A one-query lower bound for unitary synthesis and breaking quantum cryptography

Fermi Ma
(Simons and Berkeley)

joint work with Alex Lombardi and John Wright

Normally, we study computational problems that can be efficiently reduced to computing some function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$.

Normally, we study computational problems that can be efficiently reduced to computing some function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$.

- 3SAT: given a formula ϕ, compute the bit $f(\phi)$ indicating whether ϕ is satisfiable.

Normally, we study computational problems that can be efficiently reduced to computing some function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$.

- 3SAT: given a formula ϕ, compute the bit $f(\phi)$ indicating whether ϕ is satisfiable.
- Factoring: given a positive integer N, compute $f(N)=$ prime factorization of N.

Normally, we study computational problems that can be efficiently reduced to computing some function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$.

- 3SAT: given a formula ϕ, compute the bit $f(\phi)$ indicating whether ϕ is satisfiable.
- Factoring: given a positive integer N, compute $f(N)=$ prime factorization of N.
- Local Hamiltonian: given a local Hamiltonian H, compute the bit $f(H)$ indicating whether H has a low-energy ground state.

But what about problems with quantum inputs and outputs?

But what about problems with quantum inputs and outputs?

- State tomography: given many copies of a quantum state $|\psi\rangle$, output a classical description of $|\psi\rangle$.

But what about problems with quantum inputs and outputs?

- State tomography: given many copies of a quantum state $|\psi\rangle$, output a classical description of $|\psi\rangle$.
- Quantum error correction: given a noisy quantum codeword $|c\rangle$, recover the original message.

But what about problems with quantum inputs and outputs?

- State tomography: given many copies of a quantum state $|\psi\rangle$, output a classical description of $|\psi\rangle$.
- Quantum error correction: given a noisy quantum codeword $|c\rangle$, recover the original message.
- State distinguishing: distinguish whether a given state $|\psi\rangle$ was sampled from distribution D_{0} or D_{1} (promised it's possible).

But what about problems with quantum inputs and outputs?

- State tomography: given many copies of a quantum state $|\psi\rangle$, output a classical description of $|\psi\rangle$.
- Quantum error correction: given a noisy quantum codeword $|c\rangle$, recover the original message.
- State distinguishing: distinguish whether a given state $|\psi\rangle$ was sampled from distribution D_{0} or D_{1} (promised it's possible).
Physics: computing AdS/CFT map, decoding black-hole radiation

What can complexity theory say about the hardness of these inherently quantum problems?

Standard procedure: reduce your problem to some well-studied complexity class.

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
Issue: for some quantum problems, it's not clear how to do this!

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
Issue: for some quantum problems, it's not clear how to do this!
State distinguishing: distinguish whether a given state $|\psi\rangle$ was sampled from distribution D_{0} or D_{1} (promised it's possible).

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
Issue: for some quantum problems, it's not clear how to do this!
State distinguishing: distinguish whether a given state $|\psi\rangle$ was sampled from distribution D_{0} or D_{1} (promised it's possible).

Not known how to solve this using any oracle

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
Issue: for some quantum problems, it's not clear how to do this!
State distinguishing: distinguish whether a given state $|\psi\rangle$ was sampled from distribution D_{0} or D_{1} (promised it's possible).

Not known how to solve this using any oracle, even an oracle for the halting problem!

Before we continue:

1-minute detour for quantum computing 101

Quantum computing 101

Quantum computing 101

- n-qubit state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.

Quantum computing 101

- n-qubit state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.
- n-qubit unitary $=2^{n} \times 2^{n}$ rotation matrix.

Quantum computing 101

- n-qubit state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.
- n-qubit unitary $=2^{n} \times 2^{n}$ rotation matrix.
- efficient quantum computation $=\operatorname{poly}(n)$-size quantum circuit

Quantum computing 101

- n-qubit state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.
- n-qubit unitary $=2^{n} \times 2^{n}$ rotation matrix.
- efficient quantum computation $=\operatorname{poly}(n)$-size quantum circuit

poly (n) gates

Now back to:

Does complexity theory capture quantum problems?

Does complexity theory capture quantum problems?

Does complexity theory capture quantum problems?

- In general, a quantum problem involves computing a unitary.

Does complexity theory capture quantum problems?

