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Cryptographic Protocols
A cryptographic protocol is an interaction between parties 
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Cryptographic Protocols

1) Functionality 
Ex: verify computation, compute on private inputs
2) Security against adversarial behavior
Ex: can’t fool verifier, can’t learn other party’s input

A cryptographic protocol is an interaction between parties 
that achieves:
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Computational 
hardness 

assumption
Reduction+=Crypto 

security proof 

How do we prove security?
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How do we prove security?

Computational 
hardness 

assumption

Ex: invert one-way function, factoring, 
discrete log, lattice problems, etc.

Reduction+=

Any efficient attack on the protocol 
→ Break underlying hardness assumption

Crypto 
security proof 
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How do we prove security?

Computational 
hardness 

assumption
Reduction+=Crypto 

security proof 

Many amazing results based on this formula:
• Zero-knowledge proofs [GMR84]
• Secure multi-party computation [Yao86, GMW86]
• Succinct arguments [Kilian92]
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But even in settings where secure protocols are known, 
key challenges remain.
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Challenge 1: Quantum Computers
Most security proofs consider classical attackers.
Does security still hold if a quantum computer is built?
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Quantum Computers

• Use quantum physics to perform computation
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• Likely more powerful than classical computers (e.g., 

Shor’s algorithm enables factoring)
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Quantum Computers

• Use quantum physics to perform computation
• Likely more powerful than classical computers (e.g., 

Shor’s algorithm enables factoring)
• Not far away?

[Nature 2019] [WSJ 2021]
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Goal 1:
Understand what happens to crypto if/when 

a quantum computer is built.
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Challenge 2: Removing Interaction
Protocols typically use interaction, but interaction is 
unwieldy in practice. 
Through heuristics such as Fiat-Shamir, some protocols 
can be made non-interactive. 
Is this secure?



Fiat-Shamir Heuristic [FS86]
Magical compiler that removes interaction 

from public-coin interactive protocols.
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Fruitful approach:
Construct interactive protocol for some functionality (e.g., 
identification, verifiable computation), apply Fiat-Shamir.
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Important Caveat: 
Not immediately clear if soundness is preserved!
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Goal 2:
Understand when the Fiat-Shamir 
transform preserves soundness.



In sum, this thesis addresses two challenges:

1) Our understanding of what constitutes an efficient 
algorithm has changed.

2) Our demands for how protocols will be used have 
changed.
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Thesis Contributions
Part 1: Quantum
[CMSZ21]: Post-quantum succinct arguments via rewinding. 
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Thesis Contributions

[BCKM21]: One-way functions imply secure multi-party 
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Part 2: Fiat-Shamir

Thesis Contributions

[CMSZ21]: Post-quantum succinct arguments via rewinding. 

[BCKM21]: One-way functions imply secure multi-party 
computation (MPC) for quantum users.

Part 1: Quantum

[BBHMR19]: Barriers to provably-secure succinct non-interactive 
arguments from Fiat-Shamir.
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[CLMQ21]: Investigate whether Fiat-Shamir hash function must 
be “cryptographic"
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[CLMQ21]: Investigate whether Fiat-Shamir hash function must 
be “cryptographic"

Thesis Contributions

[BCKM21]: One-way functions imply secure multi-party 
computation (MPC) for quantum users.

This talk

Part 2: Fiat-Shamir

Part 1: Quantum
[CMSZ21]: Post-quantum succinct arguments via rewinding. 

[BBHMR19]: Barriers to provably-secure succinct non-interactive 
arguments from Fiat-Shamir.
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Up next:

[CMSZ21]: Post-quantum succinct arguments via rewinding. 
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How Will Quantum Computers Impact Crypto?
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Computational 
hardness 

assumption
Reduction+=

Ex: invert one-way function, factoring, 
discrete log, lattice problems, etc.

Crypto 
security proof 

How Will Quantum Computers Impact Crypto?
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Computational 
hardness 

assumption
Reduction+=

Immediate consequence: Shor’s algorithm breaks 
commonly used assumptions

Ex: invert one-way function, factoring, 
discrete log, lattice problems, etc.

