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• 3-msg succinct arg for NP from weaker-than-OWF assumptions
• extends to QMA assuming quantum PCP conjecture!
• new tools to rewind quantum protocols/extract quantum states
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Plan for today

1) What does it mean to commit to a quantum state?

2) Can we succinctly commit to a quantum state?

3) Application: quantum succinct arguments
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Classical binding definition: Adv can’t output commitment 𝑐 and two 
valid openings 𝑚!, 𝑟! , (𝑚", 𝑟") to distinct messages 𝑚! ≠ 𝑚".
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valid openings 𝑚!, 𝑟! , (𝑚", 𝑟") to distinct messages 𝑚! ≠ 𝑚".

Many problems:
1) Verifying the first opening might disturb the commitment.
2) Challenger can’t check 𝜓! ≠ 𝜓"!
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A priori, not obvious that a cryptographic definition is possible!
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This definition completely fails for quantum state commitments.

Many problems:
1) Verifying the first opening might disturb the commitment.
2) Challenger can’t check 𝜓! ≠ 𝜓"!
3) Quantum attacker might not produce two openings simultaneously.

As a result, our new definition looks quite different…

Classical binding definition: Adv can’t output commitment 𝑐 and two 
valid openings 𝑚!, 𝑟! , (𝑚", 𝑟") to distinct messages 𝑚! ≠ 𝑚".
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𝑪,𝑫



Com% ComCom

59

Our Definition: Swap Binding
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Our Definition: Swap Binding

Informally: com$ 𝐂𝐃
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(given only the 𝑫 part) 
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Why this definition?
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Swapping-Distinguishing Equivalence [AAS20]

These are equivalent for orthogonal 𝑥 , |𝑦⟩:
(1) Swapping 𝑥 ↔ |𝑦⟩
(2) Distinguishing 𝑥 + |y⟩ vs 𝑥 − |y⟩
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Swapping-Distinguishing Equivalence [AAS20]

These are equivalent for orthogonal 𝑥 , |𝑦⟩:
(1) Swapping 𝑥 ↔ |𝑦⟩
(2) Distinguishing 𝑥 + |y⟩ vs 𝑥 − |y⟩ 𝑥 + |y⟩

𝑥 − |y⟩

𝑥

𝑦

Π)*+,
Proof Sketch: 
Π)*+, distinguishes 𝑥 + |y⟩ vs 𝑥 − |y⟩
iff 2Π)*+, − Id (reflection about Π)*+,) 
swaps 𝑥 ↔ |𝑦⟩.
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Defining Binding for QSCs: Intuition

Suppose the sender honestly commits to a classical bit.

Necessary: Sender can’t swap com( 𝐂𝐃 ↔ com- 𝐂𝐃 (given only 𝐃). 
Equivalently, com. 𝐂𝐃 ≈ com/ 𝐂𝐃 (given only 𝐃). 
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Defining Binding for QSCs: Intuition

= Com + 0$
= com' + com(

= Com − 0$
= com' − com(

This is (essentially) [Unruh16]’s collapse-binding definition, 
extended to quantum bit commitments.

Suppose the sender honestly commits to a classical bit.

Necessary: Sender can’t swap com( 𝐂𝐃 ↔ com- 𝐂𝐃 (given only 𝐃). 
Equivalently, com. 𝐂𝐃 ≈ com/ 𝐂𝐃 (given only 𝐃). 
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What if the sender honestly commits to an arbitrary state |𝜓⟩?

Defining Binding for QSCs: Intuition

Necessary: Sender can’t swap com$ 𝐂𝐃
↔ com$! 𝐂𝐃

(given only 𝐃) 

Equivalently, com$.$! 𝐂𝐃
≈ com$/$! 𝐂𝐃

(given only 𝐃) 

This is guaranteed by swap-binding, which says:

com$ 𝐂𝐃
≈ com( 𝐂𝐃 (given only 𝑫) 
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What if the sender honestly commits to an arbitrary state |𝜓⟩?

