## **Commitments to Quantum States**

Fermi Ma (Simons Institute and UC Berkeley)

based on joint work with:

Sam GunnNathan JuMark Zhandry(UC Berkeley)(UC Berkeley)(NTT Research)













#### Hiding: commitment hides message from receiver



**Hiding:** commitment hides message from receiver **Binding:** sender can only open to unique message























**Hiding** (commitment hides  $|\psi\rangle$  from receiver)

$$\begin{array}{c} & & & & \\ & & & \\ \hline \\ & & \\ 1 \end{pmatrix} a, b \leftarrow \{0,1\} \\ & & \\ 2 \end{pmatrix} C = Com((a,b);r) \end{array}$$
 
$$\begin{array}{c} & & & \\ & & \\ \hline \\ & & \\ \end{array} = (x^a Z^b |\psi\rangle, C) \\ & & \\ \hline \\ & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array} = (x^a Z^b |\psi\rangle, C) \\ & & \\ \hline \\ & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} \\

**Hiding** (commitment hides  $|\psi\rangle$  from receiver) • Intuition:  $X^a Z^b |\psi\rangle$  is maximally mixed and C hides a, b.



**Binding** (sender can only open to unique  $|\psi\rangle$ )

$$\begin{array}{c} & & & & \\ & & & \\ \hline \\ & & \\ 1 \end{pmatrix} a, b \leftarrow \{0,1\} \\ & & \\ 2 \end{pmatrix} C = Com((a,b);r) \end{array}$$
 
$$\begin{array}{c} & & & \\ & & \\ \hline \\ & & \\ \end{array} = (x^a Z^b |\psi\rangle, C) \\ & & \\ \hline \\ & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array} = (x^a Z^b |\psi\rangle, C) \\ & & \\ \hline \\ & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} \\

**Binding** (sender can only open to unique  $|\psi\rangle$ ) • Intuition: C is binding to *a*, *b* and receiver holds  $X^a Z^b |\psi\rangle$ .

$$\begin{array}{c} & & & & & \\ & & & \\ \hline & & \\ 1 \end{pmatrix} a, b \leftarrow \{0,1\} \\ & & \\ 2 \end{pmatrix} C = Com((a,b);r) \end{array}$$
 
$$\begin{array}{c} & & & \\ & & \\ \hline & & \\ \end{array} = (x^a Z^b |\psi\rangle, C) \\ & & \\ \hline & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & & \\ \end{array} = (x^a Z^b |\psi\rangle, C) \\ & & \\ \hline & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ \end{array}$$
 
$$\begin{array}{c} & & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\begin{array}{c} & \\ \end{array}$$
 
$$\end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\end{array}$$
 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ & \\ \end{array}$$
 
$$\end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} 
$$\begin{array}{c} & \\ \end{array}$$
 \\ \end{array} \\ \end{array}

# Big problem: totally unclear what this means!

Binding sender can only open to unique  $|\psi
angle$ 

one folklore construction

- one folklore construction
- no security definitions

- one folklore construction
- no security definitions
- ...that's it





constructions

applications

#### definitions

#### binding: committing to $|\psi\rangle$ erases it from sender's view.

- handles entanglement
- falsifiable, composable

- extends classical-msg binding
- hiding-binding duality!

constructions

#### applications

| definitions   | binding: committing to $ \psi angle$ <b>erases</b> it from sender's view.                                  |
|---------------|------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>kiding-binding duality!</li> </ul> |
| constructions | (1) hiding-binding QSC (formalizing folklore)                                                              |
|               |                                                                                                            |
| applications  |                                                                                                            |
|               |                                                                                                            |
|               |                                                                                                            |

| definitions   | binding: committing to $ \psi angle$ <b>erases</b> it from sender's view.                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>kiding-binding duality!</li> </ul>                      |
| constructions | <ul> <li>(1) hiding-binding QSC (formalizing folklore)</li> <li>(2) first succinct QSC ( commitment  &lt;  message )</li> </ul> |
| applications  |                                                                                                                                 |

| definitions   | binding: committing to $ \psi angle$ erases it from sender's view.                                                              |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>kiding-binding duality!</li> </ul>                      |
| constructions | <ul> <li>(1) hiding-binding QSC (formalizing folklore)</li> <li>(2) first succinct QSC ( commitment  &lt;  message )</li> </ul> |
|               | • (1), (2) are non-interactive + use weaker-than-OWF assumptions                                                                |
| applications  |                                                                                                                                 |

