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Post-Quantum Proof Techniques Part 1:

Introduction to Quantum Rewinding

Based on:
• “Quantum Proofs of Knowledge” by Dominique Unruh (2012)
• “Computationally Binding Quantum Commitments” by Dominique Unruh (2016)
• “Zero Knowledge Against Quantum Attacks” by John Watrous (2005)
• “Quantum Arthur Merlin Games” by Chris Marriott and John Watrous (2005)
• “Traité des substitutions et des équations algébriques” by Camille Jordan (1870)

Fermi Ma 
(Simons & Berkeley)
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Today’s Goal:
We want classical cryptography 
secure against quantum attacks

(post-quantum cryptography)
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How do cryptographers prove security?
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+=Crypto Security 
Proof

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

How do cryptographers prove security?

ReductionQuantum-Hard
Problem

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem
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Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

=Crypto Security 
Proof

Ex: learning with errors (LWE), isogenies, OWF

How do cryptographers prove security?

ReductionQuantum-Hard
Problem

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem
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Reduction+

Done?

Quantum-Hard
Problem=Crypto Security 

Proof

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

Ex: learning with errors (LWE), isogenies, OWF

How do cryptographers prove security?

efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem
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• Efficient classical P cannot make V accept assuming LWE.
• Efficient quantum P can convince V to accept.

accept/reject

Prover Verifier

In [BCMVV18] this is presented as a proof of quantumness.

[BCMVV18] 
Protocol

No!

Conjecture
classical security reduction + quantum-hard problem

→ post-quantum security?
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How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!

efficient classical 𝐴 wins security game
→ efficient classical 𝐴′ solves hard problem

Classical  
reduction:

efficient quantum 𝐴 wins security game
→ efficient quantum 𝐴′ solves hard problem

Quantum 
reduction:

How is this possible? 
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efficient classical 𝐴 wins security game
→ efficient classical 𝐴′ solves hard problem

Classical  
reduction:

efficient quantum 𝐴 wins security game
→ efficient quantum 𝐴′ solves hard problem

Quantum 
reduction:

Crucially, the classical security reduction for the 
[BCMVV18] protocol does not handle quantum attacks.

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!

How is this possible? 
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𝑎
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More generally, classical rewinding reductions do not 
capture quantum adversaries. 
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accept/reject

Prover Verifier
Claim: 𝑥 ∈ 3SAT

Proof of Knowledge: 
If 𝑃∗ convinces 𝑉 to accept, 
then 𝑃∗ must “know” a witness.

Zero Knowledge [GMR85]: 
View of malicious 𝑉∗ can be 
efficiently simulated without 𝑃.

Rest of this talk: extend classical rewinding reductions to handle 
quantum attacks, i.e., “quantum rewinding”

Focus: interactive proof systems
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What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol

3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
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Prover Verifier

𝐺 = 𝑎
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𝑑
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Blum’s Protocol for 
Hamiltonian Cycles

Prover Verifier

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝑎

𝑏 𝑐

𝑑

𝑒Sample 𝜋 ← 𝑆&.

Commit to the 
adjacency matrix 
of 𝜋(𝐺)
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Blum’s Protocol for 
Hamiltonian Cycles
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𝑎

𝑏 𝑐

𝑑

𝑒
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𝑑
𝑒

𝐺 = 𝑎
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𝑑
𝑒
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Commit to the 
adjacency matrix 
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Sample random 
𝑟 ← {0,1}
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Blum’s Protocol for 
Hamiltonian Cycles
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Prover Verifier
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𝑏 𝑐

𝑑

𝑒
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1 1 1

1

1
1
0 0
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𝑎

𝑏 𝑐

𝑑

𝑒

𝐺 = 𝑎
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𝑑
𝑒
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𝑑
𝑒

Sample 𝜋 ← 𝑆&.