Defining Binding for QSCs: Intuition

Necessary: Sender can’t swap com$ 𝐂𝐃
↔ com$! 𝐂𝐃

(given only 𝐃) 

Equivalently, com$.$! 𝐂𝐃
≈ com$/$! 𝐂𝐃

(given only 𝐃) 

This is guaranteed by swap-binding, which says:

com$ 𝐂𝐃
≈ com( 𝐂𝐃 (given only 𝑫) 

Swapping-distinguishing makes it possible to test if sender changes 𝜓.
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What if the sender honestly commits to an arbitrary state |𝜓⟩?

Defining Binding for QSCs: Intuition

Necessary: Sender can’t swap com$ 𝐂𝐃
↔ com$! 𝐂𝐃

(given only 𝐃) 

Equivalently, com$.$! 𝐂𝐃
≈ com$/$! 𝐂𝐃

(given only 𝐃) 

This is guaranteed by swap-binding, which says:

com$ 𝐂𝐃
≈ com( 𝐂𝐃 (given only 𝑫) 

This paper: swap-binding captures security against arbitrary 
malicious senders.
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Challenger

malicious
sender

𝑏′ Swap Binding: Pr[𝑏& = 𝑏] ≤ 1/2 + negl(𝜆)

1) Verify 𝑪,𝑫. 

2) 𝑏 ← {0,1}. If 𝑏 = 0, swap |𝜓⟩ with junk.𝑫
𝑪,𝑫

Additional Properties
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• handles entangled messages
• composable
• statistical or computational
• formalizes folklore (QSCs exist iff quantum bit commitments exist)

Additional Properties

Challenger

malicious
sender

𝑏′ Swap Binding: Pr[𝑏& = 𝑏] ≤ 1/2 + negl(𝜆)

1) Verify 𝑪,𝑫. 

2) 𝑏 ← {0,1}. If 𝑏 = 0, swap |𝜓⟩ with junk.𝑫
𝑪,𝑫
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Challenger

malicious
sender

𝑏′ Swap Binding: Pr[𝑏& = 𝑏] ≤ 1/2 + negl(𝜆)

1) Verify 𝑪,𝑫. 

2) 𝑏 ← {0,1}. If 𝑏 = 0, swap |𝜓⟩ with junk.𝑫
𝑪,𝑫

Bonus: swap-binding is dual to hiding! 

• swap-binding means 𝑫 hides 𝜓
• hiding means 𝑪 hides 𝜓 (same game but adversary gets 𝑪)

Additional Properties



78

Hiding-Binding Duality

Com
𝑫

|0#⟩

|𝜓⟩

𝑪
Com

• Primal scheme: 𝑪 is the commitment 
and 𝑫 is the opening.

• Dual scheme: 𝑫 is the commitment 
and 𝑪 is the opening.
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Hiding-Binding Duality

• Primal scheme: 𝑪 is the commitment 
and 𝑫 is the opening.

• Dual scheme: 𝑫 is the commitment 
and 𝑪 is the opening.

Com
𝑫

|0#⟩

|𝜓⟩

𝑪
Com

For X ∈ {statistically, computationally}: 
primal is X-binding ⟺ dual is X-hiding

primal is X-hiding⟺ dual is X-binding

Immediate consequence of hiding/binding definitions:
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Plan for today

2) Can we succinctly commit to a quantum state?
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Succinct commitment to an 𝑛-qubit state
Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding
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Succinct commitment to an 𝑛-qubit state

⟺
Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding

Dual scheme:
• |opening| < 𝑛 qubits 
• hiding
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Succinct commitment to an 𝑛-qubit state

⟺
Dual is easy to construct: just need to encrypt a quantum state 
with a short classical key (opening).

Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding

Dual scheme: Encryption!
• |opening| < 𝑛 qubits 
• hiding
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Succinct commitment to an 𝑛-qubit state

Example: quantum one-time-pad |𝜓⟩ with pseudorandom string.

⟺
Dual is easy to construct: just need to encrypt a quantum state 
with a short classical key (opening).

Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding

Dual scheme: Encryption!
• |opening| < 𝑛 qubits 
• hiding
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Succinct commitment to an 𝑛-qubit state

Example: quantum one-time-pad |𝜓⟩ with pseudorandom string.

