
1

Quantum Security and Fiat-Shamir for
Cryptographic Protocols

Fermi Ma

2

Cryptographic Protocols
A cryptographic protocol is an interaction between parties
that achieves:

3

Cryptographic Protocols

1) Functionality
Ex: verify computation, compute on private inputs

A cryptographic protocol is an interaction between parties
that achieves:

4

Cryptographic Protocols

1) Functionality
Ex: verify computation, compute on private inputs
2) Security against adversarial behavior
Ex: can’t fool verifier, can’t learn other party’s input

A cryptographic protocol is an interaction between parties
that achieves:

5

Computational
hardness

assumption
Reduction+=Crypto

security proof

How do we prove security?

6

Computational
hardness

assumption

Ex: invert one-way function, factoring,
discrete log, lattice problems, etc.

Reduction+=Crypto
security proof

How do we prove security?

7

How do we prove security?

Computational
hardness

assumption

Ex: invert one-way function, factoring,
discrete log, lattice problems, etc.

Reduction+=

Any efficient attack on the protocol
→ Break underlying hardness assumption

Crypto
security proof

8

How do we prove security?

Computational
hardness

assumption
Reduction+=Crypto

security proof

Many amazing results based on this formula:
• Zero-knowledge proofs [GMR84]
• Secure multi-party computation [Yao86, GMW86]
• Succinct arguments [Kilian92]

9

But even in settings where secure protocols are known,
key challenges remain.

10

Challenge 1: Quantum Computers
Most security proofs consider classical attackers.
Does security still hold if a quantum computer is built?

11

Quantum Computers

• Use quantum physics to perform computation

12

Quantum Computers

• Use quantum physics to perform computation
• Likely more powerful than classical computers (e.g.,

Shor’s algorithm enables factoring)

13

Quantum Computers

• Use quantum physics to perform computation
• Likely more powerful than classical computers (e.g.,

Shor’s algorithm enables factoring)
• Not far away?

[Nature 2019] [WSJ 2021]

14

Goal 1:
Understand what happens to crypto if/when

a quantum computer is built.

15

Challenge 2: Removing Interaction
Protocols typically use interaction, but interaction is
unwieldy in practice.
Through heuristics such as Fiat-Shamir, some protocols
can be made non-interactive.
Is this secure?

Fiat-Shamir Heuristic [FS86]
Magical compiler that removes interaction

from public-coin interactive protocols.

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP

Fiat-Shamir Heuristic [FS86]

Public-Coin
Interactive Protocol

Magical compiler that removes interaction
from public-coin interactive protocols.

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP

Fiat-Shamir Heuristic [FS86]

Hash Function ℎ

Public-Coin
Interactive Protocol

Non-Interactive Argument

Magical compiler that removes interaction
from public-coin interactive protocols.

𝑎!, 𝑎$, … , 𝑎"𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP

Fiat-Shamir Heuristic [FS86]

Hash Function ℎ

Public-Coin
Interactive Protocol

Non-Interactive Argument

Magical compiler that removes interaction
from public-coin interactive protocols.

𝑎!, 𝑎$, … , 𝑎"

𝑟! = ℎ 𝑎!
𝑟$ = ℎ 𝑎!, 𝑎$

⋮
𝑟"#! = ℎ(𝑎!, … , 𝑎"#!)

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP

Fiat-Shamir Heuristic [FS86]

Hash Function ℎ

Public-Coin
Interactive Protocol

Non-Interactive Argument

Magical compiler that removes interaction
from public-coin interactive protocols.

𝑎!, 𝑎$, … , 𝑎"

𝑟! = ℎ 𝑎!
𝑟$ = ℎ 𝑎!, 𝑎$

⋮
𝑟"#! = ℎ(𝑎!, … , 𝑎"#!)

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP

Fiat-Shamir Heuristic [FS86]

Hash Function ℎ

Public-Coin
Interactive Protocol

Non-Interactive Argument

Magical compiler that removes interaction
from public-coin interactive protocols.

𝑎!, 𝑎$, … , 𝑎"

𝑟! = ℎ 𝑎!
𝑟$ = ℎ 𝑎!, 𝑎$

⋮
𝑟"#! = ℎ(𝑎!, … , 𝑎"#!)