Commit to the 
adjacency matrix 
of 𝜋(𝐺)

Sample random 
𝑟 ← {0,1}



57

Blum’s Protocol for 
Hamiltonian Cycles

𝑟

Prover Verifier

𝑎

𝑏 𝑐

𝑑

𝑒
(if 𝑟 = 1)(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

or

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Sample 𝜋 ← 𝑆&.

Commit to the 
adjacency matrix 
of 𝜋(𝐺)

Sample random 
𝑟 ← {0,1}
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Proof of knowledge (intuition)

By binding, the first message 
determines a graph 𝐻 such that:
• 𝐻 is a permutation of 𝐺
• 𝐻 contains a Ham cycle
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Proof of knowledge (intuition)

By binding, the first message 
determines a graph 𝐻 such that:
• 𝐻 is a permutation of 𝐺
• 𝐻 contains a Ham cycle

Zero knowledge (intuition)

First message reveals nothing since 
commitments are hiding.

Last message also reveals nothing:
• (𝑟 = 0) random permutation of 𝐺
• (𝑟 = 1) random cycle
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What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓
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Classical Proof of Knowledge

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then 
we can extract a witness from 𝑃∗.
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Rewinding: query 𝑃∗ repeatedly 
(on random 𝑟) until it answers 
successfully on 𝑟 = 0 and 1.𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Classical Proof of Knowledge
PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then 
we can extract a witness from 𝑃∗.



63

Rewinding: query 𝑃∗ repeatedly 
(on random 𝑟) until it answers 
successfully on 𝑟 = 0 and 1.

𝑐
0
𝑧,

rewind

𝑟
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1
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P V
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𝑎
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𝑧*

Classical Proof of Knowledge
PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then 
we can extract a witness from 𝑃∗.



64

Rewinding: query 𝑃∗ repeatedly 
(on random 𝑟) until it answers 
successfully on 𝑟 = 0 and 1.

𝑐
0
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rewind

𝑟

(if 𝑟 = 0)
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𝑎
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𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

1
𝑧*

Classical Proof of Knowledge
PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then 
we can extract a witness from 𝑃∗.

Get two accepting transcripts 
after 𝑂 *

- rewinds.
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PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then 
we can extract a witness from 𝑃∗.

Classical Proof of Knowledge

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
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P V

Blum’s Protocol for Hamiltonian Cycle
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𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Observation: two accepting 
transcripts → Ham cycle (unless 
𝑃∗ breaks binding)
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𝑎

𝑏 𝑐

𝑑
𝑒

1

1 1 1

1

1
1
0 0𝜋, 𝑎

𝑏 𝑐

𝑑
𝑒

1 1 1

1

1+

PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then 
we can extract a witness from 𝑃∗.

Classical Proof of Knowledge

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Observation: two accepting 
transcripts → Ham cycle (unless 
𝑃∗ breaks binding)
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Ham cycle 
for original 𝐺

PoK: If efficient classical 𝑃∗

convinces 𝑉 with prob *++ 𝜀, then 
we can extract a witness from 𝑃∗.

Classical Proof of Knowledge

𝑎

𝑏 𝑐

𝑑

𝑒

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Observation: two accepting 
transcripts → Ham cycle (unless 
𝑃∗ breaks binding)

0
𝑎

𝑏 𝑐

𝑑
𝑒

1

1 1 1

1

1
1
0 0𝜋, 𝑎

𝑏 𝑐

𝑑
𝑒

1 1 1

1

1+
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What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓
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Binding Against Quantum Attack 
Classical PoK for Blum relies on the binding property of the commitments.
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Binding Against Quantum Attack 
Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.
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Binding Against Quantum Attack 

Commitment 
Syntax com = Com./(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.
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Binding Against Quantum Attack 

Commitment 
Syntax com = Com./(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

Classical definition:
PPT adversary can’t output com and valid 𝑚,, 𝑑, , (𝑚*, 𝑑*) for 𝑚, ≠ 𝑚*.



73

Binding Against Quantum Attack 

Commitment 
Syntax com = Com./(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Can we just replace PPT with QPT?