⟺

Succinct QSC:  𝑪 (n/2 qubits)    𝑫 (n qubits)

assume PRG G:
0,1 #/% → 0,1 %# F

&

𝑘 ' ⊗𝑋(! & 𝑍(" & 𝜓 )

Dual is easy to construct: just need to encrypt a quantum state 
with a short classical key (opening).

Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding

Dual scheme: Encryption!
• |opening| < 𝑛 qubits 
• hiding
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Succinct commitment to an 𝑛-qubit state

Example: quantum one-time-pad |𝜓⟩ with pseudorandom string.

⟺

Note: classical succinct commitments from PRGs is not known!

assume PRG G:
0,1 #/% → 0,1 %# F

&

𝑘 ' ⊗𝑋(! & 𝑍(" & 𝜓 )

Dual is easy to construct: just need to encrypt a quantum state 
with a short classical key (opening).

Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding

Dual scheme: Encryption!
• |opening| < 𝑛 qubits 
• hiding
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Succinct commitment to an 𝑛-qubit state
Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding

Dual is easy to construct: just need to encrypt a quantum state 
with a short classical key (opening).

⟺

In fact, one-way functions might not be necessary! 

Dual scheme: Encryption!
• |opening| < 𝑛 qubits 
• hiding
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Succinct commitment to an 𝑛-qubit state
Succinct QSC:
• |commitment| < 𝑛 qubits 
• binding

Dual is easy to construct: just need to encrypt a quantum state 
with a short classical key (opening).

⟺

In fact, one-way functions might not be necessary! In the paper:
• This kind of encryption can be built from any pseudorandom 

unitary and (by [K21]) is potentially weaker than OWFs.

Dual scheme: Encryption!
• |opening| < 𝑛 qubits 
• hiding
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Useful property: succinct QSCs compose easily.
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Useful property: succinct QSCs compose easily.

• Domain extension: 1-qubit compression → any compression 
(see paper)

• Merkle tree: succinct commitments with local openings 
(we’ll see this next)
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Merkle tree commitments

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫𝑪𝑫𝑪

𝑫𝑪

𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒

|0!⟩
Com

|0!⟩

Com
|0!⟩

(𝑀(, … ,𝑀)) registers hold 4𝑛 qubits

just send this 𝑛/2-qubit state

Com: 
𝑛-qubit 𝑀 →
𝑛/2-qubit 𝐶
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Merkle tree commitments

• since swap binding composes, 
this is swap-binding on every 
local opening.

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫𝑪𝑫𝑪

𝑫𝑪

𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒

|0!⟩
Com

|0!⟩

Com
|0!⟩

(𝑀(, … ,𝑀)) registers hold 4𝑛 qubits

just send this 𝑛/2-qubit state

Com: 
𝑛-qubit 𝑀 →
𝑛/2-qubit 𝐶
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Merkle tree commitments

• since swap binding composes, 
this is swap-binding on every 
local opening.

• get succinct commitments 
with local openings!

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫𝑪𝑫𝑪

𝑫𝑪

𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒

|0!⟩
Com

|0!⟩

Com
|0!⟩

(𝑀(, … ,𝑀)) registers hold 4𝑛 qubits

just send this 𝑛/2-qubit state

Com: 
𝑛-qubit 𝑀 →
𝑛/2-qubit 𝐶
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Merkle tree commitments

• since swap binding composes, 
this is swap-binding on every 
local opening.

• get succinct commitments 
with local openings!

Note: this is similar to a heuristic 
proposal of [Chen-Movassagh22]

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫

|0!⟩

𝑪

Com

𝑫𝑪𝑫𝑪

𝑫𝑪

𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒

|0!⟩
Com

|0!⟩

Com
|0!⟩

(𝑀(, … ,𝑀)) registers hold 4𝑛 qubits

just send this 𝑛/2-qubit state

Com: 
𝑛-qubit 𝑀 →
𝑛/2-qubit 𝐶
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Plan for today

3) Application: quantum succinct arguments
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Classically, tree commitments are the key cryptographic component
of succinct arguments for NP [Kilian92].
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P

Succinct Arguments [Kilian92,Micali94]

• “Succinct” = very short communication + verification

• “Argument” = efficient prover can’t fool verifier 

V

Classically, tree commitments are the key cryptographic component
of succinct arguments for NP [Kilian92].