- In general, a quantum problem involves computing a unitary.
- Complexity theory is about computing functions.

Does complexity theory capture quantum problems?

- In general, a quantum problem involves computing a unitary.
- Complexity theory is about computing functions.

To apply complexity theory, we need to efficiently reduce the task of implementing a unitary U to implementing a function f.

Does complexity theory capture quantum problems?

- In general, a quantum problem involves computing a unitary.
- Complexity theory is about computing functions.

To apply complexity theory, we need to efficiently reduce the task of implementing a unitary U to implementing a function f.

> The Unitary Synthesis Problem [AK06]: Is there a reduction for every unitary U?

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot)}$:

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot)} \quad$ \# of gates $=\operatorname{poly}(n)$

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot)} \quad \quad \#$ of gates $=\operatorname{poly}(n)$

2) Given U, pick $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot): \quad \# \text { of gates }=\operatorname{poly}(n), ~(n) ~}$

2) Given U, pick $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$. Plug in $O_{f}:|z\rangle \rightarrow f(z) \cdot|z\rangle$.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot)} \quad \quad \#$ of gates $=\operatorname{poly}(n)$

2) Given U, pick $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$. Plug in $O_{f}:|z\rangle \rightarrow f(z) \cdot|z\rangle$.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot)} \quad \quad \#$ of gates $=\operatorname{poly}(n)$

2) Given U, pick $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$. Plug in $O_{f}:|z\rangle \rightarrow f(z) \cdot|z\rangle$.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

Prior best-known bounds

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

Prior best-known bounds

- Upper bound: $2^{n / 2}$ queries [Ros22]

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]

 Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?
Prior best-known bounds

- Upper bound: $2^{n / 2}$ queries [Ros22]
- Lower bound: none

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]

 Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?
Prior best-known bounds

- Upper bound: $2^{n / 2}$ queries [Ros22]
- Lower bound: none

Note: [AK06] prove a 1-query lower bound for a very special class of oracle algorithms.

Why has it been hard to prove lower bounds?

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Useless for $l>2 n$.

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Useless for $\ell>2 n$.
(2) Even one-query algorithms are very powerful!

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Useless for $l>2 n$.
(2) Even one-query algorithms are very powerful!

In fact, they can solve any classical input, quantum output problem. [Aar16, INNRY22, Ros23]

This work

Main result: There's no efficient one-query oracle algorithm for the Unitary Synthesis Problem.

This work

Main result: There's no efficient one-query oracle algorithm for the Unitary Synthesis Problem.

Actually, we even rule out computationally unbounded algorithms, as long as they query $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$ on inputs of length $\ell=o\left(2^{n}\right)$.

This work

Main result: There's no efficient one-query oracle algorithm for the Unitary Synthesis Problem.

Actually, we even rule out computationally unbounded algorithms, as long as they query $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$ on inputs of length $\ell=o\left(2^{n}\right)$.

Note: when $l=2^{2 n}$, possible to learn description of U in one query.

Rest of this talk

Part 1:

Connect unitary synthesis to breaking quantum cryptography
Part 2:
A special case of our proof

Rest of this talk

Part 1:

Connect unitary synthesis to breaking quantum cryptography
Part 2:
A special case of our proof

We prove our result by studying pseudorandom states (PRS).

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

PRS \rightarrow quantum commitments, multi-party computation, and more

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

PRS \rightarrow quantum commitments, multi-party computation, and more
Big question: how hard is it to break a PRS?

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

PRS \rightarrow quantum commitments, multi-party computation, and more
Big question: how hard is it to break a PRS?
Our answer: possibly harder than computing any function!

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\operatorname{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Result \#2: Exists a PRS secure against any efficient adversary $A^{(\cdot)}$ that queries an arbitrary function f once

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Result \#2: Exists a PRS secure against any efficient adversary $A^{(\cdot)}$ that queries an arbitrary function f once, relative to a random oracle R (where f can be chosen based on R).

We prove our result by studying pseudorandom states (PRS).
PRS: family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Result \#2: Exists a PRS secure against any efficient adversary $A^{(\cdot)}$ that queries an arbitrary function f once, relative to a random oracle R (where f can be chosen based on R).

Note: this result implies our unitary synthesis lower bound.