| definitions   | binding: committing to $ \psi angle$ <b>erases</b> it from sender's view.                                                                         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>extends classical-msg binding</li> <li>hiding-binding duality!</li> </ul> |
| constructions | <ul> <li>(1) hiding-binding QSC (formalizing folklore)</li> <li>(2) first succinct QSC ( commitment  &lt;  message )</li> </ul>                   |
|               | • (1), (2) are non-interactive + use weaker-than-OWF assumptions                                                                                  |
| applications  | succinct QSC + quantum PCP $\rightarrow$ succinct arguments                                                                                       |
|               |                                                                                                                                                   |

| definitions   | binding: committing to $ \psi angle$ <b>erases</b> it from sender's view.                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>kiding-binding duality!</li> </ul>                      |
| constructions | <ul> <li>(1) hiding-binding QSC (formalizing folklore)</li> <li>(2) first succinct QSC ( commitment  &lt;  message )</li> </ul> |
|               | • (1), (2) are non-interactive + use weaker-than-OWF assumptions                                                                |
| applications  | succinct QSC + quantum PCP $\rightarrow$ succinct arguments                                                                     |
|               | 3-msg succinct arg for NP from weaker-than-OWF assumptions                                                                      |
### This work: a theory of quantum state commitments (QSCs)

| definitions   | binding: committing to $ \psi angle$ <b>erases</b> it from sender's view.                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>kiding-binding duality!</li> </ul>                      |
| constructions | <ul> <li>(1) hiding-binding QSC (formalizing folklore)</li> <li>(2) first succinct QSC ( commitment  &lt;  message )</li> </ul> |
|               | • (1), (2) are non-interactive + use weaker-than-OWF assumptions                                                                |
| applications  | succinct QSC + quantum PCP $\rightarrow$ succinct arguments                                                                     |
|               | • 3-msg succinct arg for NP from weaker-than-OWF assumptions                                                                    |
|               | classical comparison: [Kilian92] is 4 messages + assumes CRHFs                                                                  |

### This work: a theory of quantum state commitments (QSCs)

| definitions   | binding: committing to $ \psi angle$ <b>erases</b> it from sender's view.                                                               |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>kiding-binding duality!</li> </ul>                              |
| constructions | <ul> <li>(1) hiding-binding QSC (formalizing folklore)</li> <li>(2) first succinct QSC ( commitment  &lt;  message )</li> </ul>         |
|               | • (1), (2) are non-interactive + use weaker-than-OWF assumptions                                                                        |
| applications  | succinct QSC + quantum PCP $\rightarrow$ succinct arguments                                                                             |
|               | <ul> <li>3-msg succinct arg for NP from weaker-than-OWF assumptions</li> <li>extends to QMA assuming quantum PCP conjecture!</li> </ul> |

### This work: a theory of quantum state commitments (QSCs)

| definitions   | binding: committing to $ \psi\rangle$ erases it from sender's view.                                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>handles entanglement</li> <li>falsifiable, composable</li> <li>extends classical-msg binding</li> <li>hiding-binding duality!</li> </ul>                                                             |
| constructions | <ul> <li>(1) hiding-binding QSC (formalizing folklore)</li> <li>(2) first succinct QSC ( commitment  &lt;  message )</li> </ul>                                                                               |
|               | • (1), (2) are non-interactive + use weaker-than-OWF assumptions                                                                                                                                              |
| applications  | succinct QSC + quantum PCP $\rightarrow$ succinct arguments                                                                                                                                                   |
|               | <ul> <li>3-msg succinct arg for NP from weaker-than-OWF assumptions</li> <li>extends to QMA assuming quantum PCP conjecture!</li> <li>new tools to rewind quantum protocols/extract quantum states</li> </ul> |

# Plan for today

1) What does it mean to commit to a quantum state?

2) Can we **succinctly** commit to a quantum state?

3) Application: quantum succinct arguments

# Plan for today

1) What does it mean to commit to a quantum state?

2) Can we **succinctly** commit to a quantum state?