Crypto 
security proof 

How Will Quantum Computers Impact Crypto?
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Reduction+=

Minimum requirement for post-quantum crypto: 
hard problem should resist quantum attacks

Crypto 
security proof 

Post-quantum 
hardness 

assumption

Post-Quantum Cryptography
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Reduction+=

Minimum requirement for post-quantum crypto: 
hard problem should resist quantum attacks
Fortunately, we have many candidate hard problems.

Crypto 
security proof 

Post-quantum 
hardness 

assumption

Ex: post-quantum one-way function, lattice problems, etc.

Post-Quantum Cryptography
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Post-quantum 
hardness 

assumption
+=Post-quantum 

security proof 
?

Reduction

Post-Quantum Cryptography

Important point:
the security reduction must be quantum-compatible!
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Important point:
the security reduction must be quantum-compatible!

Post-quantum 
hardness 

assumption

Quantum-
compatible
Reduction

+=Post-quantum 
security proof 

Any quantum attack on the protocol 
→ quantum attack on the assumption

Reduction 
must imply:

Post-Quantum Cryptography
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Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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𝑎
𝑟
𝑧

Reduction

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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𝑎
𝑟
𝑧

Reduction
1) Record (𝑎, 𝑟, 𝑧).

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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𝑎
𝑟
𝑧

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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𝑎
Reduction

1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.



50

𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind

rewind
𝑧′

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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𝑎
𝑟′

Reduction
1) Record (𝑎, 𝑟, 𝑧).
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break hard 
problem 

Some classical reductions are quantum-compatible, but 
problems arise if the reduction rewinds the adversary.
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Problem: unclear how to rewind a quantum adversary 
since running the adversary may disturb its state!
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Some quantum rewinding techniques are known 
[Watrous06,U12], but have very limited applications.

Problem: unclear how to rewind a quantum adversary 
since running the adversary may disturb its state!
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Some quantum rewinding techniques are known 
[Watrous06,U12], but have very limited applications.

Important application where known techniques fail:
Succinct Arguments

Problem: unclear how to rewind a quantum adversary 
since running the adversary may disturb its state!
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Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P
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Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P

Succinct = 𝑝𝑜𝑙𝑦(𝜆, log( 𝑥 + |𝑤|)) communication.



Argument = complete + computationally sound

• Complete: if 𝑥, 𝑤 ∈ 𝑅,         accepts.

• Sound: if 𝑥 ∉ 𝐿 𝑅 , malicious poly-time           can’t fool 
58

Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

Succinct = 𝑝𝑜𝑙𝑦(𝜆, log( 𝑥 + |𝑤|)) communication.

accept/reject

P
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Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P

[Kilian92]: Succinct arguments for NP exist assuming collision-
resistant hash functions (CRHFs).
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Succinct Arguments for NP

𝑥, 𝑤 𝑥
NP relation 𝑅

accept/reject

P

[Kilian92]: Succinct arguments for NP exist assuming collision-
resistant hash functions (CRHFs).

Many applications: Succinct non-interactive arguments (SNARGs) 
[Micali94], Universal arguments [BG01], non-black-box zero 
knowledge [Barak01], …
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Kilian’s security proof fundamentally relies on rewinding, 
and does not extend to quantum attackers.



[Kilian92]:
succinct arguments 

from CRHFs

post-quantum succinct 
arguments from post-

quantum CRHFs

?

62

Kilian’s security proof fundamentally relies on rewinding, 
and does not extend to quantum attackers.
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*collapsing hash function [U16]

[CMSZ21] Result
Kilian’s protocol is post-quantum secure when instantiated with 
a post-quantum hash function*.
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*collapsing hash function [U16]

Technique
Extract unbounded number of accepting transcripts from 
quantum adversary.

[CMSZ21] Result
Kilian’s protocol is post-quantum secure when instantiated with 
a post-quantum hash function*.
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*collapsing hash function [U16]

Prior work [U12,U16]: extract constant number of transcripts. 

Technique
Extract unbounded number of accepting transcripts from 
quantum adversary.

[CMSZ21] Result
Kilian’s protocol is post-quantum secure when instantiated with 
a post-quantum hash function*.



P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P

PCP π

Encode 𝑤 as PCP

66

Kilian’s protocol
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𝑥𝑥, 𝑤

P
CRHF ℎ

PCP π
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com = Merkle!(π)

com

Kilian’s protocol



𝑥𝑥, 𝑤

P
CRHF ℎ

PCP π

samples PCP verifier coins 𝑟 ← 𝑅. 

