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Today's Goal:

We want classical cryptography
secure against quantum attacks
(post-quantum cryptography)
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Crypto Security | Quantum-Hard .
Proof o Problem T Reduction

/
Ex: learning with errors (LWE), isogenies, OWF

efficient A wins security game
— efficient A" solves hard problem

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

Done?
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Conjecture
classical security reduction + quantum-hard problem
— post-quantum security?

[BCMVV18] Prover Verifier
Protocol : — accept/reject

« Efficient classical P cannot make V accept assuming LWE.
« Efficient guantum P can convince V to accept.

————————————————————————————————————————————————————————————————————————————

A

In [BCMVV18] this is presented as a proof of quantumness.
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Crucially, the classical security reduction for the
[BCMVV18] protocol does not handle quantum attacks.
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Takeaway

Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?
Classical security of [BCMVV18] relies on rewinding

. [BCMVV18] Reduction

oy 1 ’ 1) Record (a,r, 2) %
@B > ) 2) Rewind

3) Recorer(w+20)

rewind

Reduction doesn't work for guantum adversaries because
measuring the response can disturb the adversary's state.
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Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., "quantum rewinding”

Focus: interactive proof systems

Claim: x € 3SAT
Prover Verifier

" — accept/reject

A,

Proof of Knowledge: Zero Knowledge [GMR85]:
If P* convinces V to accept, View of malicious VV* can be
then P* must “*know” a withess. | |efficiently simulated without P.
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Proof of knowledge (intuition)
By binding, the first message
determines a graph H such that:
* H is apermutation of G

« H contains a Ham cycle

Zero knowledge (intuition)

First message reveals nothing since
commitments are hiding.

Last message also reveals nothing:
« (r =0) random permutation of G
« (r=1)random cycle
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we can extract a withess from P*.
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PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Rewinding: query P* repeatedly
(on random r) until it answers
successfullyonr = 0and 1.
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PoK: If efficient classical P*
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Rewinding: query P* repeatedly
(on random r) until it answers
successfullyonr = 0and 1.
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Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Observation: two accepting
transcripts - Ham cycle (unless
P* breaks binding)
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Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Observation: two accepting
transcripts - Ham cycle (unless
P* breaks binding)
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Classical Proof of Knowledge

PoK: If efficient classical P*
convinces V with prob % + ¢, then
we can extract a withess from P*.

Observation: two accepting
transcripts - Ham cycle (unless
P* breaks binding)
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Classical PoK for Blum relies on the binding property of the commitments.
But for guantum attackers, we'll need to revisit the definition of binding.

‘Commitment  sender _ ck receiver

 Syntax ‘ _ .

com = Comy (m; d) @ |

E .................................................................................................... Accept |f
m,d

com = Com ,(m; d). 5

Classical definition:
PPT adversary can't output com and valid (my, dy), (my,d,) for my # my.

Can we just replace PPT with QPT?
[ARU14]: No!
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What's wrong with this definition?

Naive post-quantum binding def:
QPT attacker can't output com and valid (my, dy), (my, d;) for my #= m;.

[ARUT4]: Quantum attacker* might malicious

produce com, [} such that: sender com
—X

» Can use ) to open com to any m '

 But can only do this once! |
[Y),m
||
*Caveat: assuming a quantum oracle A
!
d

**Qpen: construct example without oracles

m, d
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A Better Definition: Collapse-Binding [Unruh16]

EXptb
Run verifier in superposition on M, D and
-~ com, Ylm)y|d)p _ | measure its output (accept or reject); abort
&) M,D if reject. On accept, state looks like

&
<

ZCom(m,d):com|m>M|d>D'
e Ifb=0:returnM,D.
e |fbh=1:measure M and return M, D.

Collapse-binding: Expty =, Expt;

Intuition: if Com is perfectly binding, Expt, and Expt, are perfectly
indistinguishable since there is only one valid m for any com. Collapse-
binding asks for a computational version of this property.




i Expt,, i
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-~ com, Yi[m)y|d)p _ |Check if M, D is valid for com; abort if not. ~ |:
& M,D + If b =0, return M, D. i

e Ifb =1, measure M and return M, D.

Collapse-binding: Expty =, Expt,
Why this definition?

« Many good reasons: avoids [ARU14] attack, implies other proposed
definitions, composable, easy to construct (implied by LWE), etc.

« But most importantly, this definition makes rewinding possiblel!

[U12,U16]: Blum is a post-quantum PoK if the underlying commitments are
collapse-binding.*

*[U12,U16] analyze a slightly modified version of Blum’s protocol, but later on [LMS22]
showed the original Blum protocol is post-quantum secure.