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP

Fiat-Shamir Heuristic [FS86]

Hash Function ℎ

Public-Coin
Interactive Protocol

Non-Interactive Argument

Magical compiler that removes interaction
from public-coin interactive protocols.

𝑎!, 𝑎$, … , 𝑎"

𝑟! = ℎ 𝑎!
𝑟$ = ℎ 𝑎!, 𝑎$

⋮
𝑟"#! = ℎ(𝑎!, … , 𝑎"#!)

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP

Public-Coin
Interactive Protocol

Magical compiler that removes interaction
from public-coin interactive protocols.

Fiat-Shamir Heuristic [FS86]

Hash Function ℎ

Non-Interactive Argument

Fruitful approach:
Construct interactive protocol for some functionality (e.g.,
identification, verifiable computation), apply Fiat-Shamir.

𝑎!, 𝑎$, … , 𝑎"

𝑟! = ℎ 𝑎!
𝑟$ = ℎ 𝑎!, 𝑎$

⋮
𝑟"#! = ℎ(𝑎!, … , 𝑎"#!)

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP
Hash Function ℎ

Public-Coin
Interactive Protocol

Non-Interactive Argument

Important Caveat:
Not immediately clear if soundness is preserved!

𝑎!, 𝑎$, … , 𝑎"

𝑟! = ℎ 𝑎!
𝑟$ = ℎ 𝑎!, 𝑎$

⋮
𝑟"#! = ℎ(𝑎!, … , 𝑎"#!)

𝑟!
𝑎!

⋮

𝑟"#!
𝑎"#!

𝑎"

VP VP
Hash Function ℎ

Public-Coin
Interactive Protocol

Non-Interactive Argument

Goal 2:
Understand when the Fiat-Shamir
transform preserves soundness.

In sum, this thesis addresses two challenges:

1) Our understanding of what constitutes an efficient
algorithm has changed.

2) Our demands for how protocols will be used have
changed.

28

Thesis Contributions
Part 1: Quantum
[CMSZ21]: Post-quantum succinct arguments via rewinding.

29

Thesis Contributions

[BCKM21]: One-way functions imply secure multi-party
computation (MPC) for quantum users.

Part 1: Quantum
[CMSZ21]: Post-quantum succinct arguments via rewinding.

30

Part 2: Fiat-Shamir

Thesis Contributions

[CMSZ21]: Post-quantum succinct arguments via rewinding.

[BCKM21]: One-way functions imply secure multi-party
computation (MPC) for quantum users.

Part 1: Quantum

[BBHMR19]: Barriers to provably-secure succinct non-interactive
arguments from Fiat-Shamir.

31

[CLMQ21]: Investigate whether Fiat-Shamir hash function must
be “cryptographic"

Part 2: Fiat-Shamir

Thesis Contributions

[BCKM21]: One-way functions imply secure multi-party
computation (MPC) for quantum users.

Part 1: Quantum
[CMSZ21]: Post-quantum succinct arguments via rewinding.

[BBHMR19]: Barriers to provably-secure succinct non-interactive
arguments from Fiat-Shamir.

32

[CLMQ21]: Investigate whether Fiat-Shamir hash function must
be “cryptographic"

Thesis Contributions

[BCKM21]: One-way functions imply secure multi-party
computation (MPC) for quantum users.

This talk

Part 2: Fiat-Shamir

Part 1: Quantum
[CMSZ21]: Post-quantum succinct arguments via rewinding.

[BBHMR19]: Barriers to provably-secure succinct non-interactive
arguments from Fiat-Shamir.

33

Up next:

[CMSZ21]: Post-quantum succinct arguments via rewinding.

34

How Will Quantum Computers Impact Crypto?

35

Computational
hardness

assumption
Reduction+=

Ex: invert one-way function, factoring,
discrete log, lattice problems, etc.

Crypto
security proof

How Will Quantum Computers Impact Crypto?

36

Computational
hardness

assumption
Reduction+=

Immediate consequence: Shor’s algorithm breaks
commonly used assumptions

Ex: invert one-way function, factoring,
discrete log, lattice problems, etc.