3) Application: quantum succinct arguments













- To commit to  $|\psi\rangle$ : prepare  $|com_{\psi}\rangle_{CD} = Com|\psi\rangle|0^{\lambda}\rangle$ , send *C* to commit, send *D* to decommit.
- To verify: apply  $Com^{\dagger}$  and check if the last  $\lambda$  qubits are 0



- To commit to  $|\psi\rangle$ : prepare  $|com_{\psi}\rangle_{CD} = Com|\psi\rangle|0^{\lambda}\rangle$ , send *C* to commit, send *D* to decommit.
- To verify: apply Com<sup>†</sup> and check if the last  $\lambda$  qubits are 0

(any QSC can be rewritten in this form)

#### What does it mean to commit to a quantum state?

This definition completely fails for quantum state commitments.

This definition completely fails for quantum state commitments.

#### Many problems:

1) Verifying the first opening might disturb the commitment.

This definition completely fails for quantum state commitments.

#### Many problems:

1) Verifying the first opening might disturb the commitment.

2) Challenger can't check  $\psi_0 \neq \psi_1!$ 

#### This definition completely fails for quantum state commitments.

#### Many problems:

- 1) Verifying the first opening might disturb the commitment.
- 2) Challenger can't check  $\psi_0 \neq \psi_1!$
- 3) Quantum attacker might not produce two openings *simultaneously*.

This definition completely fails for quantum state commitments.

#### Many problems:

- 1) Verifying the first opening might disturb the commitment.
- 2) Challenger can't check  $\psi_0 \neq \psi_1!$
- 3) Quantum attacker might not produce two openings *simultaneously*.

A priori, not obvious that a cryptographic definition is possible!

This definition completely fails for quantum state commitments.

#### Many problems:

- 1) Verifying the first opening might disturb the commitment.
- 2) Challenger can't check  $\psi_0 \neq \psi_1!$
- 3) Quantum attacker might not produce two openings *simultaneously*.

As a result, our new definition looks quite different...





"swap 
$$|\psi\rangle$$
 with junk" =  $\begin{bmatrix} |0\rangle \\ |$ 



Informally:  $|com_{\psi}\rangle_{CD} \approx |com_{0}\rangle_{CD}$ (given only the **D** part)

# Why this definition?

### Swapping-Distinguishing Equivalence [AAS20]

These are **equivalent** for orthogonal  $|x\rangle$ ,  $|y\rangle$ :

- (1) Swapping  $|x\rangle \leftrightarrow |y\rangle$
- (2) Distinguishing  $|x\rangle + |y\rangle \vee |x\rangle |y\rangle$

Swapping-Distinguishing Equivalence [AAS20]

These are **equivalent** for orthogonal  $|x\rangle, |y\rangle$ : (1) Swapping  $|x\rangle \leftrightarrow |y\rangle$ (2) Distinguishing  $|x\rangle + |y\rangle \vee s |x\rangle - |y\rangle$ 



Swapping-Distinguishing Equivalence [AAS20]

These are **equivalent** for orthogonal  $|x\rangle, |y\rangle$ : (1) Swapping  $|x\rangle \leftrightarrow |y\rangle$ (2) Distinguishing  $|x\rangle + |y\rangle \vee s |x\rangle - |y\rangle$ 

#### Proof Sketch:

 $\begin{array}{l} \Pi_{\text{Dist}} \text{ distinguishes } |x\rangle + |y\rangle \, \forall \overline{s} \, |x\rangle - |y\rangle \\ \text{iff } 2\Pi_{\text{Dist}} - \text{Id (reflection about } \Pi_{\text{Dist}}) \\ \text{swaps } |x\rangle \leftrightarrow |y\rangle. \end{array}$ 



Suppose the sender honestly commits to a classical bit.

Suppose the sender honestly commits to a classical bit.

**Necessary:** Sender can't swap  $|com_0\rangle_{CD} \leftrightarrow |com_1\rangle_{CD}$  (given only D).

Suppose the sender honestly commits to a classical bit.

**Necessary:** Sender can't swap  $|com_0\rangle_{CD} \leftrightarrow |com_1\rangle_{CD}$  (given only D). Equivalently,  $|com_+\rangle_{CD} \approx |com_-\rangle_{CD}$  (given only D).

$$= \operatorname{Com} |+\rangle |0^{\lambda}\rangle = |\operatorname{com}_{0}\rangle + |\operatorname{com}_{1}\rangle = |\operatorname{Com}_{0}\rangle - |\operatorname{com}_{1}\rangle$$

Suppose the sender honestly commits to a classical bit.