𝑟

68

com = Merkle!(π)

com

Kilian’s protocol



𝑥𝑥, 𝑤

P
CRHF ℎ

𝑟

P sends π[Q"] + short opening proofs

π Q%
open Q& =

Q" = indices PCP verifier 
checks on random coins 𝑟

π Q" , open[Q"]

69

com = Merkle!(π)

com

Kilian’s protocol



Kilian’s protocol
𝑥𝑥, 𝑤

CRHF ℎ

𝑟

π Q" , open[Q"]π Q%
open Q& =

accepts if openings valid 
+ PCP verifier accepts

accept 
or reject

70

com = Merkle!(π)

com
P



Reduction

1) Run         to get Merkle#(π).
2) Repeatedly ask         to 

answer on random Q.             

𝑥 ∉ 𝐿

Assume           fools         into accepting on 𝑥 ∉ 𝐿.

71

Proving Security, Classically



CRHF ℎ Reduction

1) Run         to get com.
2) Repeatedly ask         to 

answer on random Q.             

𝑥 ∉ 𝐿

72

com

Proving Security, Classically

Assume           fools         into accepting on 𝑥 ∉ 𝐿.



CRHF ℎ

𝑟

π Q" , open[Q"]

Reduction

1) Run         to get com.
2) Repeatedly ask         to 

answer on random 𝑟.             
repeat

Reduction’s goal: record many accepting transcripts (𝑟$ , 𝑧$)

𝑥 ∉ 𝐿

𝑧

73

com

Proving Security, Classically



CRHF ℎ

𝑟

π Q" , open[Q"]

Reduction

1) Run         to get com.
2) Repeatedly ask         to 

answer on random 𝑟.             
repeat

Reduction’s goal: record many accepting transcripts (𝑟$ , 𝑧$)
Eventually finds impossible π OR collision.

𝑥 ∉ 𝐿

𝑧

Pr[ PCP verifier accepts π ] > PCP soundness error
74

com

Proving Security, Classically



CRHF ℎ

𝑟

π Q" , open[Q"]

𝑧

75

S

S = internal state after first two messages 

com

Proving Security, Classically
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Goal: given          with large enough success probability 𝑝, 
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

The Rewinding Problem

𝑝 ≔ Pr
"←&,

(← "

[ accepts 𝑟, 𝑧 ]𝑟
𝑧S

S

S
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If S is classical, perform independent trials:

obtain 𝑘 accepting 
transcripts in 𝑘/𝑝
trials (expected)

S

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

S S …

𝑟
𝑧S

The Rewinding Problem

SGoal: given          with large enough success probability 𝑝, 
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

𝑝 ≔ Pr
"←&,

(← "

[ accepts 𝑟, 𝑧 ]
S
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What happens when |S⟩ is quantum?

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[ accepts 𝑟, 𝑧 ]𝑟
𝑧

The Rewinding Problem

|S⟩

Goal: given          with large enough success probability 𝑝, 
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .
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Independent trials violate no-cloning!

|S⟩

𝑟%
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𝑧'

|S⟩ |S⟩

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[ accepts 𝑟, 𝑧 ]𝑟
𝑧

The Rewinding Problem

|S⟩

Goal: given          with large enough success probability 𝑝, 
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .
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|S⟩
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𝑧%
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|S⟩ |S⟩

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[ accepts 𝑟, 𝑧 ]𝑟
𝑧

The Rewinding Problem

Independent trials violate no-cloning!

|S⟩

Goal: given          with large enough success probability 𝑝, 
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

Idea: sequential trials.
Run next trial on leftover 
state from previous trial
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|S⟩

𝑟%

𝑧%

|S⟩

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[ accepts 𝑟, 𝑧 ]𝑟
𝑧|S⟩

The Rewinding Problem

Independent trials violate no-cloning!

|S%⟩

Goal: given          with large enough success probability 𝑝, 
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

Idea: sequential trials.
Run next trial on leftover 
state from previous trial
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|S⟩

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

|S%⟩

|S⟩

𝑟
𝑧

The Rewinding Problem

Independent trials violate no-cloning!

|S&⟩ …

|S⟩

Goal: given          with large enough success probability 𝑝, 
obtain 𝑘 accepting transcripts 𝑟# , 𝑧# .

