v).

p = |[g[v)lI* ¥
= cos*(6)

184

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

It 14, [1g live in two dimensions:
Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 272,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

It 14, [1g live in two dimensions:
Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 272,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Do these claims extend to higher dimensions?

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

It 14, [1g live in two dimensions:
Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 272,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Do these claims extend to higher dimensions?

* Forgeneral Il,, I1z: NO!

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

It 14, [1g live in two dimensions:
Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 272,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Do these claims extend to higher dimensions?

* Forgeneral Il,, I1z: NO!

e ForIly, II;: yes!

Extremely Useful Tool

Jordan's Lemma: For any Iy, I1g, we can decompose space into 2-dim
invariant subspaces {S;} where Il,, Ilg are rank-one projectors in each ;.

Extremely Useful Tool

Jordan's Lemma: For any Iy, I1g, we can decompose space into 2-dim
invariant subspaces {S;} where Il,, Ilg are rank-one projectors in each ;.

p; = cos?(6)) la
[1a
o1 [1g \ 02 g
Subspace S, Subspace S,

fs 114
g

Subspace S5

Extremely Useful Tool

Jordan's Lemma: For any Iy, I1g, we can decompose space into 2-dim
invariant subspaces {S;} where Il,, Ilg are rank-one projectors in each ;.

p; = cos?(6)) A
[1a
I1
6 0 A
v Ip \ 02 g \ My
Subspace S, Subspace S, Subspace S5

To analyze our simulator, it will be helpful to understand the Jordan
subspace decomposition for I, .

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Why? This is an immediate consequence of hiding.

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Why? This is an immediate consequence of hiding.

1) Since l_[O = |O><O|Aux: can write |¢> — |7~/)>V|0>Aux-

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Why? This is an immediate consequence of hiding.

1) Since l_[O — |O><O|Aux: can write |¢> — |7~/)>V|0>Aux-
2) I [W)y 10) 4uxc l|? is the probability Guess(V*, |4)) succeeds:

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Why? This is an immediate consequence of hiding.

1) Since l_[O — |O><O|Aux: can write |¢> — |7~/)>V|0>Aux-
2) I [W)y 10) 4uxc l|? is the probability Guess(V*, |4)) succeeds:

C

Guess(V*, [Y)): —r’

1) Sample (¢, 7', z) « HVSim —_
2) Ifr = ', output (¢, z). Otherwise L. | —2— Y [P)
(ifr=1r"

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Equivalently, p; = 1/2 in every Jordan subspace S; (so 8; = m/4).

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Equivalently, p; = 1/2 in every Jordan subspace S; (so 8; = m/4).

Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Equivalently, p; = 1/2 in every Jordan subspace S; (so 8; = m/4).

p; = cos?(6))

We can now extend the 2-D analysis to our simulator!

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

Previously, we claimed the following for I, I1g in 2-D:

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

Previously, we claimed the following for I, I1g in 2-D:

Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 279,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

Previously, we claimed the following for I, I1g in 2-D:

Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 279,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

These claims extend to high-dim if all (I1,, I1g)-Jordan
subspaces have roughly equal p;.

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Intuition for Claim 1: the 2-D runtime analysis extends to higher
dimensions because the I1,, [1; measurements act independently
on each Jordan subspace.

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Intuition for Claim 2:
» Consider |[v) = X; a;|v;). In each §;, the state after (Ilg, I —)
accepts is o« Ilg|v;) by our analysis of the 2-D case.

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Intuition for Claim 2:

» Consider |[v) = X; a;|v;). In each §;, the state after (Ilg, I —)
accepts is o« Ilg|v;) by our analysis of the 2-D case.

- Alternating measurement results only depend on p;, but since
all p; = p, the measurement outcomes give no signal about .

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Intuition for Claim 2:

» Consider |[v) = X; a;|v;). In each §;, the state after (Ilg, I —)
accepts is o« Ilg|v;) by our analysis of the 2-D case.

- Alternating measurement results only depend on p;, but since
all p; = p, the measurement outcomes give no signal about .

» Sothefinal state is « ¥ ; ;g |v;) = Tg|v).

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Since Iy and Il satisfy p; = 1/2 in all Jordan subspaces, we can

set I, =1, and 1z = II; to analyze the alternating measurements
simulator:

What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Since Iy and Il satisfy p; = 1/2 in all Jordan subspaces, we can
set I, =1, and 1z = II; to analyze the alternating measurements
simulator:

« By Claim 1, the simulator is efficient.
« By Claim 2, when M; — 1, the state is « I1;|y)|0) as desired.

Technical Recap

We showed that Blum'’s protocol is post-quantum PoK and ZK.

Technical Recap

We showed that Blum'’s protocol is post-quantum PoK and ZK.

Proof of knowledge:
» Collapse-binding commitments enable “lazy” measurement

Technical Recap

We showed that Blum'’s protocol is post-quantum PoK and ZK.

Proof of knowledge:
» Collapse-binding commitments enable “lazy” measurement

« Unruh's lemma: if protocol is collapsing, can record two accepting
transcripts given a p-successful adversary (with probability p3)

Technical Recap

We showed that Blum'’s protocol is post-quantum PoK and ZK.

Proof of knowledge:
» Collapse-binding commitments enable “lazy” measurement

« Unruh's lemma: if protocol is collapsing, can record two accepting
transcripts given a p-successful adversary (with probability p3)

Zero knowledge:

« Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

Technical Recap

We showed that Blum'’s protocol is post-quantum PoK and ZK.

Proof of knowledge:
» Collapse-binding commitments enable “lazy” measurement

« Unruh's lemma: if protocol is collapsing, can record two accepting
transcripts given a p-successful adversary (with probability p3)

Zero knowledge:

« Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

« Analyze alternating projectors via Jordan’s lemma

Thank Youl

Questions?