**Necessary:** Sender can't swap  $|com_0\rangle_{CD} \leftrightarrow |com_1\rangle_{CD}$  (given only **D**). Equivalently,  $|com_+\rangle_{CD} \approx |com_-\rangle_{CD}$  (given only **D**).

 $= \operatorname{Com} |+\rangle |0^{\lambda}\rangle = |\operatorname{com}_{0}\rangle + |\operatorname{com}_{1}\rangle = |\operatorname{Com}_{0}\rangle - |\operatorname{com}_{1}\rangle$ 

This is (essentially) [Unruh16]'s collapse-binding definition, extended to quantum bit commitments.

What if the sender honestly commits to an arbitrary state  $|\psi\rangle$ ?

What if the sender honestly commits to an arbitrary state  $|\psi\rangle$ ?

**Necessary:** Sender can't swap  $|com_{\psi}\rangle_{CD} \leftrightarrow |com_{\psi^{\perp}}\rangle_{CD}$  (given only D)

What if the sender honestly commits to an arbitrary state  $|\psi\rangle$ ?

**Necessary:** Sender can't swap  $|com_{\psi}\rangle_{CD} \leftrightarrow |com_{\psi^{\perp}}\rangle_{CD}$  (given only D) Equivalently,  $|com_{\psi+\psi^{\perp}}\rangle_{CD} \approx |com_{\psi-\psi^{\perp}}\rangle_{CD}$  (given only D)

What if the sender honestly commits to an arbitrary state  $|\psi\rangle$ ?

**Necessary:** Sender can't swap  $|com_{\psi}\rangle_{CD} \leftrightarrow |com_{\psi^{\perp}}\rangle_{CD}$  (given only **D**) Equivalently,  $|com_{\psi+\psi^{\perp}}\rangle_{CD} \approx |com_{\psi-\psi^{\perp}}\rangle_{CD}$  (given only **D**)

> This is guaranteed by swap-binding, which says:  $|com_{\psi}\rangle_{CD} \approx |com_{0}\rangle_{CD}$  (given only D)
## Defining Binding for QSCs: Intuition

What if the sender honestly commits to an arbitrary state  $|\psi\rangle$ ?

**Necessary:** Sender can't swap  $|com_{\psi}\rangle_{CD} \leftrightarrow |com_{\psi^{\perp}}\rangle_{CD}$  (given only D) Equivalently,  $|com_{\psi+\psi^{\perp}}\rangle_{CD} \approx |com_{\psi-\psi^{\perp}}\rangle_{CD}$  (given only D)

This is guaranteed by swap-binding, which says:

 $|\operatorname{com}_{\psi}\rangle_{CD} \approx |\operatorname{com}_{0}\rangle_{CD} \text{ (given only } D)$ 

Swapping-distinguishing makes it possible to **test** if sender changes  $\psi$ .

## Defining Binding for QSCs: Intuition

What if the sender honestly commits to an arbitrary state  $|\psi\rangle$ ?

**Necessary:** Sender can't swap  $|com_{\psi}\rangle_{CD} \leftrightarrow |com_{\psi^{\perp}}\rangle_{CD}$  (given only D) Equivalently,  $|com_{\psi+\psi^{\perp}}\rangle_{CD} \approx |com_{\psi-\psi^{\perp}}\rangle_{CD}$  (given only D)

This is guaranteed by swap-binding, which says:

 $|\mathrm{com}_{\psi}\rangle_{\mathrm{CD}} \approx |\mathrm{com}_{0}\rangle_{\mathrm{CD}} \text{ (given only } D)$ 

This paper: swap-binding captures security against *arbitrary malicious senders*.



#### Additional Properties



## Additional Properties

- handles entangled messages
- composable
- statistical or computational
- formalizes folklore (QSCs exist iff quantum bit commitments exist)



### Additional Properties

**Bonus:** swap-binding is dual to hiding!

- swap-binding means D hides  $\psi$
- hiding means  $\boldsymbol{C}$  hides  $\boldsymbol{\psi}$  (same game but adversary gets  $\boldsymbol{C}$ )

## Hiding-Binding Duality



- Primal scheme: *C* is the commitment and *D* is the opening.
- Dual scheme: **D** is the commitment and **C** is the opening.