Idea: sequential trials.
Run next trial on leftover 
state from previous trial

|S⟩

𝑝 ≔ Pr
"←&,

(← "

[ accepts 𝑟, 𝑧 ]
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|S⟩

𝑟%

𝑧%

𝑟&

𝑧&

𝑟'

𝑧'

|S%⟩ |S&⟩ …
Idea: sequential trials.
Run next trial on leftover 
state from previous trial

𝑝$ ≔ Pr[Trial 𝑖 successful]

Unruh’s Lemma [U12,DFMS19]:

E
$)*

+

𝑝$ ≥ 𝑝*,+-*

In words: a constant number of sequential trials all 
succeed with non-negligible probability. 
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𝑝$ ≔ Pr[Trial 𝑖 successful]

Unruh’s Lemma [U12,DFMS19]:

E
$)*

+

𝑝$ ≥ 𝑝*,+-*

In words: a constant number of sequential trials all 
succeed with non-negligible probability. 

If we could improve this analysis, 
we’d get better quantum rewinding!
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Bad news: We show 𝑝$ can decay exponentially fast.
This means “sequential trials” rewinding is stuck at 
obtaining a constant number of transcripts.

𝑝$ ≔ Pr[Trial 𝑖 successful]

Unruh’s Lemma [U12,DFMS19]:

E
$)*

+

𝑝$ ≥ 𝑝*,+-*

In words: a constant number of sequential trials all 
succeed with non-negligible probability. 



87

What do we do differently in [CMSZ21]?
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Intuition: [U12,DFMS19] rewinding uses the fact that if the 
state remains close to the original |S⟩, it retains some of 
the original success probability.

What do we do differently in [CMSZ21]?
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Intuition: [U12,DFMS19] rewinding uses the fact that if the 
state remains close to the original |S⟩, it retains some of 
the original success probability.

Our approach: no need to stay close to the original |S⟩; 
rewinding “only” requires preserving success probability.

What do we do differently in [CMSZ21]?
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Intuition: [U12,DFMS19] rewinding uses the fact that if the 
state remains close to the original |S⟩, it retains some of 
the original success probability.

Our approach: no need to stay close to the original |S⟩; 
rewinding “only” requires preserving success probability.
• We don’t run the next trial on the leftover state from the 

previous trial.

What do we do differently in [CMSZ21]?
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Intuition: [U12,DFMS19] rewinding uses the fact that if the 
state remains close to the original |S⟩, it retains some of 
the original success probability.

Our approach: no need to stay close to the original |S⟩; 
rewinding “only” requires preserving success probability.
• We don’t run the next trial on the leftover state from the 

previous trial.
• Instead, run a procedure to repair the success 

probability of the leftover state before the next trial.

What do we do differently in [CMSZ21]?
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Quantum Background

• Quantum state:                   superposition over classical 𝑥

• Quantum measurement:

• Can do “partial” measurements that don’t fully collapse 
the state

I
.

𝛼.|𝑥⟩

I
.

𝛼.|𝑥⟩

Measure 𝑥 with probability 𝛼. ,
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|S⟩
initial 
state

success 
prob 𝑝∗

Before any trials, (somehow) measure the 
adversary’s success probability

[CMSZ21] Rewinding: A Bird’s-Eye View
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initial 
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𝑝

success 
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

S/

success 
prob 𝑝

Before any trials, (somehow) measure the 
adversary’s success probability
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|S⟩
initial 
state

Measure 
success 

prob

𝑝

success 
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

S/

success 
prob 𝑝

Trial S*

accept/reject

(𝑟 ← 𝑅)
𝑟

Next, perform trial on S+ with 
known success probability 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View
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|S⟩
initial 
state

Measure 
success 

prob

𝑝

success 
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

S/

success 
prob 𝑝

Trial S*

accept/reject

success prob M𝑝
(possibly ≪ 𝑝)(𝑟 ← 𝑅)

𝑟

Next, perform trial on S+ with 
known success probability 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View
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S/

success 
prob 𝑝

Trial S*

accept/reject

success prob M𝑝
(possibly ≪ 𝑝)(𝑟 ← 𝑅)