Our PRS construction

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the binary phase state

$$
\left|\psi_{h}\right\rangle \propto \sum_{x \in[N]} h(x)|x\rangle \quad\left(\text { recall } N=2^{n}\right)
$$

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the binary phase state

$$
\left|\psi_{h}\right\rangle \propto \sum_{x \in[N]} h(x)|x\rangle \quad\left(\text { recall } N=2^{n}\right)
$$

Our PRS: $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where each R_{k} is a random function.

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the binary phase state

$$
\left|\psi_{h}\right\rangle \propto \sum_{x \in[N]} h(x)|x\rangle \quad\left(\text { recall } N=2^{n}\right)
$$

Our PRS: $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where each R_{k} is a random function.
Adversary tries to distinguish

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the binary phase state

$$
\left|\psi_{h}\right\rangle \propto \sum_{x \in[N]} h(x)|x\rangle \quad\left(\text { recall } N=2^{n}\right)
$$

Our PRS: $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where each R_{k} is a random function.
Adversary tries to distinguish

- $\left|\psi_{R_{k}}\right\rangle$ for random $k \leftarrow[K]$

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the binary phase state

$$
\left|\psi_{h}\right\rangle \propto \sum_{x \in[N]} h(x)|x\rangle \quad\left(\text { recall } N=2^{n}\right)
$$

Our PRS: $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where each R_{k} is a random function.
Adversary tries to distinguish

- $\left|\psi_{R_{k}}\right\rangle$ for random $k \leftarrow[K]$
- $\left|\psi_{h}\right\rangle$ for random $h:[N] \rightarrow\{ \pm 1\}$

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the binary phase state

$$
\left|\psi_{h}\right\rangle \propto \sum_{x \in[N]} h(x)|x\rangle \quad\left(\text { recall } N=2^{n}\right)
$$

Our PRS: $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where each R_{k} is a random function.
Adversary tries to distinguish

- $\left|\psi_{R_{k}}\right\rangle$ for random $k \leftarrow[K]$
- $\left|\psi_{h}\right\rangle$ for random $h:[N] \rightarrow\{ \pm 1\}$
given one query to a function f, which can depend on $R:=\left\{R_{k}\right\}$.

Next up: what does a one-query adversary look like?

One-query adversaries

$$
\text { input }|\psi\rangle\{\bar{Z}
$$

One-query adversaries

$$
\begin{array}{r}
\text { input }|\psi\rangle\lceil\equiv \\
\text { ancilla }|0\rangle\{\bar{Z}
\end{array}
$$

1) Initialize $\ell-n$ ancilla qubits

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.
4) Measure $\{\Pi, \mathrm{I}-\Pi\}$ and return 1 if outcome is Π.

One-query

adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.
4) Measure $\{\Pi, \mathrm{I}-\Pi\}$ and return 1 if outcome is Π.

One-query

adversaries

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs } 1\right]=\| \Pi \cdot O_{f} \cdot U \cdot|\psi\rangle|0\rangle \|^{2}
$$

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.
4) Measure $\{\Pi, \mathrm{I}-\Pi\}$ and return 1 if outcome is Π.

One-query

adversaries

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs } 1\right]=\| \Pi \cdot O_{f} \cdot U \cdot|\psi\rangle|0\rangle \|^{2}
$$

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

One-query

adversaries

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs } 1\right]=\| \Pi \cdot O_{f} \cdot U \cdot|\psi\rangle|0\rangle \|^{2}
$$

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\mid \psi_{R_{k}}\right)\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }
$$

(adversary picks $f=f_{R}$ to maximize this)

Goal: bound maximum distinguishing advantage.

Adversary's distinguishing advantage for fixed R is

$$
\begin{gathered}
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right. \\
\text { (adversary picks } f=f_{R} \text { to maximize this) } \\
\hline
\end{gathered}
$$

Goal: bound maximum distinguishing advantage.

The plan:

Adversary's distinguishing advantage for fixed R is

$$
\begin{gathered}
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right. \\
\text { (adversary picks } f=f_{R} \text { to maximize this) } \\
\hline
\end{gathered}
$$

Goal: bound maximum distinguishing advantage.

The plan:

1) Use spectral relaxation to bound distinguishing advantage in terms of the norm of a random matrix

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

$$
\text { (adversary picks } f=f_{R} \text { to maximize this) }
$$

Goal: bound maximum distinguishing advantage.

