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X is a bit flip: X|b) = |1 — b)
i 7 is a phase flip: Z|b) = (—1)"|b)
'+ Fact: X“Zb|1/J) is “maximally mixed”
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19




9, S -
A sender &@ _ (X9Z°|u), C) / receiver

1) a, b« {0,1} 1) Verify C,a, b, r
2) C = Com((a, b); ) &= (a,b1) 2) Apply ZP X4 to get |i)

>

Security seems “obvious”...

Hiding (commitment hides |y) from receiver)
* Intuition: X2Z? |y) is maximally mixed and C hides a, b.
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A sender &@ _ (X9Z°|u), C) / receiver

1) a, b« {0,1} 1) Verify C,a, b, r
2) C = Com((a, b); ) &= (a,b1) 2) Apply ZP X4 to get |i)

>

Security seems “obvious”...

Binding (sender can only open to unique |y))
* Intuition: C is binding to a, b and receiver holds X¢Z? ).
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1) a, b« {0,1} 1) Verify C,a, b, r
2) C = Com((a, b); ) &= (abr) 2) Apply ZbX® to get [)

>

sender can only open to unique [y)
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definitions

binding: committing to [y) erases it from sender’s view.

« handles entanglement « extends classical-msg binding
 falsifiable, composable  hiding-binding duality!

constructions

(1) hiding-binding QSC (formalizing folklore)
(2) first succinct QSC (Jcommitment| < [message])

« (1), (2) are non-interactive + use weaker-than-OWF assumptions

applications

succinct QSC + quantum PCP — succinct arguments

« 3-msg succinct arg for NP from weaker-than-OWF assumptions

classical comparison: [Kilian92] is 4 messages + assumes CRHFs
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his work: a theory of quantum state commitments (QSCs)

definitions binding: committing to |y) erases it from sender’s view.
« handles entanglement « extends classical-msg binding
 falsifiable, composable  hiding-binding duality!

constructions (1) hiding-binding QSC (formalizing folklore)
(2) first succinct QSC (Jcommitment| < [message])

« (1), (2) are non-interactive + use weaker-than-OWF assumptions

applications succinct QSC + quantum PCP — succinct arguments

« 3-msg succinct arg for NP from weaker-than-OWF assumptions
« extends to QMA assuming quantum PCP conjecture!
* new tools to rewind quantum protocols/extract quantum states
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1) What does it mean to commit to a quantum state?
2) Can we commit to a quantum state?

3) Application: quantum succinct arguments



Plan for today

1) What does it mean to commit to a quantum state?



Step 0: basic syntax for QSCs
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Step 0: basic syntax for QSCs

9

()
sender
Y) — B
Com
04)— —

S
()

> receiver

- Jcom,)

—

Com?

— Recover |)
. Measure and

reject if not 04

 To commit to |): prepare |Com¢)

commit, send

« To verify: apply Com™ and check if the last A qubits are 0

to decommit.

= Com|y)|0%), send € to

(any QSC can be rewritten in this form)



What does it mean to commit to a quantum state?



Classical binding definition: Adv can’t output commitment ¢ and two
valid openings (mg, 1p), (m4, 1) to distinct messages my # m;.
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Classical binding definition: Adv can't output commitment ¢ and two
valid openings (mg, 1p), (m4, 1) to distinct messages my # m;.

This definition completely fails for guantum state commitments.

Many problems:
1) Verifying the first opening might disturb the commitment.
2) Challenger can't check ¥, # !

3) Quantum attacker might not produce two openings simultaneously.

As a result, our new definition looks quite different...
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Our Definition: Swap Binding

9, Challenger
Q 1) Verify C,
malicious
sender = |2)b < {0,1}. If b = 0, swap [p) with junk.
!
b’ Binding: Pr[b’ = b] < 1/2 + negl(4)
O N -
0) Tt 1)
‘swap |yP) with junk” =

|

|
<
~

|

|

O

~

|
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Our Definition: Swap Binding

9, Challenger
Q CD, 1) Verify C, D.
malicious
sender 2) b « {0,1}. If b = 0, swap [p) with junk.
‘I
b Binding: Pr[b’ = b] < 1/2 + negl(})

Informally: [comy) =~ |comg)cp
(given only the D part)
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Swapping-Distinguishing Equivalence [AAS20]

These are for orthogonal |x), |y):

(1) Swapping [x) & [y) )

(2) Distinguishing |x) + [y) vs |x) — |y) %) + |y)
Proof Sketch: / 1)
Mpiee distinguishes |x) + |y) vs [x) — |y)

iff 2I1p;c — Id (reflection about Ip;gt)

swaps |x) & |y). ) — |y)
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Defining Binding for QSCs: Intuition

Suppose the sender honestly commits to a classical bit.

