
1

Post-Quantum Proof Techniques Part 1:

Introduction to Quantum Rewinding

Based on:
• “Quantum Proofs of Knowledge” by Dominique Unruh (2012)
• “Computationally Binding Quantum Commitments” by Dominique Unruh (2016)
• “Zero Knowledge Against Quantum Attacks” by John Watrous (2005)
• “Quantum Arthur Merlin Games” by Chris Marriott and John Watrous (2005)
• “Traité des substitutions et des équations algébriques” by Camille Jordan (1870)

Fermi Ma
(Simons & Berkeley)

2

Today’s Goal:
We want classical cryptography
secure against quantum attacks

(post-quantum cryptography)

3

What this talk will cover:

4

What this talk will cover:
1. Is LWE all we need for post-quantum security?

5

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

6

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):

7

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge

8

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments

9

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

10

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol

11

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge

12

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

13

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

14

How do cryptographers prove security?

15

Reduction=Crypto Security
Proof +(Assumed)

Hard Problem

How do cryptographers prove security?

16

Reduction+

Ex: one-way function, factoring, discrete log, etc.

(Assumed)
Hard Problem=Crypto Security

Proof

How do cryptographers prove security?

17

Reduction+

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

Ex: one-way function, factoring, discrete log, etc.

(Assumed)
Hard Problem=Crypto Security

Proof

How do cryptographers prove security?

18

Reduction+

Key point: problem must be hard for quantum computers!

Ex: one-way function, factoring, discrete log, etc.

(Assumed)
Hard Problem=Crypto Security

Proof

How do cryptographers prove security?

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

19

+=Crypto Security
Proof

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

How do cryptographers prove security?

ReductionQuantum-Hard
Problem

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

20

+

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

=Crypto Security
Proof

Ex: learning with errors (LWE), isogenies, OWF

How do cryptographers prove security?

ReductionQuantum-Hard
Problem

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

21

Reduction+

Done?

Quantum-Hard
Problem=Crypto Security

Proof

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

Ex: learning with errors (LWE), isogenies, OWF

How do cryptographers prove security?

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

22

Conjecture
classical security reduction + quantum-hard problem

→ post-quantum security?

23

No!

Conjecture
classical security reduction + quantum-hard problem

→ post-quantum security?

24

accept/reject

Prover Verifier[BCMVV18]
Protocol

No!

Conjecture
classical security reduction + quantum-hard problem

→ post-quantum security?

25

• Efficient classical P cannot make V accept assuming LWE

accept/reject

Prover Verifier[BCMVV18]
Protocol

No!

Conjecture
classical security reduction + quantum-hard problem

→ post-quantum security?

26

• Efficient classical P cannot make V accept assuming LWE
• Efficient quantum P can convince V to accept.

accept/reject

Prover Verifier[BCMVV18]
Protocol

No!

Conjecture
classical security reduction + quantum-hard problem

→ post-quantum security?

27

• Efficient classical P cannot make V accept assuming LWE.
• Efficient quantum P can convince V to accept.

accept/reject

Prover Verifier

In [BCMVV18] this is presented as a proof of quantumness.

[BCMVV18]
Protocol

No!

Conjecture
classical security reduction + quantum-hard problem

→ post-quantum security?

28

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

29

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

efficient classical 𝐴 wins security game
→ efficient classical 𝐴′ solves hard problem

Classical
reduction:

How is this possible?

30

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

efficient classical 𝐴 wins security game
→ efficient classical 𝐴′ solves hard problem

Classical
reduction:

efficient quantum 𝐴 wins security game
→ efficient quantum 𝐴′ solves hard problem

Quantum
reduction:

How is this possible?

31

efficient classical 𝐴 wins security game
→ efficient classical 𝐴′ solves hard problem

Classical
reduction:

efficient quantum 𝐴 wins security game
→ efficient quantum 𝐴′ solves hard problem

Quantum
reduction:

Crucially, the classical security reduction for the
[BCMVV18] protocol does not handle quantum attacks.

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

How is this possible?