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

Classical definition:
PPT adversary can’t output com and valid 𝑚,, 𝑑, , (𝑚*, 𝑑*) for 𝑚, ≠ 𝑚*.
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Binding Against Quantum Attack 

Classical definition:
PPT adversary can’t output com and valid 𝑚,, 𝑑, , (𝑚*, 𝑑*) for 𝑚, ≠ 𝑚*.

Commitment 
Syntax

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
com = Com./(𝑚; 𝑑).

Can we just replace PPT with QPT?

[ARU14]: No!

Classical PoK for Blum relies on the binding property of the commitments.
But for quantum attackers, we’ll need to revisit the definition of binding.

com = Com./(𝑚; 𝑑)
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Naïve post-quantum binding def: 
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
com

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
com

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
• But can only do this once!  

com

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce com, |𝜓⟩ such that:

• Can use |𝜓⟩ to open com to any 𝑚
• But can only do this once!  

com

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output com and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?

*Caveat: assuming a quantum oracle
**Open: construct example without oracles



80

A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
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A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
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A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
Run verifier in superposition on 𝑀,𝐷 and 
measure its output (accept or reject); abort 
if reject. 
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A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
Run verifier in superposition on 𝑀,𝐷 and 
measure its output (accept or reject); abort 
if reject. On accept, state looks like 
∑345 6,8 9:45 𝑚 0 𝑑 1.
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A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

Expt2
Run verifier in superposition on 𝑀,𝐷 and 
measure its output (accept or reject); abort 
if reject. On accept, state looks like 
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷. 
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.
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A Better Definition: Collapse-Binding [Unruh16]

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and 
measure its output (accept or reject); abort 
if reject. On accept, state looks like 
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷. 
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.
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A Better Definition: Collapse-Binding [Unruh16]

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and 
measure its output (accept or reject); abort 
if reject. On accept, state looks like 
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷. 
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.
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A Better Definition: Collapse-Binding [Unruh16]

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and 
measure its output (accept or reject); abort 
if reject. On accept, state looks like 
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷. 
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.

Intuition: if Com is perfectly binding, Expt, and Expt* are perfectly 
indistinguishable since there is only one valid 𝑚 for any com. 
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A Better Definition: Collapse-Binding [Unruh16]

Intuition: if Com is perfectly binding, Expt, and Expt* are perfectly 
indistinguishable since there is only one valid 𝑚 for any com. Collapse-
binding asks for a computational version of this property.

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Run verifier in superposition on 𝑀,𝐷 and 
measure its output (accept or reject); abort 
if reject. On accept, state looks like 
∑345 6,8 9:45 𝑚 0 𝑑 1.
• If 𝑏 = 0: return 𝑀,𝐷. 
• If 𝑏 = 1: measure 𝑀 and return 𝑀,𝐷.



89

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷. 
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

Why this definition?
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Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷. 
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed 

definitions, composable, easy to construct (implied by LWE), etc.
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Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷. 
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed 

definitions, composable, easy to construct (implied by LWE), etc.
• But most importantly, this definition makes rewinding possible!
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Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷. 
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

[U12,U16]: Blum is a post-quantum PoK if the underlying commitments are 
collapse-binding.*

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed 

definitions, composable, easy to construct (implied by LWE), etc.
• But most importantly, this definition makes rewinding possible!



93

Collapse-binding: Expt, ≈; Expt*

com,∑ 𝑚 0 𝑑 1

𝑀,𝐷

Expt2
Check if 𝑀,𝐷 is valid for com; abort if not.
• If 𝑏 = 0, return 𝑀,𝐷. 
• If 𝑏 = 1, measure 𝑀 and return 𝑀,𝐷.

*[U12,U16] analyze a slightly modified version of Blum’s protocol, but later on [LMS22] 
showed the original Blum protocol is post-quantum secure.

Why this definition?
• Many good reasons: avoids [ARU14] attack, implies other proposed 

definitions, composable, easy to construct (implied by LWE), etc.
• But most importantly, this definition makes rewinding possible!