The plan:

1) Use spectral relaxation to bound distinguishing advantage in terms of the norm of a random matrix
2) Apply matrix concentration

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

(adversary picks $f=f_{R}$ to maximize this)

Rest of this talk

Part 1 :

Connect unitary synthesis to breaking quantum cryptography

Part 2:
 A special case of our proof

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.
Disclaimer: We can rule out these attacks with a counting argument, but today we'll see a different proof.

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.

One-query adversaries:

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=$ Id.
Special class: $\quad n$-qubit input: $|\psi\rangle \equiv O_{f}=\Pi$

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.
Special class: $\quad n$-qubit input: $|\psi\rangle \equiv O_{f}=\Pi$

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs 1] }=\| \Pi \cdot O_{f} \cdot|\psi\rangle \|^{2}\right.
$$

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.
Special class: $\quad n$-qubit input: $|\psi\rangle \equiv O_{f}, \Pi$

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs 1] }=\| \Pi \cdot O_{f} \cdot|\psi\rangle \|^{2}\right.
$$

Distinguishing advantage:

$$
\underset{k \leftarrow[K]}{\mathbb{E}}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{R_{k}}\right\rangle-\underset{h}{\mathbb{E}}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle
$$

$$
\text { (adversary picks } f=f_{R} \text { to maximize this) }
$$

Technical tool: matrix concentration

Technical tool: matrix concentration

Scalar Chernoff bound: If X is a random scalar with bounded absolute value, then for i.i.d. X_{1}, \ldots, X_{K}

$$
\left|\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right| \approx 0\left(\frac{1}{\sqrt{K}}\right) \quad \text { (w.h.p.) }
$$

Technical tool: matrix concentration

Scalar Chernoff bound: If X is a random scalar with bounded absolute value, then for i.i.d. X_{1}, \ldots, X_{K}

$$
\begin{equation*}
\left|\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right| \approx O\left(\frac{1}{\sqrt{K}}\right) \tag{w.h.p.}
\end{equation*}
$$

Matrix Chernoff bound: If X is a random Hermitian $L \times L$ matrix with bounded operator norm, then for i.i.d. X_{1}, \ldots, X_{K}

$$
\left\|\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right\|_{\mathrm{op}} \approx O\left(\frac{\sqrt{\log (L)}}{\sqrt{K}}\right) \quad \text { (w.h.p.) }
$$

Adversary's advantage (for this special class):
$\left.\max _{f:[\mathbb{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid$

Adversary's advantage (for this special class):

$$
\left.\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Matrix Chernoff:

$$
\left.\max _{|v\rangle}\left|\langle v| \cdot\left(\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right) \cdot\right| v\right\rangle \mid
$$

Adversary's advantage (for this special class):

$$
\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot \underbrace{O_{f} \cdot \Pi \cdot O_{f}}_{\text {max over matrices }} \cdot| \psi_{R_{k}}\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Matrix Chernoff:

$$
\begin{aligned}
\max _{|v\rangle} \mid & \left.\langle v| \cdot\left(\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right) \cdot|v\rangle \right\rvert\, \\
& \text { random matrices } \quad \text { max over unit vectors }
\end{aligned}
$$

Adversary's advantage (for this special class):

$$
\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}} \left\lvert\, \frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot \underbrace{O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid}_{\text {max over matrices }}\right.
$$

Matrix Chernoff:

$$
\begin{aligned}
\max _{|v\rangle} \mid & \left.\langle v| \cdot\left(\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right) \cdot|v\rangle \right\rvert\, \\
& \text { random matrices } \quad \text { max over unit vectors }
\end{aligned}
$$

Adversary's advantage (for this special class):

$$
\left.\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Key step: we can refactor this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$

$$
=\frac{1}{K} \sum_{k} X_{k}-E[X] \quad \begin{gathered}
f \text {-dependent } \\
\text { unit vector }
\end{gathered}
$$

Adversary's advantage (for this special class):

$$
\left.\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Key step: we can refactor this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$

$$
=\frac{1}{K} \sum_{k} X_{k}-E[X] \quad \begin{gathered}
f \text {-dependent } \\
\text { unit vector }
\end{gathered}
$$

Then matrix Chernoff will bound the max over all unit vectors.