32

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

33

𝑎 [BCMVV18] Reduction

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

34

𝑎
𝑟

[BCMVV18] Reduction

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

35

𝑎
𝑟

[BCMVV18] Reduction

𝑧

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

36

𝑎
𝑟

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)

𝑧

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

37

𝑎 [BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

38

𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

39

𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind
𝑧′

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

40

𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

41

𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break
LWE

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

42

𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break
LWE

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Reduction doesn’t work for quantum adversaries because
measuring the response can disturb the adversary’s state.

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

43

𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break
LWE

How is this possible?
Classical security of [BCMVV18] relies on rewinding

Reduction doesn’t work for quantum adversaries because
measuring the response can disturb the adversary’s state.

Takeaway
Quantum computers can break classically secure crypto
without solving the underlying hard problem!

44

More generally, classical rewinding reductions do not
capture quantum adversaries.

45

More generally, classical rewinding reductions do not
capture quantum adversaries. But rewinding is one of the
most common techniques in cryptography!

46

More generally, classical rewinding reductions do not
capture quantum adversaries. But rewinding is one of the
most common techniques in cryptography!

Is it possible that rewinding-based crypto (zero knowledge
proofs, proofs of knowledge, etc.) is quantumly broken?

47

More generally, classical rewinding reductions do not
capture quantum adversaries. But rewinding is one of the
most common techniques in cryptography!

Is it possible that rewinding-based crypto (zero knowledge
proofs, proofs of knowledge, etc.) is quantumly broken?

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., “quantum rewinding”

48

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., “quantum rewinding”

49

accept/reject

Prover Verifier
Claim: 𝑥 ∈ 3SAT

Focus: interactive proof systems

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., “quantum rewinding”

50

accept/reject

Prover Verifier
Claim: 𝑥 ∈ 3SAT

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., “quantum rewinding”

Proof of Knowledge:
If 𝑃∗ convinces 𝑉 to accept,
then 𝑃∗ must “know” a witness.

Focus: interactive proof systems

51

accept/reject

Prover Verifier
Claim: 𝑥 ∈ 3SAT

Proof of Knowledge:
If 𝑃∗ convinces 𝑉 to accept,
then 𝑃∗ must “know” a witness.

Zero Knowledge [GMR85]:
View of malicious 𝑉∗ can be
efficiently simulated without 𝑃.

Rest of this talk: extend classical rewinding reductions to handle
quantum attacks, i.e., “quantum rewinding”

Focus: interactive proof systems

52

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓

53

Prover Verifier

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Blum’s Protocol for
Hamiltonian Cycles

54

Blum’s Protocol for
Hamiltonian Cycles

Prover Verifier

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝑎

𝑏 𝑐

𝑑

𝑒Sample 𝜋 ← 𝑆&.

Commit to the
adjacency matrix
of 𝜋(𝐺)

55

Blum’s Protocol for
Hamiltonian Cycles

𝑟

Prover Verifier
𝑎

𝑏 𝑐

𝑑

𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Sample 𝜋 ← 𝑆&.

Commit to the
adjacency matrix
of 𝜋(𝐺)

Sample random
𝑟 ← {0,1}

56

Blum’s Protocol for
Hamiltonian Cycles

𝑟

Prover Verifier

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

𝑎

𝑏 𝑐

𝑑

𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Sample 𝜋 ← 𝑆&.

Commit to the
adjacency matrix
of 𝜋(𝐺)

Sample random
𝑟 ← {0,1}

57

Blum’s Protocol for
Hamiltonian Cycles

𝑟

Prover Verifier

𝑎

𝑏 𝑐

𝑑

𝑒
(if 𝑟 = 1)(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

or

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Sample 𝜋 ← 𝑆&.

Commit to the
adjacency matrix
of 𝜋(𝐺)

Sample random
𝑟 ← {0,1}

58

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Proof of knowledge (intuition)

By binding, the first message
determines a graph 𝐻 such that:
• 𝐻 is a permutation of 𝐺
• 𝐻 contains a Ham cycle

59

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Proof of knowledge (intuition)

By binding, the first message
determines a graph 𝐻 such that:
• 𝐻 is a permutation of 𝐺
• 𝐻 contains a Ham cycle

Zero knowledge (intuition)

First message reveals nothing since
commitments are hiding.