[U12,U16]: Blum is a post-quantum PoK if the underlying commitments are 
collapse-binding.*
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What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓
✓
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How do collapse-binding commitments help with rewinding?



96

How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 

|𝜓⟩

com
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|𝜓⟩ 𝑟
com
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• Difficulty: recording response disturbs adversary’s state. 

|𝜓⟩ 𝑟
𝑚, 𝑑
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How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 
• But if the response is the opening to a collapse-binding 

commitment, we can “lazily” measure 𝑚. 

|𝜓⟩ 𝑟
𝑚, 𝑑

com
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How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 
• But if the response is the opening to a collapse-binding 

commitment, we can “lazily” measure 𝑚. 

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

com “Lazy” Measurement:
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How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 
• But if the response is the opening to a collapse-binding 

commitment, we can “lazily” measure 𝑚. 

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 ( 𝑑 )

com “Lazy” Measurement:
(1) Run adversary’s unitary to 
generate superposition of 
responses on registers 𝑀,𝐷.
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How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 
• But if the response is the opening to a collapse-binding 

commitment, we can “lazily” measure 𝑚. 

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 ( 𝑑 )

com “Lazy” Measurement:
(1) Run adversary’s unitary to 
generate superposition of 
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.
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How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 
• But if the response is the opening to a collapse-binding 

commitment, we can “lazily” measure 𝑚. 

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 ( 𝑑 )

com “Lazy” Measurement:
(1) Run adversary’s unitary to 
generate superposition of 
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.
(3) If so, measure 𝑀.
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How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 
• But if the response is the opening to a collapse-binding 

commitment, we can “lazily” measure 𝑚. Collapse-binding 
guarantees that step (3) is computationally undetectable!

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 ( 𝑑 )

com “Lazy” Measurement:
(1) Run adversary’s unitary to 
generate superposition of 
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.
(3) If so, measure 𝑀.
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How do collapse-binding commitments help with rewinding?

• Difficulty: recording response disturbs adversary’s state. 
• But if the response is the opening to a collapse-binding 

commitment, we can “lazily” measure 𝑚. Collapse-binding 
guarantees that step (3) is computationally undetectable!

|𝜓⟩ 𝑟
𝑚, 𝑑

com
|𝜓⟩ 𝑟

∑ 𝑚 ( 𝑑 )

com “Lazy” Measurement:
(1) Run adversary’s unitary to 
generate superposition of 
responses on registers 𝑀,𝐷.
(2) Check if 𝑀,𝐷 is valid.
(3) If so, measure 𝑀.

Key point: with collapse-binding commitments, we just need 
to consider measuring the 1-bit decision (accept/reject).
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1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟. 

Aside: Π< = 𝑈<
B ∑CDE 6,8 9* 𝑚,𝑑 𝑚, 𝑑 𝑈< where 𝑈< is the adversary’s 

unitary for challenge 𝑟.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A



110

• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

By [U12], if we run the adversary on two random 
challenges, it succeeds twice w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩

By [U12], if we run the adversary on two random 
challenges, it succeeds twice w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩ 𝑠

acc/rej

By [U12], if we run the adversary on two random 
challenges, it succeeds twice w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩ 𝑠

acc/rej

By [U12], if we run the adversary on two random 
challenges, it succeeds twice w/ prob ≥ 𝑝A.
If adversary is opening a collapse-binding 
commitment, then we record two accepting 
transcripts w/ prob ≥ 𝑝A.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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• Define (Π<, 𝕀 − Π<) to measure whether adversary succeeds on 𝑟.
• If adversary’s state is |𝜓⟩, its success probability is 𝑝 = 𝔼<←> Π<|𝜓 ‖+.

|𝜓⟩ 𝑟

acc/rej

|𝜓′⟩ 𝑠

acc/rej

By [U12], if we run the adversary on two random 
challenges, it succeeds twice w/ prob ≥ 𝑝A.
If adversary is opening a collapse-binding 
commitment, then we record two accepting 
transcripts w/ prob ≥ 𝑝A.