Crypto
security proof

How Will Quantum Computers Impact Crypto?

37

Reduction+=

Minimum requirement for post-quantum crypto:
hard problem should resist quantum attacks

Crypto
security proof

Post-quantum
hardness

assumption

Post-Quantum Cryptography

38

Reduction+=

Minimum requirement for post-quantum crypto:
hard problem should resist quantum attacks
Fortunately, we have many candidate hard problems.

Crypto
security proof

Post-quantum
hardness

assumption

Post-Quantum Cryptography

39

Reduction+=

Minimum requirement for post-quantum crypto:
hard problem should resist quantum attacks
Fortunately, we have many candidate hard problems.

Crypto
security proof

Post-quantum
hardness

assumption

Ex: post-quantum one-way function, lattice problems, etc.

Post-Quantum Cryptography

40

Post-quantum
hardness

assumption
+=Post-quantum

security proof
?

Reduction

Post-Quantum Cryptography

Important point:
the security reduction must be quantum-compatible!

41

Important point:
the security reduction must be quantum-compatible!

Post-quantum
hardness

assumption

Quantum-
compatible
Reduction

+=Post-quantum
security proof

Any quantum attack on the protocol
→ quantum attack on the assumption

Reduction
must imply:

Post-Quantum Cryptography

42

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

43

𝑎
Reduction

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

44

𝑎
𝑟

Reduction

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

45

𝑎
𝑟
𝑧

Reduction

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

46

𝑎
𝑟
𝑧

Reduction
1) Record (𝑎, 𝑟, 𝑧).

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

47

𝑎
𝑟
𝑧

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

48

𝑎
Reduction

1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

49

𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

50

𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind
𝑧′

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

51

𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

52

𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break hard
problem

Some classical reductions are quantum-compatible, but
problems arise if the reduction rewinds the adversary.

53

Problem: unclear how to rewind a quantum adversary
since running the adversary may disturb its state!

54

Some quantum rewinding techniques are known
[Watrous06,U12], but have very limited applications.

Problem: unclear how to rewind a quantum adversary
since running the adversary may disturb its state!

55

Some quantum rewinding techniques are known
[Watrous06,U12], but have very limited applications.

Important application where known techniques fail:
Succinct Arguments

Problem: unclear how to rewind a quantum adversary
since running the adversary may disturb its state!

56

Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P

57

Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P

Succinct = 𝑝𝑜𝑙𝑦(𝜆, log(𝑥 + |𝑤|)) communication.

Argument = complete + computationally sound

• Complete: if 𝑥, 𝑤 ∈ 𝑅, accepts.

• Sound: if 𝑥 ∉ 𝐿 𝑅 , malicious poly-time can’t fool
58

Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

Succinct = 𝑝𝑜𝑙𝑦(𝜆, log(𝑥 + |𝑤|)) communication.

accept/reject

P

59

Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P

[Kilian92]: Succinct arguments for NP exist assuming collision-
resistant hash functions (CRHFs).

60

Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P

[Kilian92]: Succinct arguments for NP exist assuming collision-
resistant hash functions (CRHFs).

Many applications: Succinct non-interactive arguments (SNARGs)
[Micali94], Universal arguments [BG01], non-black-box zero
knowledge [Barak01], …

61

Kilian’s security proof fundamentally relies on rewinding,
and does not extend to quantum attackers.

[Kilian92]:
succinct arguments

from CRHFs

post-quantum succinct
arguments from post-

quantum CRHFs

?

62

Kilian’s security proof fundamentally relies on rewinding,
and does not extend to quantum attackers.

63

*collapsing hash function [U16]

[CMSZ21] Result
Kilian’s protocol is post-quantum secure when instantiated with
a post-quantum hash function*.

64

*collapsing hash function [U16]

Technique
Extract unbounded number of accepting transcripts from
quantum adversary.

[CMSZ21] Result
Kilian’s protocol is post-quantum secure when instantiated with
a post-quantum hash function*.

65

*collapsing hash function [U16]

Prior work [U12,U16]: extract constant number of transcripts.

Technique
Extract unbounded number of accepting transcripts from
quantum adversary.