Last message also reveals nothing:
• (𝑟 = 0) random permutation of 𝐺
• (𝑟 = 1) random cycle

60

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

61

Classical Proof of Knowledge

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then
we can extract a witness from 𝑃∗.

62

Rewinding: query 𝑃∗ repeatedly
(on random 𝑟) until it answers
successfully on 𝑟 = 0 and 1.𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Classical Proof of Knowledge
PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then
we can extract a witness from 𝑃∗.

63

Rewinding: query 𝑃∗ repeatedly
(on random 𝑟) until it answers
successfully on 𝑟 = 0 and 1.

𝑐
0
𝑧,

rewind

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

1
𝑧*

Classical Proof of Knowledge
PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then
we can extract a witness from 𝑃∗.

64

Rewinding: query 𝑃∗ repeatedly
(on random 𝑟) until it answers
successfully on 𝑟 = 0 and 1.

𝑐
0
𝑧,

rewind

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

1
𝑧*

Classical Proof of Knowledge
PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then
we can extract a witness from 𝑃∗.

Get two accepting transcripts
after 𝑂 *

- rewinds.

65

PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then
we can extract a witness from 𝑃∗.

Classical Proof of Knowledge

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Observation: two accepting
transcripts → Ham cycle (unless
𝑃∗ breaks binding)

0

66

𝑎

𝑏 𝑐

𝑑
𝑒

1

1 1 1

1

1
1
0 0𝜋, 𝑎

𝑏 𝑐

𝑑
𝑒

1 1 1

1

1+

PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then
we can extract a witness from 𝑃∗.

Classical Proof of Knowledge

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Observation: two accepting
transcripts → Ham cycle (unless
𝑃∗ breaks binding)

67

Ham cycle
for original 𝐺

PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then
we can extract a witness from 𝑃∗.

Classical Proof of Knowledge

𝑎

𝑏 𝑐

𝑑

𝑒

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Observation: two accepting
transcripts → Ham cycle (unless
𝑃∗ breaks binding)

0
𝑎

𝑏 𝑐

𝑑
𝑒

1

1 1 1

1

1
1
0 0𝜋, 𝑎

𝑏 𝑐

𝑑
𝑒

1 1 1

1

1+

68

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓

69

Binding Against Quantum Attack
Classical PoK for Blum relies on the binding property of the commitments.

70

Binding Against Quantum Attack
Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

71

Binding Against Quantum Attack

Commitment
Syntax com = Com./(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

72

Binding Against Quantum Attack

Commitment
Syntax com = Com./(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

Classical definition:
PPT adversary can’t output com and valid 𝑚,, 𝑑, , (𝑚*, 𝑑*) for 𝑚, ≠ 𝑚*.

73

Binding Against Quantum Attack

Commitment
Syntax com = Com./(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Can we just replace PPT with QPT?

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

Classical definition:
PPT adversary can’t output com and valid 𝑚,, 𝑑, , (𝑚*, 𝑑*) for 𝑚, ≠ 𝑚*.

74

Binding Against Quantum Attack

Classical definition:
PPT adversary can’t output com and valid 𝑚,, 𝑑, , (𝑚*, 𝑑*) for 𝑚, ≠ 𝑚*.

Commitment
Syntax

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Can we just replace PPT with QPT?

[ARU14]: No!

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

com = Com./(𝑚; 𝑑)

75

Naïve post-quantum binding def:
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

What’s wrong with this definition?

76

[ARU14]: Quantum attacker* might
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
com

malicious
sender

Naïve post-quantum binding def:
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓

What’s wrong with this definition?

77

[ARU14]: Quantum attacker* might
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
com

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def:
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?

78

[ARU14]: Quantum attacker* might
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
• But can only do this once!

com

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def:
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?

79

[ARU14]: Quantum attacker* might
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
• But can only do this once!

com

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def:
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?