Annoying detail: this is only useful if 𝑟 ≠ 𝑠. For Blum (𝑅 = {0,1}), we only 
extract a witness with Ω(𝜀) probability when 𝑝 ≥ 1/ 2 + 𝜀.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

• If 𝑝 is close to 1, then Π<|𝜓⟩ is not too far from |𝜓⟩ (in expectation). 

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

• If 𝑝 is close to 1, then Π<|𝜓⟩ is not too far from |𝜓⟩ (in expectation). So if 
we perform another random measurement (Π@, 𝕀 − Π@), it should still have 
a reasonable chance of accepting.

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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We won’t prove this lemma, but it is reminiscent of “gentle measurement”:

• If 𝑝 is close to 1, then Π<|𝜓⟩ is not too far from |𝜓⟩ (in expectation). So if 
we perform another random measurement (Π@, 𝕀 − Π@), it should still have 
a reasonable chance of accepting.

(However, this bound is much stronger than a gentle measurement bound)

1-bit Rewinding Lemma [Unruh12]: For any state |𝜓⟩ and set of projectors 
Π< <∈>, if 𝑝 = 𝔼<←> Π<|𝜓 ‖+, then 𝔼<←>,@←> Π@Π<|𝜓 ‖+ ≥ 𝑝A
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Putting It Together
Step 2: 1-bit-rewinding lemma [U12]: 

If we run a 𝑝-successful adversary on 
2 random challenges (and only 
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing 
commitments [U16]: 

recording adversary’s 
response ≈; recording 1-bit 
decision

+



120

Putting It Together
Step 2: 1-bit-rewinding lemma [U12]: 

If we run a 𝑝-successful adversary on 
2 random challenges (and only 
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing 
commitments [U16]: 

recording adversary’s 
response ≈; recording 1-bit 
decision

+

Theorem: If a quantum 𝑃∗ convinces 𝑉 to accept with probability ≥
1/ 2 + 𝜀, we can extract a witness with probability Ω(𝜀).
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Step 2: 1-bit-rewinding lemma [U12]: 

If we run a 𝑝-successful adversary on 
2 random challenges (and only 
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing 
commitments [U16]: 

recording adversary’s 
response ≈; recording 1-bit 
decision

+

Theorem: If a quantum 𝑃∗ convinces 𝑉 to accept with probability ≥
1/ 2 + 𝜀, we can extract a witness with probability Ω(𝜀).

Remember that for classical 𝑃∗, we just need 1/2 + 𝜀, and we 
extract with probability ≈ 1.
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Putting It Together
Step 2: 1-bit-rewinding lemma [U12]: 

If we run a 𝑝-successful adversary on 
2 random challenges (and only 
measure the 1-bit decision), then:

Pr succeed twice ≥ 𝑝A

Step 1: Collapsing 
commitments [U16]: 

recording adversary’s 
response ≈; recording 1-bit 
decision

+

Theorem: If a quantum 𝑃∗ convinces 𝑉 to accept with probability ≥
1/ 2 + 𝜀, we can extract a witness with probability Ω(𝜀).

Remember that for classical 𝑃∗, we just need 1/2 + 𝜀, and we 
extract with probability ≈ 1.

In the next talk, we’ll see a different quantum rewinding 
technique that achieves the original classical guarantees.
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What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓
✓

✓
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Classical Zero Knowledge

Key Property: can simulate honest 
verifier that sends random bit
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• If 𝑟F = 0, generate 𝑐, 𝑧 using a 
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verifier that sends random bit
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𝑟
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𝑎
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𝑑

𝑒
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𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟F ← 0,1

2) Generate transcript (𝑐, 𝑟F, 𝑧):
• If 𝑟F = 0, generate 𝑐, 𝑧 using a 

random permutation of 𝐺
• If 𝑟F = 1, generate 𝑐, 𝑧 using a 

random cycle graph

By hiding, 𝑐, 𝑟F, 𝑧 ← HVSim
looks like honest-verifier view.