Claim: 𝑥 ∈ 3SAT

accept 
or reject
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P

Succinct Arguments [Kilian92,Micali94]

• “Succinct” = very short communication + verification

• “Argument” = efficient prover can’t fool verifier 

V

Classically, tree commitments are the key cryptographic component
of succinct arguments for NP [Kilian92].

Claim: 𝑥 ∈ 3SAT

accept 
or reject

Kilian’s protocol: tree commit to a locally checkable proof 𝜋 (aka PCP).
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This work: quantum succinct arguments
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We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments

This work: quantum succinct arguments
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quantum PCP means quantum proof |𝜋⟩ that 
can be verified by checking a few qubits.

(includes classical PCPs!)

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments

This work: quantum succinct arguments
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P V

quantum proof |π⟩

This work: quantum succinct arguments

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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succinct 
QSC P V

|rt*⟩
ℎ

ℎ

ℎ

quantum proof |π⟩

rt* =

This work: quantum succinct arguments

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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succinct 
QSC P V

|rt*⟩

S
ℎ

ℎ

ℎ

quantum proof |π⟩

rt* =

This work: quantum succinct arguments

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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succinct 
QSC P V

|rt*⟩

S
ℎ

ℎ

ℎ

quantum proof |π⟩

rt* =

This work: quantum succinct arguments

|open S ⟩

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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succinct 
QSC P V

|rt*⟩

S

|open S ⟩

ℎ

ℎ

ℎ

quantum proof |π⟩

rt* =

1) Check if |open S ⟩ is valid.

2) Apply Com% to reveal  
|𝜋 S ⟩ and run PCP verifier.

This work: quantum succinct arguments

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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Corollary: 3-msg succinct arguments for NP from less-than-OWF assumptions.

This work: quantum succinct arguments

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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This work: quantum succinct arguments

recall Kilian’s classical protocol:
• assumes collision-resistant hash functions (CRHFs)
• needs 4 messages (extra message to send CHRF key)

Corollary: 3-msg succinct arguments for NP from less-than-OWF assumptions.

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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Corollary: 3-msg succinct arguments for QMA from less-than-OWF 
assumptions + quantum PCP conjecture.

recall Kilian’s classical protocol:
• assumes collision-resistant hash functions (CRHFs)
• needs 4 messages (extra message to send CHRF key)

Corollary: 3-msg succinct arguments for NP from less-than-OWF assumptions.

This work: quantum succinct arguments

We prove a quantum analogue of [Kilian92]: 
quantum tree commitments + quantum PCP → quantum succinct arguments
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We’ll prove soundness by showing how to extract a 
quantum PCP from any (successful) malicious prover.



111

We’ll prove soundness by showing how to extract a 
quantum PCP from any (successful) malicious prover.

First: recall how this works for Kilian’s classical protocol.
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Soundness of Kilian’s classical protocol

Classical adversary: record <𝐏’s answers to many random S.



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Soundness of Kilian’s classical protocol

Classical adversary: record <𝐏’s answers to many random S.

S

9𝐏
extracted proof



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Soundness of Kilian’s classical protocol

Classical adversary: record <𝐏’s answers to many random S.

S

𝜋 S , open S9𝐏
extracted proof



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Soundness of Kilian’s classical protocol

Classical adversary: record <𝐏’s answers to many random S.

S

𝜋 S , open S9𝐏
extracted proof



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Soundness of Kilian’s classical protocol

Classical adversary: record <𝐏’s answers to many random S.