𝑟

Before next trial, (somehow) repair the 
success probability back to ≈ 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View
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|S⟩
initial 
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Measure 
success 

prob

𝑝

success 
prob 𝑝∗
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prob to 𝑝

success 
prob ≈ 𝑝

S*∗S/

success 
prob 𝑝

Trial S*
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𝑟
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|S⟩
initial 
state

Measure 
success 

prob

𝑝

success 
prob 𝑝∗

𝔼 𝑝 = 𝑝∗

Repair 
success 
prob to 𝑝

success 
prob ≈ 𝑝

S*∗

repeat

S/

success 
prob 𝑝

Trial S*

accept/reject

success prob M𝑝
(possibly ≪ 𝑝)(𝑟 ← 𝑅)

𝑟

Before next trial, (somehow) repair the 
success probability back to ≈ 𝑝.

[CMSZ21] Rewinding: A Bird’s-Eye View
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Measure 
success 

prob

Repair 
success 
prob to 𝑝

How do we implement 
these procedures?
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Fact: exists special basis { T1 }1∈[/,*] where each T1 is 
adversary with success prob 𝑝.
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For S = ∑1 𝛼1|T1⟩ w/ success prob 𝑝∗, 

𝑝∗ = I
1∈[/,*]

𝛼1
,
⋅ 𝑝

Fact: exists special basis { T1 }1∈[/,*] where each T1 is 
adversary with success prob 𝑝.
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[MW04,Z20]: Can approximately measure in this basis:

|S⟩ = ∑1 𝛼1|T1⟩ collapses to ≈ |T1⟩ w/ prob 𝛼1
,
.

For S = ∑1 𝛼1|T1⟩ w/ success prob 𝑝∗, 

𝑝∗ = I
1∈[/,*]

𝛼1
,
⋅ 𝑝

Fact: exists special basis { T1 }1∈[/,*] where each T1 is 
adversary with success prob 𝑝.
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Measure 
success 

prob

[MW04,Z20]

Repair 
success 
prob to 𝑝
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Measure 
success 

prob

[MW04,Z20] New techniques needed!

Repair 
success 
prob to 𝑝
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[CMSZ21] State Repair
After we measure success prob 
𝑝, |S+⟩ lies in subspace 

𝑉 ≔ span |T,⟩ ,-.
i.e., 𝑉 = subspace of attacker 
states with success prob ≥ 𝑝.

S+ ∈ 𝑉𝑉

Measure 
success 

prob

𝑝

S/

success prob 𝑝

𝑉 = subspace of attacker 
states with success prob ≥ 𝑝
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After trial, state is S% ∉ 𝑉.
We show: S% not too far from 𝑉

S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

Measure 
success 

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

𝑉 = subspace of attacker 
states with success prob ≥ 𝑝

[CMSZ21] State Repair
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S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

If S% not far from 𝑉, must have 
non-trivial component in 𝑉.
We show: can amplify this 
component to output S%∗ ∈ 𝑉

Measure 
success 

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

𝑉 = subspace of attacker 
states with success prob ≥ 𝑝

[CMSZ21] State Repair
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S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

S%∗ ∈ 𝑉If S% not far from 𝑉, must have 
non-trivial component in 𝑉.
We show: can amplify this 
component to output S%∗ ∈ 𝑉

Measure 
success 

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

Repair 
success 
prob to 𝑝

success prob ≈ 𝑝

S*∗

𝑉 = subspace of attacker 
states with success prob ≥ 𝑝

[CMSZ21] State Repair
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S+ ∈ 𝑉

S% ∉ 𝑉

𝑉

S%∗ ∈ 𝑉Looks like amplitude 
amplification, but requires care 
since we can only approximately
project onto 𝑉.

Measure 
success 

prob

𝑝

S/

success prob 𝑝

Trial S*

accept/reject

Repair 
success 
prob to 𝑝

success prob ≈ 𝑝

S*∗

𝑉 = subspace of attacker 
states with success prob ≥ 𝑝

[CMSZ21] State Repair
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|S⟩
initial 
state

Measure 
success 

prob

𝑝

success 
prob 𝑝∗

Repair 
success 
prob to 𝑝

success 
prob ≈ 𝑝

S*∗S/

success 
prob 𝑝

Trial S*

accept/reject

[CMSZ21] Summary: our quantum rewinding approach extends 
many classical reductions to the quantum setting.
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Consequences: post-quantum succinct arguments + optimal 
post-quantum security guarantees for other protocols 

[CMSZ21] Summary: our quantum rewinding approach extends 
many classical reductions to the quantum setting.

|S⟩
initial 
state

Measure 
success 

prob

𝑝

success 
prob 𝑝∗

Repair 
success 
prob to 𝑝

success 
prob ≈ 𝑝

S*∗S/

success 
prob 𝑝

Trial S*

accept/reject
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So far, we’ve considered quantum adversaries.
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So far, we’ve considered quantum adversaries.