Classical Zero Knowledge

Key Property: can simulate honest 
verifier that sends random bit
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Classical Zero Knowledge
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
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𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
𝑐
𝑟

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.
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Otherwise, output ⊥.

𝑐
𝑟
𝑧
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𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):
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Otherwise, output ⊥.
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𝑟
𝑧

(if 𝑟 = 𝑟′)

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.



136

Classical Zero Knowledge
HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

We combine this with rewinding to get the full ZK simulator:

Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗
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What this talk will cover:
1. Is LWE all we need for post-quantum security?
2. Review: Blum’s Hamiltonicity protocol
3. Post-quantum proof of knowledge (PoK):
• Review: classical proof of knowledge
• How to define post-quantum commitments
• Unruh’s 1-bit rewinding lemma

4. Post-quantum ZK for Blum’s protocol
• Review: classical zero knowledge
• Watrous’s ZK rewinding lemma

✓
✓

✓
✓

✓

✓
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Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a 
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.
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Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a 
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.
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Guess(𝑉∗):

1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim

2) If 𝑟 = 𝑟F, output 𝑐, 𝑟F, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟F ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a 
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.

But there is a different simulator due to [Watrous05] that works.



141

[Watrous05]: If commitment scheme is hiding, then 
the Blum protocol is post-quantum ZK.
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Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

If commitments are hiding, can still simulate with probability 1/2.
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Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

If commitments are hiding, can still simulate with probability 1/2.

We’ll write this process as a quantum circuit on |𝜓⟩.
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Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view 

(state + transcript)

0 ;H

𝐶𝑍

0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond 
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as 
running Guess(𝑉∗, |𝜓⟩).
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Post-Quantum ZK of Blum [Watrous05]

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view 

(state + transcript)

0 ;H
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0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond 
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as 
running Guess(𝑉∗, |𝜓⟩).
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Post-Quantum ZK of Blum [Watrous05]

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view 

(state + transcript)

0 ;H

𝐶𝑍

0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond 
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as 
running Guess(𝑉∗, |𝜓⟩).

Define projector ΠG ≔ 𝑈G
BΠ>9>!𝑈G. 

Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.



147

Post-Quantum ZK of Blum [Watrous05]

𝜓 & 0 >

𝑈G

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view 

(state + transcript)

0 ;H

𝐶𝑍

0 >!

𝑅F

0 I

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond 
to 𝑐, 𝑟, 𝑧, 𝑟F

• Computing 𝑈G 𝜓 |0⟩ and checking if 𝑅 = 𝑅F is the same as 
running Guess(𝑉∗, |𝜓⟩).

Define projector ΠG ≔ 𝑈G
BΠ>9>!𝑈G. 

Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.
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Post-Quantum ZK of Blum [Watrous05]
Define projector ΠG ≔ 𝑈G

BΠ>9>!𝑈G. 
Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

Rough Intuition: 

• Each (ΠG , 𝕀 − ΠG) measurement is one simulation attempt.



149

Post-Quantum ZK of Blum [Watrous05]
Define projector ΠG ≔ 𝑈G

BΠ>9>!𝑈G. 
Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

Rough Intuition: 

• Each (ΠG , 𝕀 − ΠG) measurement is one simulation attempt.

• Applying (ΠG , 𝕀 − ΠG) twice in a row gives the same outcome 
(no help).
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Post-Quantum ZK of Blum [Watrous05]
Define projector ΠG ≔ 𝑈G

BΠ>9>!𝑈G. 
Intuition: (ΠG , 𝕀 − ΠG) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

Rough Intuition: 

• Each (ΠG , 𝕀 − ΠG) measurement is one simulation attempt.

• Applying (ΠG , 𝕀 − ΠG) twice in a row gives the same outcome 
(no help).

• We’ll write down an𝑀, measurement to “reset” each attempt.
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The Post-Quantum ZK Simulator [MW05, W05]
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)
1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

𝑀G 𝑀, 𝑀G

0 0 1 ✓

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 JKL
𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

But why does this simulator work? Need to resolve:

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).