*Caveat: assuming a quantum oracle
**Open: construct example without oracles

80

A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2

81

A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2

82

A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
Run verifier in superposition on 𝑀,𝐷 and
measure its output (accept or reject); abort
if reject.

83

A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
Run verifier in superposition on 𝑀,𝐷 and
measure its output (accept or reject); abort
if reject. On accept, state looks like
∑345 6,8 9:45 𝑚 0 𝑑 1.

84

A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
Run verifier in superposition on 𝑀,𝐷 and
measure its output (accept or reject); abort
if reject. On accept, state looks like
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷.
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.

85

A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and
measure its output (accept or reject); abort
if reject. On accept, state looks like
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷.
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.

86

A Better Definition: Collapse-Binding [Unruh16]

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and
measure its output (accept or reject); abort
if reject. On accept, state looks like
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷.
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.

87

A Better Definition: Collapse-Binding [Unruh16]

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and
measure its output (accept or reject); abort
if reject. On accept, state looks like
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷.
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.

Intuition: if Com is perfectly binding, Expt, and Expt* are perfectly
indistinguishable since there is only one valid 𝑚 for any com.

88

A Better Definition: Collapse-Binding [Unruh16]

Intuition: if Com is perfectly binding, Expt, and Expt* are perfectly
indistinguishable since there is only one valid 𝑚 for any com. Collapse-
binding asks for a computational version of this property.

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and
measure its output (accept or reject); abort
if reject. On accept, state looks like
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷.
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.

89

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷.
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

Why this definition?

90

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷.
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed

definitions, composable, easy to construct (implied by LWE), etc.

91

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷.
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed

definitions, composable, easy to construct (implied by LWE), etc.
• But most importantly, this definition makes rewinding possible!

92

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷.
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

[U12,U16]: Blum is a post-quantum PoK if the underlying commitments are
collapse-binding.*

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed

definitions, composable, easy to construct (implied by LWE), etc.
• But most importantly, this definition makes rewinding possible!

93

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷.
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

*[U12,U16] analyze a slightly modified version of Blum’s protocol, but later on [LMS22]
showed the original Blum protocol is post-quantum secure.

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed

definitions, composable, easy to construct (implied by LWE), etc.
• But most importantly, this definition makes rewinding possible!

[U12,U16]: Blum is a post-quantum PoK if the underlying commitments are
collapse-binding.*

94

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓
✓

95

How do collapse-binding commitments help with rewinding?

96

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.

|𝜓⟩

com

97

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.

|𝜓⟩ 𝑟
com

98

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.

|𝜓⟩ 𝑟
𝑚, 𝑑

com

99

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.
• But if the response is the opening to a collapse-binding

commitment, we can “lazily” measure 𝑚.

|𝜓⟩ 𝑟
𝑚, 𝑑

com

100

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.
• But if the response is the opening to a collapse-binding

commitment, we can “lazily” measure 𝑚.

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

com “Lazy” Measurement:

101

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.
• But if the response is the opening to a collapse-binding

commitment, we can “lazily” measure 𝑚.

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 (𝑑)

com “Lazy” Measurement:
(1) Run adversary’s unitary to
generate superposition of
responses on registers 𝑀,𝐷.

102

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.
• But if the response is the opening to a collapse-binding

commitment, we can “lazily” measure 𝑚.

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 (𝑑)

com “Lazy” Measurement:
(1) Run adversary’s unitary to
generate superposition of
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.

103

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.
• But if the response is the opening to a collapse-binding

commitment, we can “lazily” measure 𝑚.

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 (𝑑)

com “Lazy” Measurement:
(1) Run adversary’s unitary to
generate superposition of
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.
(3) If so, measure 𝑀.

104

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.
• But if the response is the opening to a collapse-binding

commitment, we can “lazily” measure 𝑚. Collapse-binding
guarantees that step (3) is computationally undetectable!

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 (𝑑)

com “Lazy” Measurement:
(1) Run adversary’s unitary to
generate superposition of
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.
(3) If so, measure 𝑀.