What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol /

3. Post-quantum proof of knowledge (PoK):
 Review: classical proof of knowledge /
+ How to define post-quantum commitments
* Unruh's 1-bit rewinding lemma

4. Post-quantum ZK for Blum'’s protocol
» Review: classical zero knowledge
« Watrous's ZK rewinding lemma
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How do collapse-binding commitments help with rewinding?

“Lazy” Measurement:

ceeeeeTmmmmemee 2o ommmmm=======2- [ (1) Run adversary's unitary to
¥ r 1Y) r generate superposition of

—< Y responses on reqgisters M, D.
& m, d S Im)uld) onregisters 1
A > & > |(2) Check if M, D is valid.

(3) If so, measure M.

 Difficulty: recording response disturbs adversary’s state.

« But if the response is the opening to a collapse-binding
commitment, we can “lazily” measure m. Collapse-binding
guarantees that step (3) is computationally undetectable!

Key point: with collapse-binding commitments, we just need
to consider measuring the 1-bit decision (accept/reject).
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{Hr}rER» ”c p = IE‘I"(—R”HT'h)b)”Z; then IET(—R,S(—R”HSHT'h:b)”z = p3

We won't prove this lemma, but it is reminiscent of “gentle measurement”:

« Ifpiscloseto 1, then Il |y) is not too far from |y) (in expectation). So if
we perform another random measurement (Ilg, I — I1y), it should still have

a reasonable chance of accepting.
(However, this bound is much stronger than a gentle measurement bound)




Put

Step 1: Collapsing
commitments [U16]:

recording adversary’s
response =, recording 1-bit
decision

_|_

ing It Together

Step 2: 1-bit-rewinding lemma [U12]:

If we run a p-successful adversary on
2 random challenges (and only

measure the 1-bit decision), then:
Pr[succeed twice] = p3
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Putting It Together

Step 1: Collapsing Step 2: 1-bit-rewinding lemma [U12)]:

commitments [U16]: 4+ |If werun a p-successful adversary on

recording adversary’s 2 random challenges (and only
response =, recording 1-bit measure the 1-bit decision), then:
decision Pr[succeed twice] > p3

Theorem: If a quantum P* convinces V to accept with probability >
1/\/7\ + &, we can extract a witness with probability Q(e).

\

Remember that for classical P*, we just need 1/2 + &, and we
extract with probability = 1.

In the next talk, we'll see a different quantum rewinding
technique that achieves the original classical guarantees.
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Blum’s Protocol for Hamiltonian Cycle
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Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

Blum’s Protocol for Hamiltonian Cycle
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2) Generate transcript (c,r’, 2):
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random permutation of G
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Blum’s Protocol for Hamiltonian Cycle
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Key Property: can simulate honest
verifier that sends random bit

HVSim:
1) Sample r’ « {0,1}

2) Generate transcript (c,r’, 2):

« Ifr’ =0, generatec,z using a
random permutation of G

« |fr' =1, generate ¢,z using a
random cycle graph

By hiding, (¢, r’,z) « HVSim
looks like honest-verifier view.
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Classical Zero Knowledge

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious V* that picks r adaptively based on the first message c.

Observation: can simulate malicious V* w/ prob = 1/2 by guessing r.

We combine this with rewinding to get the full ZK simulator:
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e Sim(V*) s
G V).
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. | 1) Sample (¢,7',z) « HVSim | 17 ° and try again
| 2) If r = 7', output (¢, 7', 2). _z v i
| Otherwise, output L. (ifr =1"

Since cis hiding, Pr[r =r'] = 1/2
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What this talk will cover:

1. Is LWE all we need for post-quantum security? /
2. Review: Blum's Hamiltonicity protocol /

3. Post-quantum proof of knowledge (PoK):
 Review: classical proof of knowledge /
+ How to define post-quantum commitments
« Unruh’s 1-bit rewinding lemma /

4. Post-quantum ZK for Blum'’s protocol
»  Review: classical zero knowledge v/
« Watrous's ZK rewinding lemma



Unfortunately, this simulator won't suffice for post-quantum ZK! If a
malicious V* has an unknown initial state |¢) running Guess(V*, [y))
may irreversibly disturb it.
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Unfortunately, this simulator won't suffice for post-quantum ZK! If a
malicious V* has an unknown initial state |¢) running Guess(V*, [y))
may irreversibly disturb it.