But why does this simulator work? Need to resolve:
• Efficiency: How long (if ever) until 𝑀G → 1?
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The Post-Quantum ZK Simulator [MW05, W05]

1) Initialize 𝜓 & 0 JKL. Let Π, = |0⟩⟨0|JKL.
2) Alternate 𝑀G = (ΠG , 𝕀 − ΠG) and 𝑀, = (Π,, 𝕀 − Π,) until 𝑀G → 1.
3) Generate verifier’s view (apply 𝑈G).

Sim(𝑉∗, |𝜓⟩)

ΠG 𝜓 & 0 JKL

(we’ll see why)
0 JKL

𝑀G 𝑀, 𝑀G 𝑀, 𝑀G

0 1 0 0 1 ✓

𝜓 &

But why does this simulator work? Need to resolve:
• Efficiency: How long (if ever) until 𝑀G → 1?

• Simulation: After 𝑀G → 1, why is the state is ΠG 𝜓 & 0 JKL?
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Understanding Alternating Measurements [MW05]
What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*



167

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

|𝑤⟩

|𝑤,⟩|𝑣,⟩

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

|𝑤⟩

|𝑤,⟩|𝑣,⟩

𝑝

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

|𝑤⟩

|𝑤,⟩|𝑣,⟩
𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑣,⟩
𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑣,⟩
𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤,⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

𝕀 − Π+𝕀 − Π*



179

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤⟩

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D When we alternate measurements, 
we jump between four states

Π*

Π+

|𝑣⟩

𝜃 |𝑤⟩

|𝑤,⟩|𝑣,⟩

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

Claim 1: (Π$, 𝕀 − Π$) accepts in 
𝜆/𝑝 steps with prob 1 − 2%&(().

𝕀 − Π+𝕀 − Π*
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D When we alternate measurements, 
we jump between four states

Π*

Π+

𝕀 − Π+𝕀 − Π*

|𝑣⟩

𝜃 |𝑤⟩

|𝑤,⟩|𝑣,⟩

𝑝

𝑝

𝑝|𝑣⟩

|𝑣O⟩

|𝑤⟩

|𝑤O⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣O⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

Claim 1: (Π$, 𝕀 − Π$) accepts in 
𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$)
accepts, state is 𝑤 ∝ Π$|𝑣⟩.
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π*

Π+

|𝑣⟩

𝜃 |𝑤⟩

|𝑤,⟩|𝑣,⟩

These are the guarantees we 
want, but Π', Π" don’t live in 2D!

Claim 1: (Π$, 𝕀 − Π$) accepts in 
𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$)
accepts, state is 𝑤 ∝ Π$|𝑣⟩.𝑝

𝑝 ≔ ΠM 𝑣⟩‖+
= 𝑐𝑜𝑠+(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π+𝕀 − Π*
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If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?



186

Do these claims extend to higher dimensions?

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Do these claims extend to higher dimensions?

• For general Π$, Π( : no!

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Do these claims extend to higher dimensions?

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

• For general Π$, Π( : no! 
• For Π', Π" : yes!
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Extremely Useful Tool
Jordan’s Lemma: For any Π#, Π$ , we can decompose space into 2-dim 
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.
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𝜃-

Π.

Π/

Π.

Π/
Π*
Π/𝜃0

𝜃1

Jordan’s Lemma: For any Π#, Π$ , we can decompose space into 2-dim 
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.

𝑝2 = cos0(𝜃2)

Subspace 𝑆* Subspace 𝑆+ Subspace 𝑆A

Extremely Useful Tool
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𝜃-

Π.

Π/

Π.

Π/
Π*
Π/𝜃0

𝜃1

Jordan’s Lemma: For any Π#, Π$ , we can decompose space into 2-dim 
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.

𝑝2 = cos0(𝜃2)

Subspace 𝑆* Subspace 𝑆+ Subspace 𝑆A

To analyze our simulator, it will be helpful to understand the Jordan 
subspace decomposition for Π3, Π4 .