[CMSZ21] Result
Kilian’s protocol is post-quantum secure when instantiated with
a post-quantum hash function*.

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P

PCP π

Encode 𝑤 as PCP

66

Kilian’s protocol

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ

PCP π

67

com = Merkle!(π)

com

Kilian’s protocol

𝑥𝑥, 𝑤

P
CRHF ℎ

PCP π

samples PCP verifier coins 𝑟 ← 𝑅.

𝑟

68

com = Merkle!(π)

com

Kilian’s protocol

𝑥𝑥, 𝑤

P
CRHF ℎ

𝑟

P sends π[Q"] + short opening proofs

π Q%
open Q& =

Q" = indices PCP verifier
checks on random coins 𝑟

π Q" , open[Q"]

69

com = Merkle!(π)

com

Kilian’s protocol

Kilian’s protocol
𝑥𝑥, 𝑤

CRHF ℎ

𝑟

π Q" , open[Q"]π Q%
open Q& =

accepts if openings valid
+ PCP verifier accepts

accept
or reject

70

com = Merkle!(π)

com
P

Reduction

1) Run to get Merkle#(π).
2) Repeatedly ask to

answer on random Q.

𝑥 ∉ 𝐿

Assume fools into accepting on 𝑥 ∉ 𝐿.

71

Proving Security, Classically

CRHF ℎ Reduction

1) Run to get com.
2) Repeatedly ask to

answer on random Q.

𝑥 ∉ 𝐿

72

com

Proving Security, Classically

Assume fools into accepting on 𝑥 ∉ 𝐿.

CRHF ℎ

𝑟

π Q" , open[Q"]

Reduction

1) Run to get com.
2) Repeatedly ask to

answer on random 𝑟.
repeat

Reduction’s goal: record many accepting transcripts (𝑟$, 𝑧$)

𝑥 ∉ 𝐿

𝑧

73

com

Proving Security, Classically

CRHF ℎ

𝑟

π Q" , open[Q"]

Reduction

1) Run to get com.
2) Repeatedly ask to

answer on random 𝑟.
repeat

Reduction’s goal: record many accepting transcripts (𝑟$, 𝑧$)
Eventually finds impossible π OR collision.

𝑥 ∉ 𝐿

𝑧

Pr[PCP verifier accepts π] > PCP soundness error
74

com

Proving Security, Classically

CRHF ℎ

𝑟

π Q" , open[Q"]

𝑧

75

S

S = internal state after first two messages

com

Proving Security, Classically

76

Goal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

The Rewinding Problem

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]𝑟
𝑧S

S

S

77

If S is classical, perform independent trials:

obtain 𝑘 accepting
transcripts in 𝑘/𝑝
trials (expected)

S

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

S S …

𝑟
𝑧S

The Rewinding Problem

SGoal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]
S

78

What happens when |S⟩ is quantum?

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]𝑟
𝑧

The Rewinding Problem

|S⟩

Goal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

79

Independent trials violate no-cloning!

|S⟩

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

|S⟩ |S⟩

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]𝑟
𝑧

The Rewinding Problem

|S⟩

Goal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

80

|S⟩

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

|S⟩ |S⟩

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]𝑟
𝑧

The Rewinding Problem

Independent trials violate no-cloning!

|S⟩

Goal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

Idea: sequential trials.
Run next trial on leftover
state from previous trial

81

|S⟩

𝑟%

𝑧%

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]𝑟
𝑧|S⟩

The Rewinding Problem

Independent trials violate no-cloning!

|S%⟩

Goal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

Idea: sequential trials.
Run next trial on leftover
state from previous trial

82

|S⟩

𝑟%

𝑧%

𝑟&

𝑧&

|S%⟩

|S⟩

𝑟
𝑧

The Rewinding Problem

Independent trials violate no-cloning!

|S&⟩

|S⟩

Goal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

Idea: sequential trials.
Run next trial on leftover
state from previous trial

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]

83

|S⟩

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

|S%⟩

|S⟩

𝑟
𝑧

The Rewinding Problem

Independent trials violate no-cloning!

|S&⟩ …

|S⟩

Goal: given with large enough success probability 𝑝,
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

Idea: sequential trials.
Run next trial on leftover
state from previous trial

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[accepts 𝑟, 𝑧]

84

|S⟩

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

|S%⟩ |S&⟩ …
Idea: sequential trials.
Run next trial on leftover
state from previous trial

𝑝$ ≔ Pr[Trial 𝑖 successful]

Unruh’s Lemma [U12,DFMS19]:

E
$)*

+

𝑝$ ≥ 𝑝*,+-*

In words: a constant number of sequential trials all
succeed with non-negligible probability.