But in the long-term, even honest parties may 
possess quantum computers.
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𝑘𝑘

[BB84] Quantum Key Distribution 
• Quantum parties + quantum channel agree on key
• Security is information-theoretic (i.e., no assumptions)
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After [BB84], significant efforts (e.g. [BCJL93]) to build 
more information-theoretic quantum crypto.
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After [BB84], significant efforts (e.g. [BCJL93]) to build 
more information-theoretic quantum crypto.

The hope: 
Computational 

hardness 
assumption

Reduction+=Crypto 
security proof 

Use quantum to build crypto without assumptions!
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Bad news [M97,LC97]: Information-theoretic quantum 
bit commitments are impossible.
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Does this mean for most crypto tasks, quantum 
information doesn’t help?
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Bad news [M97,LC97]: Information-theoretic quantum 
bit commitments are impossible.

Does this mean for most crypto tasks, quantum 
information doesn’t help?

Not necessarily! May be possible to use quantum 
information to build crypto from weaker assumptions.
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𝑥' 𝑥(

𝑥)

Multi-Party Computation (MPC) from One-Way Functions 
[BCKM21a]

Goal: Learn joint function
𝑓(𝑥5, 𝑥6 , 𝑥7) on private inputs
Security: reveal nothing else 
about 𝑥5, 𝑥6 , 𝑥7



124

𝑥' 𝑥(

𝑥)

Multi-Party Computation (MPC) from One-Way Functions 
[BCKM21a]

[Yao86,GMW87]: Classical MPC
• Equivalent to “oblivious transfer”
• Not known from one-way 

functions (believed impossible)
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Multi-Party Computation (MPC) from One-Way Functions 
[BCKM21a]

𝑥' 𝑥(

𝑥)

[Yao86,GMW87]: Classical MPC
• Equivalent to “oblivious transfer”
• Not known from one-way 

functions (believed impossible)

[BCKM21a]/[GLSV21]: Quantum 
MPC implied by one-way functions!
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Multi-Party Computation (MPC) from One-Way Functions 
[BCKM21a]

𝑥' 𝑥(

𝑥)

[Yao86,GMW87]: Classical MPC
• Equivalent to “oblivious transfer”
• Not known from one-way 

functions (believed impossible)

[BCKM21a]/[GLSV21]: Quantum 
MPC implied by one-way functions!

This is a prime example of quantum information 
enabling crypto from weaker assumptions
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One-way 
functions

Oblivious 
transfer

weak assumptions strong assumptions

[BCKM21a]
Multiparty 

computation

This is a prime example of quantum information 
enabling crypto from weaker assumptions
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Recap
[CMSZ21]: Obtain quantum analogue of classical rewinding and 
prove Kilian’s protocol secure against quantum.

[BCKM21a]: Construct secure multiparty computation from one-
way functions + quantum information. 
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Recap

Upcoming work [LMS21]: 
• obtain state-preserving version of [CMSZ21] rewinding
• one application: the [GMW86] graph non-isomorphism 

protocol is zero-knowledge against quantum verifiers

[CMSZ21]: Obtain quantum analogue of classical rewinding and 
prove Kilian’s protocol secure against quantum.

[BCKM21a]: Construct secure multiparty computation from one-
way functions + quantum information. 
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Recap
[CMSZ21]: Obtain quantum analogue of classical rewinding and 
prove Kilian’s protocol secure against quantum.

[BCKM21a]: Construct secure multiparty computation from one-
way functions + quantum information. 

[CLMQ21]: Investigate whether Fiat-Shamir hash function must 
be “cryptographic"

Rest of thesis: new results on Fiat-Shamir
[BBHMR19]: Barriers to provably-secure succinct non-interactive 
arguments from Fiat-Shamir.



Thank You!

Slide Artwork by Eysa Lee
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