Extremely Useful Tool
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Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.
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Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.

Why? This is an immediate consequence of hiding. 
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1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.

Why? This is an immediate consequence of hiding. 

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.



195

1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.
2) Π. 𝜓 - 0 #+,

/ is the probability Guess(𝑉∗, |𝜓⟩) succeeds: 

Why? This is an immediate consequence of hiding. 

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.



196

1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.
2) Π. 𝜓 - 0 #+,

/ is the probability Guess(𝑉∗, |𝜓⟩) succeeds: 

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟F, 𝑧 ← HVSim
2) If 𝑟 = 𝑟F, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗, |𝜓⟩

Why? This is an immediate consequence of hiding. 

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.
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Equivalently, 𝑝2 ≈ 1/2 in every Jordan subspace 𝑆2 (so 𝜃2 ≈ 𝜋/4).

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.
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Π3

Π4𝜃0

Π3

Π4𝜃-

Π3

Π4𝜃1
𝑝2 = cos0(𝜃2)

Equivalently, 𝑝2 ≈ 1/2 in every Jordan subspace 𝑆2 (so 𝜃2 ≈ 𝜋/4).

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.
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Π3

Π4𝜃0

Π3

Π4𝜃-

Π3

Π4𝜃1
𝑝2 = cos0(𝜃2)

We can now extend the 2-D analysis to our simulator!

Equivalently, 𝑝2 ≈ 1/2 in every Jordan subspace 𝑆2 (so 𝜃2 ≈ 𝜋/4).

Key Fact: for any 𝜙 ∈ image(Π3), we have Π4 𝜙⟩‖0 ≈ 1/2.
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Previously, we claimed the following for Π*, Π+ in 2-D: 

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Previously, we claimed the following for Π*, Π+ in 2-D: 

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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These claims extend to high-dim if all (Π#, Π$)-Jordan 
subspaces have roughly equal 𝑝*.

Previously, we claimed the following for Π*, Π+ in 2-D: 

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:
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Intuition for Claim 1: the 2-D runtime analysis extends to higher 
dimensions because the Π#, Π$ measurements act independently 
on each Jordan subspace.

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.
• Alternating measurement results only depend on 𝑝* , but since 

all 𝑝* ≈ 𝑝, the measurement outcomes give no signal about 𝑗.

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.
• Alternating measurement results only depend on 𝑝* , but since 

all 𝑝* ≈ 𝑝, the measurement outcomes give no signal about 𝑗.
• So the final state is ∝ ∑* 𝛼*Π$ 𝑣* = Π$ 𝑣 .

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Since Π! and Π. satisfy 𝑝* ≈ 1/2 in all Jordan subspaces, we can 
set Π# = Π! and Π$ = Π. to analyze the alternating measurements 
simulator:

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Since Π! and Π. satisfy 𝑝* ≈ 1/2 in all Jordan subspaces, we can 
set Π# = Π! and Π$ = Π. to analyze the alternating measurements 
simulator:
• By Claim 1, the simulator is efficient.
• By Claim 2, when 𝑀. → 1, the state is ∝ Π. 𝜓 |0⟩ as desired.

If all (Π*, Π+)-Jordan subspaces have 𝑝2 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Technical Recap

We showed that Blum’s protocol is post-quantum PoK and ZK.
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• Collapse-binding commitments enable “lazy” measurement
• Unruh’s lemma: if protocol is collapsing, can record two accepting 

transcripts given a 𝑝-successful adversary (with probability 𝑝1)
Zero knowledge:

• Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

We showed that Blum’s protocol is post-quantum PoK and ZK.
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Technical Recap

Proof of knowledge:
• Collapse-binding commitments enable “lazy” measurement
• Unruh’s lemma: if protocol is collapsing, can record two accepting 

transcripts given a 𝑝-successful adversary (with probability 𝑝1)
Zero knowledge:

• Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

• Analyze alternating projectors via Jordan’s lemma

We showed that Blum’s protocol is post-quantum PoK and ZK.



Thank You!

Questions?
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