105

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state.
• But if the response is the opening to a collapse-binding

commitment, we can “lazily” measure 𝑚. Collapse-binding
guarantees that step (3) is computationally undetectable!

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 (𝑑)

com “Lazy” Measurement:
(1) Run adversary’s unitary to
generate superposition of
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.
(3) If so, measure 𝑀.

Key point: with collapse-binding commitments, we just need
to consider measuring the 1-bit decision (accept/reject).

106

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

107

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

108

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.

Aside: Π< = 𝑈<
B ∑CDE 6,8 9* 𝑚,𝑑 𝑚, 𝑑 𝑈< where 𝑈< is the adversary’s

unitary for challenge 𝑟.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

109

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

110

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

By [U12], if we run the adversary on two random
challenges, it succeeds twice w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

111

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩

By [U12], if we run the adversary on two random
challenges, it succeeds twice w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

112

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩ 𝑠

acc/rej

By [U12], if we run the adversary on two random
challenges, it succeeds twice w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

113

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩ 𝑠

acc/rej

By [U12], if we run the adversary on two random
challenges, it succeeds twice w/ prob ≥ 𝑝A.
If adversary is opening a collapse-binding
commitment, then we record two accepting
transcripts w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

114

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩ 𝑠

acc/rej

By [U12], if we run the adversary on two random
challenges, it succeeds twice w/ prob ≥ 𝑝A.
If adversary is opening a collapse-binding
commitment, then we record two accepting
transcripts w/ prob ≥ 𝑝A.

Annoying detail: this is only useful if 𝑟 ≠ 𝑠. For Blum (𝑅 = {0,1}), we only
extract a witness with Ω(𝜀) probability when 𝑝 ≥ 1/ 2 + 𝜀.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

115

We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

116

We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

• If 𝑝 is close to 1, then Π<|𝜓⟩ is not too far from |𝜓⟩ (in expectation).

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

117

We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

• If 𝑝 is close to 1, then Π<|𝜓⟩ is not too far from |𝜓⟩ (in expectation). So if
we perform another random measurement (Π@, 𝕀 − Π@), it should still have
a reasonable chance of accepting.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

118

We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

• If 𝑝 is close to 1, then Π<|𝜓⟩ is not too far from |𝜓⟩ (in expectation). So if
we perform another random measurement (Π@, 𝕀 − Π@), it should still have
a reasonable chance of accepting.

(However, this bound is much stronger than a gentle measurement bound)

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A

119

Putting It Together
Step 2: 1-bit-rewinding lemma [U12]:

If we run a 𝑝-successful adversary on
2 random challenges (and only
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing
commitments [U16]:

recording adversary’s
response ≈; recording 1-bit
decision

+

120

Putting It Together
Step 2: 1-bit-rewinding lemma [U12]:

If we run a 𝑝-successful adversary on
2 random challenges (and only
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing
commitments [U16]:

recording adversary’s
response ≈; recording 1-bit
decision

+

Theorem: If a quantum 𝑃∗ convinces 𝑉 to accept with probability ≥
1/ 2 + 𝜀, we can extract a witness with probability Ω(𝜀).

121

Putting It Together
Step 2: 1-bit-rewinding lemma [U12]:

If we run a 𝑝-successful adversary on
2 random challenges (and only
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing
commitments [U16]:

recording adversary’s
response ≈; recording 1-bit
decision

+

Theorem: If a quantum 𝑃∗ convinces 𝑉 to accept with probability ≥
1/ 2 + 𝜀, we can extract a witness with probability Ω(𝜀).

Remember that for classical 𝑃∗, we just need 1/2 + 𝜀, and we
extract with probability ≈ 1.

122

Putting It Together
Step 2: 1-bit-rewinding lemma [U12]:

If we run a 𝑝-successful adversary on
2 random challenges (and only
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing
commitments [U16]:

recording adversary’s
response ≈; recording 1-bit
decision

+

Theorem: If a quantum 𝑃∗ convinces 𝑉 to accept with probability ≥
1/ 2 + 𝜀, we can extract a witness with probability Ω(𝜀).