Sender can't swap |comg)p < |comy )y (given only D).

Equivalently, |com ), = [com_)qp (given only D).

/7 N\
/ N\
/ N\

Com|+) 0’1)
|comg) + |com;)

ComI—)|O7L)
|comg) — |com;)

This is (essentially) [Unruh16]'s collapse-binding definition,
extended to quantum bit commitments.
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What if the sender honestly commits to an arbitrary state |y)?

Sender can't swa

Equivalently, [comy, 1) =

D |comyy) (—>‘C0m¢L> (given only D)

com,,_,,1) (given only D)

This is guaranteed

comy),, ~

Dy swap-binding, which says:

comg)cp (given only D)

Swapping-distinguishing makes it possible to test if sender changes .




Defining Binding for QSCs: Intuition

What if the sender honestly commits to an arbitrary state |y)?

Sender can't swap |com,) ¢ |com,,1) (given only D)

Equivalently, |comy, 1) = |comy_,1) (given only D)

This is guaranteed by swap-binding, which says:

[comy) =~ |comg)cp (given only D)

This paper: swap-binding captures security against arbitrary
malicious senders.
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9, Challenger
Q CD, 1) Verify C, D.
malicious
sender 2) b < {0,1}. If b = 0, swap [p) with junk.
|
b’ Swap Binding: Pr[b’ = b] < 1/2 + negl(A)

Additional Properties

handles entangled messages
composable

statistical or computational
formalizes folklore (QSCs exist iff quantum bit commitments exist)



9, Challenger
Q 1) Verify C,
malicious
sender «——=__|2)b < {0,1}. If b = 0, swap |yp) with junk.
|
b’ Swap Binding: Pr[b’ = b] < 1/2 + negl(1)

Additional Properties

Bonus: swap-binding is dual to hiding!
swap-binding means D hides i
hiding means € hides ¥ (same game but adversary gets )
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Hiding-Binding Duality

 Primal scheme: C is the commitment

¥) —
04)—

d D is th ing.
Com and D is the opening

— C « Dual scheme: D is the commitment

and C is the opening.

Immediate consequence of hiding/binding definitions:

For X € {statistically, computationally}:
primal is X-binding < dual is X-hiding

primal is X-hiding < dual is X-binding
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2) Can we succinctly commit to a quantum state?
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Succinct commir

Succinct QSC:
e lcommitment| < n qubits

‘'ment to an n-qubit state

* binding
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with a short classical key (opening).

Example: guantum one-time-pad |) with pseudorandom string.
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Succinct commitment to an n-qubit state

Succinct QSC: Dual scheme: Encryption!

* [commitment| <n qubits | &= |* |opening| < n qubits
* binding * hiding

Dual is easy to construct: just need to a quantum state
with a short classical key (opening).

Example: guantum one-time-pad |) with pseudorandom string.

assume PRG G: Z"‘> R
/2 2 ¢
{0,1}%= - {0,1}°" -

Note: classical succinct commitments from PRGs is known!




Succinct commitment to an n-qubit state

Succinct QSC: Dual scheme: Encryption!

* [commitment| <n qubits | &= |* |opening| < n qubits
* binding * hiding

Dual is easy to construct: just need to a quantum state
with a short classical key (opening).

In fact, one-way functions might not be necessary!
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Succinct commitment to an n-qubit state

Succinct QSC:

e lcommitment| < n qubits
* binding

Dual is easy to construct: just need to
with a short classical key (opening).

—

Dual scheme: Encryption!
e lopening| < n qubits
* hiding

a quantum state

In fact, one-way functions might not be necessary! In the paper:

« This kind of encryption can be built from any pseudorandom
unitary and (by [K21]) is potentially weaker than OWFs.
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Useful property: succinct QSCs compose easily.
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Useful property: succinct QSCs compose easily.

« Domain extension: T-qubit compression — any compression

» Merkle tree: succinct commitments with local openings
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Com Com Com Com

| | | |
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| | | |
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Merkle tree commitments

97



just send this n/2-qubit state
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Com: C
n-qubit M - L
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Com Com Com Com
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| | | |
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Merkle tree commitments

since swap binding composes,
this is swap-binding on every
local opening.
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just send this n/2-qubit state

v
Com: C
n-qubit M - L
n/2-qubit C Com
104)
C C
] | | |
Com Com
10%4) 10%)
C C C C
| | | | | | | |
Com Com Com Com

| | | |
M; [0%) M, |0%)

(M, ..., M,) registers hold 4n qubits

| | | |
M; |0%) M4 |0%)

Merkle tree commitments

e since swap binding composes,
this is swap-binding on every
local opening.

e get succinct commitments
with local openings!