S

𝜋 S , open S

rewind

9𝐏
extracted proof



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

rewind

9𝐏
extracted proof

Soundness of Kilian’s classical protocol



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

S+

rewind

9𝐏
extracted proof

Soundness of Kilian’s classical protocol



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

S+

𝜋 S+ , open S+
9𝐏

extracted proof

Soundness of Kilian’s classical protocol



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

S+

𝜋 S+ , open S+

rewind

9𝐏
extracted proof

Soundness of Kilian’s classical protocol



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

rewind

9𝐏
extracted proof

Soundness of Kilian’s classical protocol



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

S

𝜋 S , open S

rewind

9𝐏
extracted proof

Soundness of Kilian’s classical protocol



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

S

𝜋 S , open S

rewind

9𝐏

Quantum adversary: recording <𝐏’s answers is not straightforward because 
measurement can disturb <𝐏’s state (rendering it useless for future queries). 

extracted proof

Soundness of Kilian’s classical protocol



Classical reduction
1) query <𝐏 on many random S, record 𝜋[S].

2) get convincing PCP or CRHF collision.
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Classical adversary: record <𝐏’s answers to many random S.

S

𝜋 S , open S

rewind

9𝐏

Quantum adversary: recording <𝐏’s answers is not straightforward because 
measurement can disturb <𝐏’s state (rendering it useless for future queries). 

Recent work [CMSZ22]: there is a way for “disturbed” <𝐏 to answer later queries

extracted proof

Soundness of Kilian’s classical protocol
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S

|𝐏⟩

Quantum soundness of Kilian’s classical protocol [CMSZ22]

Reduction
Repeat:

1) Run <𝐏 → 𝑧 in superposition, 
measure if response is valid.
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S

|𝐏⟩

Quantum soundness of Kilian’s classical protocol [CMSZ22]

Reduction
Repeat:

1) Run <𝐏 → 𝑧 in superposition, 
measure if response is valid.

∑ 𝑧
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S

∑ 𝑧 |𝑉(𝑆, 𝑧)⟩|𝐏⟩

Quantum soundness of Kilian’s classical protocol [CMSZ22]

= 𝑏

Reduction
Repeat:

1) Run <𝐏 → 𝑧 in superposition, 
measure if response is valid.
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S

∑ 𝑧 |𝑉(𝑆, 𝑧)⟩|𝐏⟩

Quantum soundness of Kilian’s classical protocol [CMSZ22]

= 𝑏

= 𝜋[S]

Reduction
Repeat:

1) Run <𝐏 → 𝑧 in superposition, 
measure if response is valid.

2) If valid, measure 𝜋[S].
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

Reduction
Repeat:

1) Run <𝐏 → 𝑧 in superposition, 
measure if response is valid.

2) If valid, measure 𝜋[S].

3) Run “repair” procedure.

S

∑ 𝑧 |𝑉(𝑆, 𝑧)⟩|𝐏⟩

|𝐏′⟩
= 𝑏

= 𝜋[S]
repair
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

Reduction
Repeat:

1) Run <𝐏 → 𝑧 in superposition, 
measure if response is valid.

2) If valid, measure 𝜋[S].

3) Run “repair” procedure.

S

∑ 𝑧 |𝑉(𝑆, 𝑧)⟩|𝐏⟩

|𝐏′⟩
= 𝑏

= 𝜋[S]
repair

rewind
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Quantum soundness of Kilian’s classical protocol [CMSZ22]

Reduction
Repeat:

1) Run <𝐏 → 𝑧 in superposition, 
measure if response is valid.

2) If valid, measure 𝜋[S].

3) Run “repair” procedure.

S

∑ 𝑧 |𝑉(𝑆, 𝑧)⟩|𝐏⟩

|𝐏′⟩
= 𝑏

= 𝜋[S]
repair

rewind

Main idea [Unruh16, CMSZ22]

• Collapse-binding → step 2 causes no detectable disturbance
• If step 2 doesn’t disturb state, “repair” will restore prover’s success prob.
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Our setting: we need to extract a quantum proof, 
so measuring the response isn’t enough.
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Our setting: we need to extract a quantum proof, 
so measuring the response isn’t enough.

But our definition suggests what to do instead!