Remember that for classical 𝑃∗, we just need 1/2 + 𝜀, and we
extract with probability ≈ 1.

In the next talk, we’ll see a different quantum rewinding
technique that achieves the original classical guarantees.

123

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓
✓

✓

124

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

125

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟F ← 0,1

Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

126

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟F ← 0,1

2) Generate transcript (𝑐, 𝑟F, 𝑧):

Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

127

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟F ← 0,1

2) Generate transcript (𝑐, 𝑟F, 𝑧):
• If 𝑟F = 0, generate 𝑐, 𝑧 using a

random permutation of 𝐺

Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

128

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟F ← 0,1

2) Generate transcript (𝑐, 𝑟F, 𝑧):
• If 𝑟F = 0, generate 𝑐, 𝑧 using a

random permutation of 𝐺
• If 𝑟F = 1, generate 𝑐, 𝑧 using a

random cycle graph

Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

129

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟F ← 0,1

2) Generate transcript (𝑐, 𝑟F, 𝑧):
• If 𝑟F = 0, generate 𝑐, 𝑧 using a

random permutation of 𝐺
• If 𝑟F = 1, generate 𝑐, 𝑧 using a

random cycle graph

By hiding, 𝑐, 𝑟F, 𝑧 ← HVSim
looks like honest-verifier view.

Classical Zero Knowledge

Key Property: can simulate honest
verifier that sends random bit

130

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Classical Zero Knowledge

131

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

132

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

133

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
𝑐
𝑟

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

134

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 .
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

135

HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 .
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

136

Classical Zero Knowledge
HVSim can simulate an honest verifier view, but ZK requires simulating a
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

We combine this with rewinding to get the full ZK simulator:

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 .
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗

137

What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓
✓

✓

✓

138

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 .
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.

139

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 .
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.

140

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 .
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.

But there is a different simulator due to [Watrous05] that works.

141

[Watrous05]: If commitment scheme is hiding, then
the Blum protocol is post-quantum ZK.

142

Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

If commitments are hiding, can still simulate with probability 1/2.

143

Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

If commitments are hiding, can still simulate with probability 1/2.

We’ll write this process as a quantum circuit on |𝜓⟩.

144

Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view

(state + transcript)

0 ;H

𝐶𝑍

0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as
running Guess(𝑉∗, |𝜓⟩).

145

Post-Quantum ZK of Blum [Watrous05]

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view

(state + transcript)

0 ;H

𝐶𝑍

0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as
running Guess(𝑉∗, |𝜓⟩).

146

Post-Quantum ZK of Blum [Watrous05]

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view

(state + transcript)

0 ;H

𝐶𝑍

0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as
running Guess(𝑉∗, |𝜓⟩).

Define projector ΠG ≔ 𝑈G
BΠ>9>!𝑈G.

Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

147

Post-Quantum ZK of Blum [Watrous05]

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view

(state + transcript)

0 ;H

𝐶𝑍

0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as
running Guess(𝑉∗, |𝜓⟩).

Define projector ΠG ≔ 𝑈G
BΠ>9>!𝑈G.

Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

148

Post-Quantum ZK of Blum [Watrous05]
Define projector ΠG ≔ 𝑈G

BΠ>9>!𝑈G.
Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

Rough Intuition:

• Each (ΠG , 𝕀 − ΠG) measurement is one simulation attempt.

149

Post-Quantum ZK of Blum [Watrous05]
Define projector ΠG ≔ 𝑈G

BΠ>9>!𝑈G.
Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

Rough Intuition:

• Each (ΠG , 𝕀 − ΠG) measurement is one simulation attempt.

• Applying (ΠG , 𝕀 − ΠG) twice in a row gives the same outcome
(no help).

150

Post-Quantum ZK of Blum [Watrous05]
Define projector ΠG ≔ 𝑈G

BΠ>9>!𝑈G.
Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

Rough Intuition:

• Each (ΠG , 𝕀 − ΠG) measurement is one simulation attempt.

• Applying (ΠG , 𝕀 − ΠG) twice in a row gives the same outcome
(no help).

• We’ll write down an𝑀, measurement to “reset” each attempt.