Note: this is similar to a heuristic
proposal of [Chen-Movassagh?2?]
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3) Application: quantum succinct arguments



Classically, tree commitments are the key cryptographic component
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Classically, tree commitments are the key cryptographic component
of succinct arguments for NP [Kilian92].

Succinct Arguments [Kilian92,Micali94]

Claim: x € 3SAT
’ _, accept
- or reject

« "Succinct” = very short communication + verification

« "Argument” = efficient prover can't fool verifier

Kilian’s protocol: tree commit to a locally checkable proof m (aka PCP).

98



This work: guantum succinct arguments

99



This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:
guantum tree commitments + quantum PCP — quantum succinct arguments
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This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:
guantum tree commitments + quantum PCP — quantum succinct arguments

_____ N

\ quantum PCP means quantum proof |r) that !
' can be verified by checking a few qubits.

(includes classical PCPs!)
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This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:

guantum tree commitments + quantum PCP — quantum succinct arguments

)

quantum proof |m)
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This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:

guantum tree commitments + quantum PCP — quantum succinct arguments

|rt7'c> —

rtr)

succinct
QSC ~

\

quantum proof |m)
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This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:

guantum tree commitments + quantum PCP — quantum succinct arguments

|rt7'c> —

rtr)

S

succinct
QSC ~ <

\

quantum proof |m)
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This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:

guantum tree commitments + quantum PCP — quantum succinct arguments

|rt7'c> —

rtr)

succinct
QSC ~ <

\

quantum proof |m)
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This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:
guantum tree commitments + quantum PCP — quantum succinct arguments

rty) = rtz)
succinct S -
056 (e ) -
\ lopen(s])

>

‘ , 1) Check if Jopen[S]) is valid.

quantum proof |m) 2) Apply ComT to reveal
| [S]) and run PCP verifier.
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This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:
guantum tree commitments + quantum PCP — quantum succinct arguments

Corollary: 3-msg succinct arguments for NP from less-than-OWF assumptions.

107




This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:
guantum tree commitments + quantum PCP — quantum succinct arguments

Corollary: 3-msg succinct arguments for NP from less-than-OWF assumptions.

recall Kilian's classical protocol:
« assumes collision-resistant hash functions (CRHFs)
« needs 4 messages (extra message to send CHRF key)

108




This work: guantum succinct arguments

We prove a quantum analogue of [Kilian92)]:
guantum tree commitments + quantum PCP — quantum succinct arguments

Corollary: 3-msg succinct arguments for NP from less-than-OWF assumptions.

recall Kilian's classical protocol:
« assumes collision-resistant hash functions (CRHFs)
« needs 4 messages (extra message to send CHRF key)

Corollary: 3-msg succinct arguments for QMA from less-than-OWF
assumptions + quantum PCP conjecture.
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We'll prove soundness by showing how to extract a
quantum PCP from any (successful) malicious prover.
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We'll prove soundness by showing how to extract a
quantum PCP from any (successful) malicious prover.

First: recall how this works for Kilian's classical protocol.

111



Soundness of Kilian's classical protocol

Classical adversary: record P’s answers to many random S.
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1) query ' on many random S, record m[S].
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Classical adversary: record P’s answers to many random S.

S

m|S], open|S] )

rewind

Classical reduction

1) query ' on many random S, record m[S].

extracted proof
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Soundness of Kilian's classical protocol

Classical adversary: record

52

<

[S;], open[S;]

's answers to many random S.

Classical reduction

extracted proof

1) query ' on many random S, record m[S].
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Soundness of Kilian's classical protocol

Classical adversary: record P’s answers to many random S.

Classical reduction
1) query ' on many random S, record m[S].

<
[S;], open[S;] )
g extracted proof

rewind

52
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Classical reduction
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) extracted proof

rewind
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Soundness of Kilian's classical protocol

Classical adversary: record P’s answers to many random S.

Classical reduction
1) query ' on many random S, record m[S].

<
m|S], open|S] )
g extracted proof

rewind

S

2) get convincing PCP or CRHF collision.
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Soundness of Kilian's classical protocol

Classical adversary: record P’s answers to many random S.

Classical reduction
1) query ' on many random S, record m[S].

<
m|S], open|S] )
g extracted proof

rewind

S

2) get convincing PCP or CRHF collision.