134

Swap-based rewinding: on each accepting response, swap out 
message onto external register
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Swap-based rewinding: on each accepting response, swap out 
message onto external register

The hope: eventually, external registers contain quantum PCP.
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extracted proof
(initially all |0⟩)

S

|open S ⟩9𝐏

|rt*⟩

Swap-based rewinding: on each accepting response, swap out 
message onto external register

The hope: eventually, external registers contain quantum PCP.
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extracted proof
(initially all |0⟩)

S

|open S ⟩9𝐏

(in Com% basis)

SWAP0 |open′ S ⟩

|rt*⟩

extracted proof

|rt′*⟩

Swap-based rewinding: on each accepting response, swap out 
message onto external register

The hope: eventually, external registers contain quantum PCP.
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extracted proof
(initially all |0⟩)

S

|open S ⟩9𝐏

(in Com% basis)

SWAP0 |open′ S ⟩

rewind

|rt*⟩

extracted proof

|rt′*⟩

Swap-based rewinding: on each accepting response, swap out 
message onto external register
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extracted proof
(initially all |0⟩)

S

|open S ⟩9𝐏

(in Com% basis)

SWAP0 |open′ S ⟩

rewind

|rt*⟩

extracted proof

|rt′*⟩

Swap-based rewinding: on each accepting response, swap out 
message onto external register

Key point: swap-binding says this is undetectable!
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This approach nearly works.
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This approach nearly works.

Just one problem...
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This approach nearly works.

Just one problem...

[CMSZ22] repair requires that the reduction/extractor:
(1) can verify decommitments
(2) can’t break binding
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This approach nearly works.

Just one problem...

For quantum commitments (1) and (2) are incompatible!

[CMSZ22] repair requires that the reduction/extractor:
(1) can verify decommitments
(2) can’t break binding
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This approach nearly works.

Just one problem...

For quantum commitments (1) and (2) are incompatible!

[CMSZ22] repair requires that the reduction/extractor:
(1) can verify decommitments (extractor must have 𝐂)
(2) can’t break binding (extractor must not have 𝐂)
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This approach nearly works.

Just one problem...

For quantum commitments (1) and (2) are incompatible!
Note: This is an issue even if we’re only extracting classical
information from quantum commitments.

[CMSZ22] repair requires that the reduction/extractor:
(1) can verify decommitments (extractor must have 𝐂)
(2) can’t break binding (extractor must not have 𝐂)
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This approach nearly works.

Just one problem...

Our solution (see paper)
• Main technical step: Prove that swap-binding remains hard even if  the 

adversary is given an oracle to verify commitments + act on the message

• Show that this oracle suffices to implement CMSZ-style rewinding.

[CMSZ22] repair requires that the reduction/extractor:
(1) can verify decommitments (extractor must have 𝐂)
(2) can’t break binding (extractor must not have 𝐂)



147

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments from quantum PCPs 



148

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments from quantum PCPs 



149

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments via swap-based rewinding



150

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments via swap-based rewinding

See paper:
• quantum sigma protocols for QMA from any hiding-binding QSC
• hiding-binding duality for quantum commitments to classical messages



151

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments via swap-based rewinding

See paper:
• quantum sigma protocols for QMA from any hiding-binding QSC
• hiding-binding duality for quantum commitments to classical messages



152

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments via swap-based rewinding

See paper:
• quantum sigma protocols for QMA from any hiding-binding QSC
• hiding-binding duality for quantum commitments to classical messages

Future Directions: 
• do pseudorandom states imply succinct QSCs? 



153

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments via swap-based rewinding

See paper:
• quantum sigma protocols for QMA from any hiding-binding QSC
• hiding-binding duality for quantum commitments to classical messages

Future Directions: 
• do pseudorandom states imply succinct QSCs? 
• classical communication QSCs? 



154

Summary
Today:
• binding means the committed state is erased
• definition makes it easy to construct succinct QSCs
• quantum succinct arguments via swap-based rewinding

See paper:
• quantum sigma protocols for QMA from any hiding-binding QSC
• hiding-binding duality for quantum commitments to classical messages

Future Directions: 
• do pseudorandom states imply succinct QSCs? 
• classical communication QSCs? 
• simpler techniques for rewinding quantum protocols?



Thank You!

Questions?
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