151

The Post-Quantum ZK Simulator [MW05, W05]

152

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)
1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.

153

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

𝑀G 𝑀, 𝑀G

0 0 1 ✓

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

154

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

155

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

156

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

157

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

158

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

159

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

160

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.

161

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).

162

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

But why does this simulator work? Need to resolve:

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).

163

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).

But why does this simulator work? Need to resolve:
• Efficiency: How long (if ever) until 𝑀G → 1?

164

The Post-Quantum ZK Simulator [MW05, W05]

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

But why does this simulator work? Need to resolve:
• Efficiency: How long (if ever) until 𝑀G → 1?

• Simulation: After 𝑀G → 1, why is the state is ΠG 𝜓 & 0 JKL?

165

Understanding Alternating Measurements [MW05]
What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

166

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

167

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

168

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

|𝑤⟩

|𝑤,⟩|𝑣,⟩

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

169

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

|𝑤⟩

|𝑤,⟩|𝑣,⟩

𝑝

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

170

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

|𝑤⟩

|𝑤,⟩|𝑣,⟩
𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

171

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

172

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

173

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements,
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

174

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements,
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

175

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements,
we jump between four states

𝑝

|𝑣,⟩
𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

176

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements,
we jump between four states

𝑝

|𝑣,⟩
𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

177

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements,
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

178

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements,
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

𝕀 − Π+𝕀 − Π*

179

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

180

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements,
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

181

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements,
we jump between four states

𝑝

|𝑤⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

182

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D When we alternate measurements,
we jump between four states

Π*

Π+

|𝑣⟩

𝜃 |𝑤⟩

|𝑤,⟩|𝑣,⟩

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

Claim 1: (Π$, 𝕀 − Π$) accepts in
𝜆/𝑝 steps with prob 1 − 2%&(().

𝕀 − Π+𝕀 − Π*

183

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D When we alternate measurements,
we jump between four states

Π*

Π+

𝕀 − Π+𝕀 − Π*

|𝑣⟩

𝜃 |𝑤⟩

|𝑤,⟩|𝑣,⟩

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

Claim 1: (Π$, 𝕀 − Π$) accepts in
𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$)
accepts, state is 𝑤 ∝ Π$|𝑣⟩.

184

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃 |𝑤⟩

|𝑤,⟩|𝑣,⟩

These are the guarantees we
want, but Π', Π" don’t live in 2D!

Claim 1: (Π$, 𝕀 − Π$) accepts in
𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$)
accepts, state is 𝑤 ∝ Π$|𝑣⟩.𝑝

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

𝕀 − Π+𝕀 − Π*

185

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

186

Do these claims extend to higher dimensions?

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

187

Do these claims extend to higher dimensions?

• For general Π$, Π(: no!

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

188

Do these claims extend to higher dimensions?

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

• For general Π$, Π(: no!
• For Π', Π" : yes!

189

Extremely Useful Tool
Jordan’s Lemma: For any Π#, Π$, we can decompose space into 2-dim
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.

190

𝜃-

Π.

Π/

Π.

Π/
Π*
Π/𝜃0

𝜃1

Jordan’s Lemma: For any Π#, Π$, we can decompose space into 2-dim
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.

𝑝2 = cos0(𝜃2)

Subspace 𝑆* Subspace 𝑆+ Subspace 𝑆A

Extremely Useful Tool

191

𝜃-

Π.

Π/

Π.

Π/
Π*
Π/𝜃0

𝜃1

Jordan’s Lemma: For any Π#, Π$, we can decompose space into 2-dim
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.

𝑝2 = cos0(𝜃2)

Subspace 𝑆* Subspace 𝑆+ Subspace 𝑆A

To analyze our simulator, it will be helpful to understand the Jordan
subspace decomposition for Π3, Π4 .

Extremely Useful Tool

192

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

193

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

Why? This is an immediate consequence of hiding.

194

1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.

Why? This is an immediate consequence of hiding.