85

𝑝$ ≔ Pr[Trial 𝑖 successful]

Unruh’s Lemma [U12,DFMS19]:

E
$)*

+

𝑝$ ≥ 𝑝*,+-*

In words: a constant number of sequential trials all
succeed with non-negligible probability.

If we could improve this analysis,
we’d get better quantum rewinding!

86

Bad news: We show 𝑝$ can decay exponentially fast.
This means “sequential trials” rewinding is stuck at
obtaining a constant number of transcripts.

𝑝$ ≔ Pr[Trial 𝑖 successful]

Unruh’s Lemma [U12,DFMS19]:

E
$)*

+

𝑝$ ≥ 𝑝*,+-*

In words: a constant number of sequential trials all
succeed with non-negligible probability.

87

What do we do differently in [CMSZ21]?

88

Intuition: [U12,DFMS19] rewinding uses the fact that if the
state remains close to the original |S⟩, it retains some of
the original success probability.

What do we do differently in [CMSZ21]?

89

Intuition: [U12,DFMS19] rewinding uses the fact that if the
state remains close to the original |S⟩, it retains some of
the original success probability.

Our approach: no need to stay close to the original |S⟩;
rewinding “only” requires preserving success probability.

What do we do differently in [CMSZ21]?

90

Intuition: [U12,DFMS19] rewinding uses the fact that if the
state remains close to the original |S⟩, it retains some of
the original success probability.

Our approach: no need to stay close to the original |S⟩;
rewinding “only” requires preserving success probability.
• We don’t run the next trial on the leftover state from the

previous trial.

What do we do differently in [CMSZ21]?

91

Intuition: [U12,DFMS19] rewinding uses the fact that if the
state remains close to the original |S⟩, it retains some of
the original success probability.

Our approach: no need to stay close to the original |S⟩;
rewinding “only” requires preserving success probability.
• We don’t run the next trial on the leftover state from the

previous trial.
• Instead, run a procedure to repair the success

probability of the leftover state before the next trial.

What do we do differently in [CMSZ21]?

92

Quantum Background

• Quantum state: superposition over classical 𝑥I
.

𝛼.|𝑥⟩

93

Quantum Background

• Quantum state: superposition over classical 𝑥

• Quantum measurement:

I
.

𝛼.|𝑥⟩

I
.

𝛼.|𝑥⟩

Measure 𝑥 with probability 𝛼. ,

94

Quantum Background

• Quantum state: superposition over classical 𝑥

• Quantum measurement:

• Can do “partial” measurements that don’t fully collapse
the state

I
.

𝛼.|𝑥⟩

I
.

𝛼.|𝑥⟩

Measure 𝑥 with probability 𝛼. ,

95

|S⟩
initial
state

success
prob 𝑝∗

Before any trials, (somehow) measure the
adversary’s success probability

[CMSZ21] Rewinding: A Bird’s-Eye View

96

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

S/

success
prob 𝑝

Before any trials, (somehow) measure the
adversary’s success probability

[CMSZ21] Rewinding: A Bird’s-Eye View

97

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

S/

success
prob 𝑝

Trial S*

accept/reject

(𝑟 ← 𝑅)
𝑟

Next, perform trial on S+ with
known success probability 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View

98

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

S/

success
prob 𝑝

Trial S*

accept/reject

success prob M𝑝
(possibly ≪ 𝑝)(𝑟 ← 𝑅)

𝑟

Next, perform trial on S+ with
known success probability 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View

99

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

S/

success
prob 𝑝

Trial S*

accept/reject

success prob M𝑝
(possibly ≪ 𝑝)(𝑟 ← 𝑅)