## Hiding-Binding Duality



- Primal scheme: *C* is the commitment and *D* is the opening.
- Dual scheme: **D** is the commitment and **C** is the opening.

Immediate consequence of hiding/binding definitions:

For  $X \in \{\text{statistically, computationally}\}$ : primal is X-binding  $\Leftrightarrow$  dual is X-hiding primal is X-hiding  $\Leftrightarrow$  dual is X-binding

# Plan for today

1) What does it mean to commit to a quantum state?

2) Can we *succinctly* commit to a quantum state?

3) Application: quantum succinct arguments

#### Succinct QSC:

|commitment| < n qubits</li>
binding

#### **Succinct QSC:**

|commitment| < n qubits</li>
binding

## $\Leftrightarrow$

#### **Dual scheme:**

• 
$$|opening| < n$$
 qubits

hiding

#### **Succinct QSC:**

|commitment| < n qubits</li>
binding

# $\Leftrightarrow$

#### **Dual scheme: Encryption!**

• |opening| < n qubits

hiding

Dual is easy to construct: just need to *encrypt* a quantum state with a short classical key (opening).

#### **Succinct QSC:**

|commitment| < n qubits</li>
binding



#### **Dual scheme: Encryption!**

• |opening| < n qubits

hiding

Dual is easy to construct: just need to *encrypt* a quantum state with a short classical key (opening).

Example: quantum one-time-pad  $|\psi\rangle$  with pseudorandom string.

**Succinct QSC:** 

|commitment| < n qubits</li>
binding



#### **Dual scheme: Encryption!**

• |opening| < n qubits

hiding

Dual is easy to construct: just need to *encrypt* a quantum state with a short classical key (opening).

Example: quantum one-time-pad  $|\psi\rangle$  with pseudorandom string.

assume PRG G:  $\{0,1\}^{n/2} \rightarrow \{0,1\}^{2n}$ 

$$\sum_{k} \frac{|k\rangle_{C}}{1} \otimes X^{G_{0}(k)} Z^{G_{1}(k)} |\psi\rangle_{D}$$

Succinct QSC: *C* (n/2 qubits) *D* (n qubits)

**Succinct QSC:** 

|commitment| < n qubits</li>
binding



#### **Dual scheme: Encryption!**

• |opening| < n qubits

hiding

Dual is easy to construct: just need to *encrypt* a quantum state with a short classical key (opening).

Example: quantum one-time-pad  $|\psi\rangle$  with pseudorandom string.

assume PRG G:  $\{0,1\}^{n/2} \rightarrow \{0,1\}^{2n}$ 

$$\sum_{k} |k\rangle_{\mathcal{C}} \otimes X^{\mathcal{G}_{0}(k)} Z^{\mathcal{G}_{1}(k)} |\psi\rangle_{\mathcal{D}}$$

Note: classical succinct commitments from PRGs is *not* known!

**Succinct QSC:** 

|commitment| < n qubits</li>
binding



#### **Dual scheme: Encryption!**

• |opening| < n qubits

hiding

Dual is easy to construct: just need to *encrypt* a quantum state with a short classical key (opening).

In fact, one-way functions might not be necessary!

**Succinct QSC:** 

|commitment| < n qubits</li>
binding



#### **Dual scheme: Encryption!**

• |opening| < n qubits

hiding

Dual is easy to construct: just need to *encrypt* a quantum state with a short classical key (opening).

In fact, one-way functions might not be necessary! In the paper:

 This kind of encryption can be built from any pseudorandom unitary and (by [K21]) is potentially weaker than OWFs.

## **Useful property:** succinct QSCs compose easily.

## **Useful property:** succinct QSCs compose easily.

- Domain extension: 1-qubit compression → any compression (see paper)
- Merkle tree: succinct commitments with local openings (we'll see this next)





 since swap binding composes, this is swap-binding on every local opening.



- since swap binding composes, this is swap-binding on every local opening.
- get succinct commitments with local openings!



- since swap binding composes, this is swap-binding on every local opening.
- get succinct commitments with local openings!