Adversary's advantage (for this special class):
$\left.\max _{f:\{\mathbb{N} \mid \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k} \frac{\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{R_{k}}\right\rangle}{}-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{h}\right\rangle \mid$
Since all the terms look identical, it suffices to just look at one term.

We'll rewrite this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\cdot\left|v_{f}\right\rangle$
$\stackrel{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle}{ }$

We'll rewrite this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\cdot\left|v_{f}\right\rangle$
$\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle$
(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right) \cdot \frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\cdot\left|v_{f}\right\rangle$
$\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle$
(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\begin{aligned}
&\left|\psi_{R_{k}}\right\rangle=\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right) \cdot \frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) \\
& \begin{array}{c}
N \times N \text { diagonal matrix, } \\
\\
\\
x \text {-th entry is } R_{k}(x)
\end{array} \\
& \text { superposition }
\end{aligned}
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$

$$
\overbrace{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle}
$$

(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left(\begin{array}{llll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+{ }_{N}\right\rangle}
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\cdot\left|v_{f}\right\rangle$

$$
\begin{equation*}
\left.\stackrel{\langle }{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f} \mid \psi_{R_{k}}}\right\rangle=\left\langle+_{N}\right| D_{R_{k}} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot D_{R_{k}}\left|+_{N}\right\rangle \tag{1}
\end{equation*}
$$

(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left.\begin{array}{llll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+{ }_{N}\right\rangle}
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$
$\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle=\left\langle+_{N}\right| D_{R_{k}} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot D_{R_{k}}\left|+_{N}\right\rangle$
(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+_{N}\right\rangle}
$$

(2) O_{f} is a diagonal matrix, so it commutes with $D_{R_{k}}$

$$
\begin{align*}
& \overbrace{\text { We'll rewrite this as }\left\langle v_{f}\right| \cdot \text { (random matrix) } \cdot\left|v_{f}\right\rangle}^{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle}\rangle \\
& =\left\langle+_{N}\right| D_{R_{k}} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot D_{R_{k}}\left|+_{N}\right\rangle \tag{1}\\
& \tag{2}\\
& =\left\langle+_{N}\right| O_{f} \cdot\left(D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}\right) \cdot O_{f}\left|+_{N}\right\rangle
\end{align*}
$$

(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+_{N}\right\rangle}
$$

(2) O_{f} is a diagonal matrix, so it commutes with $D_{R_{k}}$
$\begin{aligned} & \text { Distinguishing } \\ & \text { advantage }\end{aligned} \quad \frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{h}\right\rangle, ~$

Distinguishing advantage
 $$
\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{h}\right\rangle
$$

Rewrite as:

$$
=\left\langle+_{N}\right| O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) O_{f}\left|+_{N}\right\rangle
$$

Distinguishing advantage
 $$
\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{h}\right\rangle
$$

Rewrite as:

$$
=\left\langle+_{N}\right| O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) \underbrace{O_{f}\left|+_{N}\right\rangle}_{\text {unit vector }}
$$

Distinguishing advantage
 $$
\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{h}\right\rangle
$$

Rewrite as:

$$
\begin{aligned}
& =\langle+_{N} \left\lvert\, O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) \underbrace{O_{f} \mid+_{N}}_{\text {unit vector }}\right.\rangle \\
& \leq\left\|\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right\|_{\mathrm{op}}
\end{aligned}
$$

Distinguishing advantage
 $$
\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{h}\right\rangle
$$

Rewrite as:

$$
\begin{aligned}
& =\left\langle+_{N}\right| O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) \underbrace{O_{f}\left|+_{N}\right\rangle}_{\text {unit vector }} \\
& \leq\left\|\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right\|_{\mathrm{op}} \approx O\left(\sqrt{\frac{n}{K}}\right)
\end{aligned}
$$

by Matrix Chernoff with $X_{k}=D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}$

How do we handle general onequery adversaries?

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

General one-query adversaries

$\begin{aligned} n \text { qubit input: }\left|\psi_{h}\right\rangle & \equiv U \\ \text { ancilla: }|0\rangle & \equiv \\ & O_{f}\end{aligned}$

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

$$
\operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right) \text { outputs 1] }=\left\langle+_{N}\right| D_{h} \cdot V^{\dagger} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot V \cdot D_{h}\left|+_{N}\right\rangle\right.
$$

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

$$
\operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right) \text { outputs 1] }=\left\langle+_{N}\right| D_{h} \cdot V^{\dagger} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot V \cdot D_{h}\left|+_{N}\right\rangle\right.
$$

Challenge: unclear how to commute D_{h} and O_{f} !