𝑟

Before next trial, (somehow) repair the
success probability back to ≈ 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View

100

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

Repair
success
prob to 𝑝

success
prob ≈ 𝑝

S*∗S/

success
prob 𝑝

Trial S*

accept/reject

success prob M𝑝
(possibly ≪ 𝑝)(𝑟 ← 𝑅)

𝑟

Before next trial, (somehow) repair the
success probability back to ≈ 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View

101

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

Repair
success
prob to 𝑝

success
prob ≈ 𝑝

S*∗

repeat

S/

success
prob 𝑝

Trial S*

accept/reject

success prob M𝑝
(possibly ≪ 𝑝)(𝑟 ← 𝑅)

𝑟

Before next trial, (somehow) repair the
success probability back to ≈ 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View

102

Measure
success

prob

Repair
success
prob to 𝑝

How do we implement
these procedures?

103

Fact: exists special basis { T1 }1∈[/,*] where each T1 is
adversary with success prob 𝑝.

104

For S = ∑1 𝛼1|T1⟩ w/ success prob 𝑝∗,

𝑝∗ = I
1∈[/,*]

𝛼1
,
⋅ 𝑝

Fact: exists special basis { T1 }1∈[/,*] where each T1 is
adversary with success prob 𝑝.

105

[MW04,Z20]: Can approximately measure in this basis:

|S⟩ = ∑1 𝛼1|T1⟩ collapses to ≈ |T1⟩ w/ prob 𝛼1
,
.

For S = ∑1 𝛼1|T1⟩ w/ success prob 𝑝∗,

𝑝∗ = I
1∈[/,*]

𝛼1
,
⋅ 𝑝

Fact: exists special basis { T1 }1∈[/,*] where each T1 is
adversary with success prob 𝑝.

106

Measure
success

prob

[MW04,Z20]

Repair
success
prob to 𝑝

107

Measure
success

prob

[MW04,Z20] New techniques needed!

Repair
success
prob to 𝑝

108

[CMSZ21] State Repair
After we measure success prob
𝑝, |S+⟩ lies in subspace

𝑉 ≔ span |T,⟩ ,-.
i.e., 𝑉 = subspace of attacker
states with success prob ≥ 𝑝.

S+ ∈ 𝑉𝑉

Measure
success

prob

𝑝

S/

success prob 𝑝

𝑉 = subspace of attacker
states with success prob ≥ 𝑝

109

After trial, state is S% ∉ 𝑉.
We show: S% not too far from 𝑉

S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

Measure
success

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

𝑉 = subspace of attacker
states with success prob ≥ 𝑝

[CMSZ21] State Repair

110

S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

If S% not far from 𝑉, must have
non-trivial component in 𝑉.
We show: can amplify this
component to output S%∗ ∈ 𝑉

Measure
success

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

𝑉 = subspace of attacker
states with success prob ≥ 𝑝

[CMSZ21] State Repair

111

S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

S%∗ ∈ 𝑉If S% not far from 𝑉, must have
non-trivial component in 𝑉.
We show: can amplify this
component to output S%∗ ∈ 𝑉

Measure
success

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

Repair
success
prob to 𝑝

success prob ≈ 𝑝

S*∗

𝑉 = subspace of attacker
states with success prob ≥ 𝑝

[CMSZ21] State Repair

112

S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

S%∗ ∈ 𝑉Looks like amplitude
amplification, but requires care
since we can only approximately
project onto 𝑉.

Measure
success

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

Repair
success
prob to 𝑝

success prob ≈ 𝑝

S*∗

𝑉 = subspace of attacker
states with success prob ≥ 𝑝

[CMSZ21] State Repair

113

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

Repair
success
prob to 𝑝

success
prob ≈ 𝑝

S*∗S/

success
prob 𝑝

Trial S*

accept/reject

[CMSZ21] Summary: our quantum rewinding approach extends
many classical reductions to the quantum setting.