Note: this is similar to a heuristic proposal of [Chen-Movassagh22]

# Plan for today

1) What does it mean to commit to a quantum state?

2) Can we *succinctly* commit to a quantum state?

3) Application: quantum succinct arguments

# Classically, tree commitments are **the key cryptographic component** of succinct arguments for NP [Kilian92].

Classically, tree commitments are **the key cryptographic component** of succinct arguments for NP [Kilian92].



Classically, tree commitments are **the key cryptographic component** of succinct arguments for NP [Kilian92].



**Kilian's protocol:** tree commit to a locally checkable proof  $\pi$  (aka PCP).

We prove a quantum analogue of [Kilian92]:

quantum tree commitments + quantum PCP  $\rightarrow$  quantum succinct arguments

We prove a quantum analogue of [Kilian92]:

quantum tree commitments + quantum PCP  $\rightarrow$  quantum succinct arguments

quantum PCP means quantum proof  $|\pi\rangle$  that can be verified by checking a few qubits.

(includes classical PCPs!)











We prove a quantum analogue of [Kilian92]:

quantum tree commitments + quantum PCP  $\rightarrow$  quantum succinct arguments

**Corollary:** 3-msg succinct arguments for NP from less-than-OWF assumptions.

We prove a quantum analogue of [Kilian92]:

quantum tree commitments + quantum PCP  $\rightarrow$  quantum succinct arguments

**Corollary:** 3-msg succinct arguments for NP from less-than-OWF assumptions.

recall Kilian's classical protocol:

- assumes collision-resistant hash functions (CRHFs)
- needs 4 messages (extra message to send CHRF key)
#### This work: quantum succinct arguments

We prove a quantum analogue of [Kilian92]:

quantum tree commitments + quantum PCP  $\rightarrow$  quantum succinct arguments

**Corollary:** 3-msg succinct arguments for NP from less-than-OWF assumptions.

recall Kilian's classical protocol:

- assumes collision-resistant hash functions (CRHFs)
- needs 4 messages (extra message to send CHRF key)

**Corollary:** 3-msg succinct arguments for QMA from less-than-OWF assumptions + quantum PCP conjecture.

We'll prove soundness by showing how to extract a *quantum PCP* from any (successful) malicious prover.

We'll prove soundness by showing how to extract a *quantum PCP* from any (successful) malicious prover.

First: recall how this works for Kilian's *classical* protocol.































**Classical adversary:** record  $\tilde{\mathbf{P}}$ 's answers to many random S.



Quantum adversary: recording  $\tilde{\mathbf{P}}$ 's answers is not straightforward because measurement can disturb  $\tilde{\mathbf{P}}$ 's state (rendering it useless for future queries).

**Classical adversary:** record  $\tilde{\mathbf{P}}$ 's answers to many random S.



Quantum adversary: recording  $\tilde{\mathbf{P}}$ 's answers is not straightforward because measurement can disturb  $\tilde{\mathbf{P}}$ 's state (rendering it useless for future queries). Recent work [CMSZ22]: there is a way for "disturbed"  $\tilde{\mathbf{P}}$  to answer later queries



Reduction

Repeat:

1) Run  $\tilde{\mathbf{P}} \rightarrow z$  in superposition, measure if response is valid.

$$|\mathbf{P}\rangle \xrightarrow{S} \underline{\sum |z\rangle}$$

Reduction

Repeat:

1) Run  $\tilde{\mathbf{P}} \rightarrow z$  in superposition, measure if response is valid.

Reduction

Repeat:

1) Run  $\tilde{\mathbf{P}} \rightarrow z$  in superposition, measure if response is valid.

$$|\mathbf{P}\rangle$$

$$\sum |z\rangle|V(S,z)\rangle$$

$$|\mathbf{F}\rangle = b$$

$$|\mathbf{F}\rangle = \pi[S]$$

Repeat: 1) Due  $\widetilde{\mathbf{n}}$  ,  $\pi$  in superposed

1) Run  $\tilde{\mathbf{P}} \rightarrow z$  in superposition, measure if response is valid.

2) If valid, measure  $\pi$ [S].



Reduction
Repeat:
1) Run P→ z in superposition, measure if response is valid.
2) If valid, measure π[S].
3) Run "repair" procedure.