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

195

1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.
2) Π. 𝜓 - 0 #+,

/ is the probability Guess(𝑉∗, |𝜓⟩) succeeds:

Why? This is an immediate consequence of hiding.

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

196

1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.
2) Π. 𝜓 - 0 #+,

/ is the probability Guess(𝑉∗, |𝜓⟩) succeeds:

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗, |𝜓⟩

Why? This is an immediate consequence of hiding.

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

197

Equivalently, 𝑝2 ≈ 1/2 in every Jordan subspace 𝑆2 (so 𝜃2 ≈ 𝜋/4).

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

198

Π3

Π4𝜃0

Π3

Π4𝜃-

Π3

Π4𝜃1
𝑝2 = cos0(𝜃2)

Equivalently, 𝑝2 ≈ 1/2 in every Jordan subspace 𝑆2 (so 𝜃2 ≈ 𝜋/4).

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

199

Π3

Π4𝜃0

Π3

Π4𝜃-

Π3

Π4𝜃1
𝑝2 = cos0(𝜃2)

We can now extend the 2-D analysis to our simulator!

Equivalently, 𝑝2 ≈ 1/2 in every Jordan subspace 𝑆2 (so 𝜃2 ≈ 𝜋/4).

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

200

Previously, we claimed the following for Π*, Π+ in 2-D:

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

201

Previously, we claimed the following for Π*, Π+ in 2-D:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

202

These claims extend to high-dim if all (Π#, Π$)-Jordan
subspaces have roughly equal 𝑝*.

Previously, we claimed the following for Π*, Π+ in 2-D:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

203

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

204

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

205

Intuition for Claim 1: the 2-D runtime analysis extends to higher
dimensions because the Π#, Π$ measurements act independently
on each Jordan subspace.

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

206

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

207

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.
• Alternating measurement results only depend on 𝑝* , but since

all 𝑝* ≈ 𝑝, the measurement outcomes give no signal about 𝑗.

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

208

Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.
• Alternating measurement results only depend on 𝑝* , but since

all 𝑝* ≈ 𝑝, the measurement outcomes give no signal about 𝑗.
• So the final state is ∝ ∑* 𝛼*Π$ 𝑣* = Π$ 𝑣 .

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

209

Since Π! and Π. satisfy 𝑝* ≈ 1/2 in all Jordan subspaces, we can
set Π# = Π! and Π$ = Π. to analyze the alternating measurements
simulator:

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

210

Since Π! and Π. satisfy 𝑝* ≈ 1/2 in all Jordan subspaces, we can
set Π# = Π! and Π$ = Π. to analyze the alternating measurements
simulator:
• By Claim 1, the simulator is efficient.
• By Claim 2, when 𝑀. → 1, the state is ∝ Π. 𝜓 |0⟩ as desired.

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$?

211

Technical Recap

We showed that Blum’s protocol is post-quantum PoK and ZK.

212

Technical Recap

Proof of knowledge:
• Collapse-binding commitments enable “lazy” measurement

We showed that Blum’s protocol is post-quantum PoK and ZK.

213

Technical Recap

Proof of knowledge:
• Collapse-binding commitments enable “lazy” measurement
• Unruh’s lemma: if protocol is collapsing, can record two accepting

transcripts given a 𝑝-successful adversary (with probability 𝑝1)

We showed that Blum’s protocol is post-quantum PoK and ZK.

214

Technical Recap

Proof of knowledge:
• Collapse-binding commitments enable “lazy” measurement
• Unruh’s lemma: if protocol is collapsing, can record two accepting

transcripts given a 𝑝-successful adversary (with probability 𝑝1)
Zero knowledge:

• Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

We showed that Blum’s protocol is post-quantum PoK and ZK.

215

Technical Recap

Proof of knowledge:
• Collapse-binding commitments enable “lazy” measurement
• Unruh’s lemma: if protocol is collapsing, can record two accepting

transcripts given a 𝑝-successful adversary (with probability 𝑝1)
Zero knowledge:

• Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

• Analyze alternating projectors via Jordan’s lemma

We showed that Blum’s protocol is post-quantum PoK and ZK.

Thank You!

Questions?

216