But there is a different simulator due to [Watrous05] that works.
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e Sim(V*) s
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= — @ Yespe |
1) sample (¢, 7', z) « HVSim | _ 1 M :
1 2) If r =7, output (¢, 7', 2). _z i
| Otherwise, output L. (ifr =1"

Since cis hiding, Pr[r =r'] = 1/2
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[Watrous05]: If commitment scheme is hiding, then
the Blum protocol is post-quantum ZK.




Post-Quantum ZK of Blum [Watrous05]

c
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2) If r = 7', output (¢, 7, 2). Otherwise 1. |  —2— V' ([¥D)
(ifr =171

It commitments are hiding, can still simulate with probability 1/2.



Post-Quantum ZK of Blum [Watrous05]

C

Guess(V7, [Y)): - 2

1) Sample (¢, r', z) « HVSim —r

2) If r = 7', output (¢, 7, 2). Otherwise 1. |  —2— V' ([¥D)
(ifr =171

It commitments are hiding, can still simulate with probability 1/2.

We'll write this process as a quantum circuit on ).



Post-Quantum ZK of Blum [Watrous05]

C

Guess(V7, [Y)): v . 2
1) Sample (c,r’, z) « HVSim —r
2) If r = 7', output (¢, 7, 2). Otherwise 1. |  —2— V' ([¥D)
(I]c r=r1)
0 0 0)., |0
C,R,Z,R h’l,J)V | |>R | |>CZ | I>R | I)H
correspond U

‘V R CZ R’ H

D l ;
Verifier's view |

(state + transcript) HVSim (workspace + output)

1 1
| 1
1 1
1 1
1 1
| 1
1 1
1 1
1 / I
. toc,r,zr ! ! ! ! ! !
1 1
1 1
1 1
| 1
1 1
1 1
1 1
| 1
1 1

« Computing Ug|y)|0) and checking if R = R’ is the same as
running Guess(V™, [y)).
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. C,RZFR i
. correspond Ug
. tocr,z1 | | | | | |

‘V R CZ R’ H

D l l
Verifier's view |

(state + transcript) HVSim (workspace + output)

« Computing Ug|y)|0) and checking if R = R’ is the same as
running Guess(V™, [y)).
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Intuition: (T, I — II;) measures whether simulation succeeds.
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D l l
Verifier's view |

(state + transcript) HVSim (workspace + output)
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. C,RZFR i
. correspond Ug
. tocr,z1 | | | | | |
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Verifier's view |
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« Each (Il;, I — 1) measurement is one simulation attempit.




Post-Quantum ZK of Blum [Watrous05]

Define projector Il := U&LHR:R/UG.
Intuition: (T, I — II;) measures whether simulation succeeds.

Our goal: Produce the state I [Y¥)y | 0) 4

Rough Intuition:
« Each (Il;, I — 1) measurement is one simulation attempit.

* Applying (Il;, T — I;) twice in a row gives the same outcome
(no help).




Post-Quantum ZK of Blum [Watrous05]

Define projector Il := U&LHR:R/UG.
Intuition: (T, I — II;) measures whether simulation succeeds.

Our goal: Produce the state I [Y¥)y | 0) 4

Rough Intuition:
« Each (Il;, I — 1) measurement is one simulation attempit.

* Applying (Il;, T — I;) twice in a row gives the same outcome
(no help).

« We'll write down an My, measurement to “reset” each attempt.
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1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y

2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.
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The Post-Quantum ZK Simulator [mwo5, wos]

1) Initialize [Y)y|0) gy LEL Ty = |0Y(0] 4y

2) Alternate Mg = (Ilg, 1 — II;) and My = (I, I — M) until Mz — 1.
3) Generate verifier's view (apply Ug).

1Y)y
Mg M Mg M
|O>Aux -
v v v v
0 1 0 0

Mg |¥)v10) aux
(we'll see why)

Sim(V7, [¥))

——————————————————————————————————————————————————————————————————————

But why does this simulator work? Need to resolve:

« Efficiency: How long (if ever) until M; — 17

« Simulation: After M — 1, why is the state is ¢ [Y)y|0) 4y ?
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

I—TI
I—T1l, g

12, I,

[
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,

we jump between four states
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What happens if we start at |v) € image(I1,) and alternate the
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D
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we jump between four states
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Fasy case: I1,, Iz live in 2D When we alternate measurements,

we jump between four states
]I - HB

P p

% v 2 |W \ 4 |V

-1, VvV Bvak
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

H_HB

-1,

p = |[g[v)lI* ¥
= cos*(6)

When we alternate measurements,
we jump between four states

v -, |v)
- P

Ly Ly
v=) =

_p>

w) v )

p
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measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

When we alternate measurements,
we jump between four states
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Ly Ly
v=) =
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