Quantum adversary: recording I''s answers is not straightforward because
measurement can disturb ''s state (rendering it useless for future queries).
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Soundness of Kilian's classical protocol

Classical adversary: record P’s answers to many random S.

Classical reduction
< > 1) query ' on many random S, record m[S].
m|S], open|S] )
>

extracted proof
rewind

2) get convincing PCP or CRHF collision.

Quantum adversary: recording I''s answers is not straightforward because
measurement can disturb ''s state (rendering it useless for future queries).

Recent work [C\VISZ22]: there is a way for “disturbed” I to answer later queries
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Quantum soundness of Kilian’s classical protocol [CMSZ22]
S

|P) Reduction
Repeat:

1) Run " - z in superposition,
measure if response is valid.
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Quantum soundness of Kilian’s classical protocol [CMSZ22]
S

<

|P) Reduction
2z} Repeat:

1) Run " - z in superposition,
measure if response is valid.
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

P)

S

<

212)|V (S, 2))

-

Reduction
Repeat:

1) Run " - z in superposition,
measure if response is valid.
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

) S
|P) S|2)V(S, Z)z rnent Reduction
1) Run " - z in superposition,
| Al=b measure if response is valid.
2) If valid, measure n[S].
Al = 7[S]
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

S
<
P Reduction
|l£’) : 1) Run " - z in superposition,
! | Al=b measure if response is valid.
— 2) If valid, measure m[S].
Al = 7[S] 3) Run “repair” procedure.
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

S

<
|P) Reduction

SI2IV (S, 2)) ) Repeat
|1£’) __rewind 1) Run " - z in superposition,
| | Al =b measure if response is valid.

— : 2) If valid, measure w[S].
Al = 1[S] 3) Run “repair” procedure.
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

) S
|P) ZI?)|V(S, Z)z ) rnent Reduction
|l£’) rewind 1) Run >z N super.posit.ion,
! | Al=b measure if response is valid.
o : 2) If valid, measure m[S].
Al = 7[S] 3) Run “repair” procedure.

Main idea [Unruh16, CMSZ22]

» Collapse-binding — step 2 causes no detectable disturbance
« |f step 2 doesn't disturb state, “repair” will restore prover's success prob.
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Our setting: we need to extract a quantum proof,
SO measuring the response isn’t enough.

132



Our setting: we need to extract a
SO measuring the response isn't enough.

But our definition suggests what to do instead!



Swap-based rewinding: on each accepting response, swap out
message onto external register
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The hope: eventually, external registers contain quantum PCP.
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Swap-based rewinding: on each accepting response, swap out
message onto external register

The hope: eventually, external registers contain quantum PCP.

|rtn> - _lrt’n>
______________ e B
° SWAP ,
lopen[S]) — 5| — |open'[S])

extracted proof  (in ComT basis)  extracted proof
(initially all |0))

137



Swap-based rewinding: on each accepting response, swap out
message onto external register

|rtn> - - |rt’n>
p : rewind
SWAP. ,
lopen[S]) — >|— |open’[S])

extracted proof  (in ComT basis)  extracted proof
(initially all |0))




Swap-based rewinding: on each accepting response, swap out
message onto external register

Key point: swap-binding says this is undetectable!

ey N |rt’n>
p : rewind
lopen([S]) — — |open’[S])

extracted proof  (in ComT basis)  extracted proof
(initially all |0))
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This approach nearly works.
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This approach WOrks.

Just one problem...

|[CMSZ22] repair requires that the reduction/extractor:

(1) can verify decommitments (extractor must have ()
(2) break binding (extractor must not have ()

For quantum commitments (1) and (2) are incompatiblel

Note: This is an issue even it we're only extracting classical
information from guantum commitments.
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This approach WOrks.

Just one problem...

|[CMSZ22] repair requires that the reduction/extractor:

(1) can verify decommitments (extractor must have ()
(2) break binding (extractor must not have ()

Our solution (see paper)

« Main technical step: Prove that swap-binding remains hard even if the
adversary is given an oracle to verity commitments + act on the message

« Show that this oracle suffices to implement CMSZ-style rewinding.
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Summary

Today:

* binding means the committed state is erased
 definition makes it easy to construct succinct QSCs

e guantum succinct arguments via swap-based rewinding

See paper:
e quantum sigma protocols for QMA from any hiding-binding QSC
« hiding-binding duality for guantum commitments to classical messages

Future Directions:

» do pseudorandom states imply succinct QSCs?

» classical communication QSCs?

« simpler technigues for rewinding quantum protocols?




Thank Youl

Questions?