Reduction
Repeat:
1) Run P→ z in superposition, measure if response is valid.
2) If valid, measure π[S].
3) Run "repair" procedure.



Reduction
Repeat:
1) Run P→ z in superposition, measure if response is valid.
2) If valid, measure π[S].
3) Run "repair" procedure.

#### Main idea [Unruh16, CMSZ22]

- Collapse-binding  $\rightarrow$  step 2 causes no detectable disturbance
- If step 2 doesn't disturb state, "repair" will restore prover's success prob.

**Our setting:** we need to extract a *quantum proof*, so measuring the response isn't enough.

**Our setting:** we need to extract a *quantum proof*, so measuring the response isn't enough.

But our definition suggests what to do instead!

The hope: eventually, external registers contain quantum PCP.

The hope: eventually, external registers contain quantum PCP.



The hope: eventually, external registers contain quantum PCP.





Key point: swap-binding says this is undetectable!



This approach *nearly* works.

[CMSZ22] repair requires that the reduction/extractor:

(1) **can** verify decommitments

(2) can't break binding

[CMSZ22] repair requires that the reduction/extractor:

(1) **can** verify decommitments

(2) can't break binding

For quantum commitments (1) and (2) are incompatible!

[CMSZ22] repair requires that the reduction/extractor:

(1) can verify decommitments (extractor must have C)
(2) can't break binding (extractor must not have C)

For quantum commitments (1) and (2) are incompatible!
This approach *nearly* works. Just one problem...

[CMSZ22] repair requires that the reduction/extractor:
(1) can verify decommitments (extractor must have C)
(2) can't break binding (extractor must not have C)

For quantum commitments (1) and (2) are incompatible! **Note:** This is an issue even if we're only extracting <u>classical</u> information from quantum commitments. This approach *nearly* works. Just one problem...

[CMSZ22] repair requires that the reduction/extractor:

(1) can verify decommitments (extractor must have C)
(2) can't break binding (extractor must not have C)

### **Our solution (see paper)**

- Main technical step: Prove that swap-binding remains hard even if the adversary is given an oracle to verify commitments + act on the message
- Show that this oracle suffices to implement CMSZ-style rewinding.

#### Today:

• binding means the committed state is **erased** 

#### Today:

- binding means the committed state is **erased**
- definition makes it easy to construct succinct QSCs

#### Today:

- binding means the committed state is **erased**
- definition makes it easy to construct succinct QSCs
- quantum succinct arguments via swap-based rewinding

#### Today:

- binding means the committed state is erased
- definition makes it easy to construct succinct QSCs
- quantum succinct arguments via swap-based rewinding

#### See paper:

• quantum sigma protocols for QMA from any hiding-binding QSC

#### Today:

- binding means the committed state is **erased**
- definition makes it easy to construct succinct QSCs
- quantum succinct arguments via swap-based rewinding

#### See paper:

- quantum sigma protocols for QMA from any hiding-binding QSC
- hiding-binding duality for quantum commitments to *classical* messages

#### Today:

- binding means the committed state is erased
- definition makes it easy to construct succinct QSCs
- quantum succinct arguments via swap-based rewinding

#### See paper:

- quantum sigma protocols for QMA from any hiding-binding QSC
- hiding-binding duality for quantum commitments to *classical* messages

### **Future Directions:**

• do pseudorandom states imply succinct QSCs?

#### Today:

- binding means the committed state is erased
- definition makes it easy to construct succinct QSCs
- quantum succinct arguments via swap-based rewinding

#### See paper:

- quantum sigma protocols for QMA from any hiding-binding QSC
- hiding-binding duality for quantum commitments to *classical* messages

### **Future Directions:**

- do pseudorandom states imply succinct QSCs?
- classical communication QSCs?

#### Today:

- binding means the committed state is erased
- definition makes it easy to construct succinct QSCs
- quantum succinct arguments via swap-based rewinding

#### See paper:

- quantum sigma protocols for QMA from any hiding-binding QSC
- hiding-binding duality for quantum commitments to *classical* messages

### **Future Directions:**

- do pseudorandom states imply succinct QSCs?
- classical communication QSCs?
- simpler techniques for rewinding quantum protocols?

# Thank You!

Questions?