H_HB

-1,
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= cos*(6)
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

-1,
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Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

p = |[lIg|v)|?
= cos?(6)

When we alternate measurements,
we jump between four states

p p
vy 5 lw) 7 |v)
1-p 1-p

vty = lwh) = [vh)

Claim 1: (Ilg, I — II) accepts in
A/p steps with prob 1 — 270,
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Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

p = |[lIg|v)|?
= cos?(6)

When we alternate measurements,
we jump between four states

P
vy 7 lw)
1—-p 1-p

vty = lwh) = [vh)

Claim 1: (Ilg, I — II) accepts in
A/p steps with prob 1 — 270,

Claim 2: When (Ilg, I — IIg)
accepts, state is |w) « IIz|v).

183



Understanding Alternating Measurements [MWO5]

What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

Easy case: Il1,, [ live in 2D

I—II, These are the guarantees we
I =1, want, but ITy, [, don't live in 2D!

| Claim 1: (Ilg, I — Ig) accepts in
' |w) A/p steps with prob 1 — 2704,
)

v Claim 2: When (Ilg, I — IIg)
VP accepts, state is |w) o Mz|v).

p = |[g[v)lI* ¥
= cos*(6)
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What happens if we start at |v) € image(I1,) and alternate the
measurements (I1,, 1 —1I1,) and (Ilg, I —Ig)?

It 14, [1g live in two dimensions:
Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 272,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Do these claims extend to higher dimensions?

* Forgeneral Il,, I1z: NO!

e ForIly, II;: yes!
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Extremely Useful Tool

Jordan's Lemma: For any Iy, I1g, we can decompose space into 2-dim
invariant subspaces {S;} where Il,, Ilg are rank-one projectors in each ;.

p; = cos?(6)) A
[1a
I1
6 0 A
v Ip \ 02 g \ My
Subspace S, Subspace S, Subspace S5

To analyze our simulator, it will be helpful to understand the Jordan
subspace decomposition for I, .
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Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Why? This is an immediate consequence of hiding.

1) Since l_[O — |O><O|Aux: can write |¢> — |7~/)>V|0>Aux-
2) I [ W)y 10) 4uxc l|? is the probability Guess(V*, |4)) succeeds:

C

Guess(V*, [Y)): —r’

1) Sample (¢, 7', z) « HVSim —_
2) Ifr = ', output (¢, z). Otherwise L. | —2— Y  [P)
(ifr=1r"
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Key Fact: for any |¢) € image(Il,), we have |[|TI;|p)||* = 1/2.

Equivalently, p; = 1/2 in every Jordan subspace S; (so 8; = m/4).

p; = cos?(6))

We can now extend the 2-D analysis to our simulator!
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What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

Previously, we claimed the following for I, I1g in 2-D:

Claim 1: (Tlg, I — M) accepts in A/p steps with prob 1 — 279,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

These claims extend to high-dim if all (I1,, I1g)-Jordan
subspaces have roughly equal p;.
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What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Intuition for Claim 1: the 2-D runtime analysis extends to higher
dimensions because the I1,, [1; measurements act independently
on each Jordan subspace.
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measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Intuition for Claim 2:

» Consider |[v) = X; a;|v;). In each §;, the state after (Ilg, I — )
accepts is o« Ilg|v;) by our analysis of the 2-D case.

- Alternating measurement results only depend on p;, but since
all p; = p, the measurement outcomes give no signal about .

» Sothefinal state is « ¥ ; ;g |v;) = Tg|v).
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What happens it we start at |v) € image(Il,) and alternate the
measurements (I1,, 1 —I1,) and (Ilg, 1 — I1z)?

If all (T, Ip)-Jordan subspaces have p; = p, then:

Claim 1: (Tlg, I — Ip) accepts in = A/p steps with prob 1 — 270,
Claim 2: When (Ilg, I — I1g) accepts, state is |w) « IIg|v).

Since Iy and Il satisfy p; = 1/2 in all Jordan subspaces, we can
set I, =1, and 1z = II; to analyze the alternating measurements
simulator:

« By Claim 1, the simulator is efficient.
« By Claim 2, when M; — 1, the state is « I1;|y)|0) as desired.
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Technical Recap

We showed that Blum'’s protocol is post-quantum PoK and ZK.

Proof of knowledge:
» Collapse-binding commitments enable “lazy” measurement

« Unruh's lemma: if protocol is collapsing, can record two accepting
transcripts given a p-successful adversary (with probability p3)

Zero knowledge:

« Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

« Analyze alternating projectors via Jordan’s lemma




Thank Youl

Questions?