114

Consequences: post-quantum succinct arguments + optimal
post-quantum security guarantees for other protocols

[CMSZ21] Summary: our quantum rewinding approach extends
many classical reductions to the quantum setting.

|S⟩
initial
state

Measure
success

prob

𝑝

success
prob 𝑝∗

Repair
success
prob to 𝑝

success
prob ≈ 𝑝

S*∗S/

success
prob 𝑝

Trial S*

accept/reject

115

So far, we’ve considered quantum adversaries.

116

So far, we’ve considered quantum adversaries.

But in the long-term, even honest parties may
possess quantum computers.

117

𝑘𝑘

[BB84] Quantum Key Distribution
• Quantum parties + quantum channel agree on key
• Security is information-theoretic (i.e., no assumptions)

118

After [BB84], significant efforts (e.g. [BCJL93]) to build
more information-theoretic quantum crypto.

119

After [BB84], significant efforts (e.g. [BCJL93]) to build
more information-theoretic quantum crypto.

The hope:
Computational

hardness
assumption

Reduction+=Crypto
security proof

Use quantum to build crypto without assumptions!

120

Bad news [M97,LC97]: Information-theoretic quantum
bit commitments are impossible.

121

Bad news [M97,LC97]: Information-theoretic quantum
bit commitments are impossible.

Does this mean for most crypto tasks, quantum
information doesn’t help?

122

Bad news [M97,LC97]: Information-theoretic quantum
bit commitments are impossible.

Does this mean for most crypto tasks, quantum
information doesn’t help?

Not necessarily! May be possible to use quantum
information to build crypto from weaker assumptions.

123

𝑥' 𝑥(

𝑥)

Multi-Party Computation (MPC) from One-Way Functions
[BCKM21a]

Goal: Learn joint function
𝑓(𝑥5, 𝑥6 , 𝑥7) on private inputs
Security: reveal nothing else
about 𝑥5, 𝑥6 , 𝑥7

124

𝑥' 𝑥(

𝑥)

Multi-Party Computation (MPC) from One-Way Functions
[BCKM21a]

[Yao86,GMW87]: Classical MPC
• Equivalent to “oblivious transfer”
• Not known from one-way

functions (believed impossible)

125

Multi-Party Computation (MPC) from One-Way Functions
[BCKM21a]

𝑥' 𝑥(

𝑥)

[Yao86,GMW87]: Classical MPC
• Equivalent to “oblivious transfer”
• Not known from one-way

functions (believed impossible)

[BCKM21a]/[GLSV21]: Quantum
MPC implied by one-way functions!

126

Multi-Party Computation (MPC) from One-Way Functions
[BCKM21a]

𝑥' 𝑥(

𝑥)

[Yao86,GMW87]: Classical MPC
• Equivalent to “oblivious transfer”
• Not known from one-way

functions (believed impossible)

[BCKM21a]/[GLSV21]: Quantum
MPC implied by one-way functions!

This is a prime example of quantum information
enabling crypto from weaker assumptions

127

One-way
functions

Oblivious
transfer

weak assumptions strong assumptions

[BCKM21a]
Multiparty

computation

This is a prime example of quantum information
enabling crypto from weaker assumptions

128

Recap
[CMSZ21]: Obtain quantum analogue of classical rewinding and
prove Kilian’s protocol secure against quantum.

[BCKM21a]: Construct secure multiparty computation from one-
way functions + quantum information.

129

Recap

Upcoming work [LMS21]:
• obtain state-preserving version of [CMSZ21] rewinding
• one application: the [GMW86] graph non-isomorphism

protocol is zero-knowledge against quantum verifiers

[CMSZ21]: Obtain quantum analogue of classical rewinding and
prove Kilian’s protocol secure against quantum.

[BCKM21a]: Construct secure multiparty computation from one-
way functions + quantum information.

130

Recap
[CMSZ21]: Obtain quantum analogue of classical rewinding and
prove Kilian’s protocol secure against quantum.

[BCKM21a]: Construct secure multiparty computation from one-
way functions + quantum information.

[CLMQ21]: Investigate whether Fiat-Shamir hash function must
be “cryptographic"

Rest of thesis: new results on Fiat-Shamir
[BBHMR19]: Barriers to provably-secure succinct non-interactive
arguments from Fiat-Shamir.

Thank You!

Slide Artwork by Eysa Lee

131