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

$$
\operatorname{Pr}[A^{f}\left(\left|\psi_{h}\right\rangle\right) \text { outputs 1] }=\left\langle+_{N}\right| \underbrace{D_{h} \cdot V^{\dagger} \cdot O_{f}} \cdot \Pi \cdot \underbrace{O_{f} \cdot V \cdot D_{h}}\left|+{ }_{N}\right\rangle
$$

Challenge: unclear how to commute D_{h} and O_{f} !
Our solution: Write $V \cdot D_{h}\left|+_{N}\right\rangle=\widetilde{D_{h}} \mid$ wt $\left.{ }_{V}\right\rangle$ w.r.t. a V-dependent unit vector $\left|w_{t}\right\rangle$.

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

$$
\operatorname{Pr}[A^{f}\left(\left|\psi_{h}\right\rangle\right) \text { outputs 1] }=\left\langle+_{N}\right| \underbrace{D_{h} \cdot V^{\dagger} \cdot O_{f}} \cdot \Pi \cdot \underbrace{O_{f} \cdot V \cdot D_{h}}\left|++_{N}\right\rangle
$$

Challenge: unclear how to commute D_{h} and O_{f} !
Our solution: Write $V \cdot D_{h}\left|+_{N}\right\rangle=\widetilde{D_{h}} \mid$ wt $\left.{ }_{V}\right\rangle$ w.r.t. a V-dependent unit vector $\left|w t_{V}\right\rangle$. Commute $\widetilde{D_{h}}, O_{f}$ to get spectral relaxation.

Future directions

Future directions

Open problem \#1: prove that our PRS distinguishing game is hard even given $\operatorname{poly}(n)$ queries to an arbitrary f.

Future directions

Open problem \#1: prove that our PRS distinguishing game is hard even given $\operatorname{poly}(n)$ queries to an arbitrary f.

Open problem \#2:

Future directions

Open problem \#1: prove that our PRS distinguishing game is hard even given $\operatorname{poly}(n)$ queries to an arbitrary f.

Open problem \#2:

Future directions

Open problem \#1: prove that our PRS distinguishing game is hard even given $\operatorname{poly}(n)$ queries to an arbitrary f.

Open problem \#2:
$\left.\begin{array}{c}\left|0^{n}\right\rangle \\ \text { or }\left|1^{n}\right\rangle\end{array}\right\} \begin{aligned} & \text { random } \overline{\bar{E}} \\ & \text { circuit } C\end{aligned}$

Future directions

Open problem \#1: prove that our PRS distinguishing game is hard even given $\operatorname{poly}(n)$ queries to an arbitrary f.

Open problem \#2:

Future directions

Open problem \#1: prove that our PRS distinguishing game is hard even given poly (n) queries to an arbitrary f.

Open problem \#2:
$\left|0^{n}\right\rangle$
or $\left|1^{n}\right\rangle$$\left[\begin{array}{l}\text { 首 } \begin{array}{l}\text { random } \\ \text { circuit } C\end{array} \\ \begin{array}{l}\overline{\bar{E}}\end{array} \begin{array}{l}\text { Task: given description of } C \text { and } \\ 2 n / 3 \text { qubits of } C\left|b^{n}\right\rangle \text {, determine } b . \\ \text { Is this easy given a halting oracle? }\end{array}\end{array}\right.$

Future directions

Open problem \#1: prove that our PRS distinguishing game is hard even given poly (n) queries to an arbitrary f.

Open problem \#2:
$\left|0^{n}\right\rangle$
or $\left|1^{n}\right\rangle$$\left[\begin{array}{l}\text { random } \\ \text { circuit } C\end{array}\right] \begin{aligned} & \text { Task: given description of } C \text { and } \\ & 2 n / 3 \text { qubits of } C\left|b^{n}\right\rangle \text {, determine } b . \\ & \text { Is this easy given a halting oracle? }\end{aligned}$
Thanks for listening!

