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Normally, we study computational problems that can be efficiently 
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.
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• 3SAT: given a formula 𝜙, compute the function 𝑓 𝜙 ∈ {0,1}
indicating whether 𝜙 is satisfiable.

Normally, we study computational problems that can be efficiently 
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.
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• 3SAT: given a formula 𝜙, compute the function 𝑓 𝜙 ∈ {0,1}
indicating whether 𝜙 is satisfiable.

• Hamiltonian cycle: given a graph 𝐺, compute any function 𝑓 𝐺
whose output is a Hamiltonian cycle of 𝐺.

Normally, we study computational problems that can be efficiently 
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.
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• 3SAT: given a formula 𝜙, compute the function 𝑓 𝜙 ∈ {0,1}
indicating whether 𝜙 is satisfiable.

• Hamiltonian cycle: given a graph 𝐺, compute any function 𝑓 𝐺
whose output is a Hamiltonian cycle of 𝐺.

• Local Hamiltonian: given a local Hamiltonian 𝐻, output 𝑓 𝐻 ∈
0,1 indicating whether 𝐻 has a low-energy ground state.

Normally, we study computational problems that can be efficiently 
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.
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But what about problems with quantum inputs and outputs?
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• State tomography: given many copies of a quantum state |𝜓⟩, 
output a classical description of |𝜓⟩.

But what about problems with quantum inputs and outputs?
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• State tomography: given many copies of a quantum state |𝜓⟩, 
output a classical description of |𝜓⟩.

• Quantum error correction: given a noisy quantum codeword |𝑐⟩, 
recover the original message.

But what about problems with quantum inputs and outputs?
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• State tomography: given many copies of a quantum state |𝜓⟩, 
output a classical description of |𝜓⟩.

• Quantum error correction: given a noisy quantum codeword |𝑐⟩, 
recover the original message.

• State distinguishing: distinguish whether a given state |𝜓⟩ was 
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

But what about problems with quantum inputs and outputs?
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• State tomography: given many copies of a quantum state |𝜓⟩, 
output a classical description of |𝜓⟩.

• Quantum error correction: given a noisy quantum codeword |𝑐⟩, 
recover the original message.

• State distinguishing: distinguish whether a given state |𝜓⟩ was 
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Physics: computing AdS/CFT map, decoding black-hole radiation

But what about problems with quantum inputs and outputs?
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What can complexity theory say 
about the hardness of these 

inherently quantum problems?
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Standard procedure: reduce your problem to some well-studied 
complexity class.
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Standard procedure: reduce your problem to some well-studied 
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
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Standard procedure: reduce your problem to some well-studied 
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Issue: for some quantum problems, it’s not clear how to do this!
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Standard procedure: reduce your problem to some well-studied 
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

State distinguishing: distinguish whether a given state |𝜓⟩ was 
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Issue: for some quantum problems, it’s not clear how to do this!
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Standard procedure: reduce your problem to some well-studied 
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Not known how to solve this using any oracle

State distinguishing: distinguish whether a given state |𝜓⟩ was 
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Issue: for some quantum problems, it’s not clear how to do this!
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Standard procedure: reduce your problem to some well-studied 
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Not known how to solve this using any oracle, even an oracle for the 
halting problem!

State distinguishing: distinguish whether a given state |𝜓⟩ was 
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Issue: for some quantum problems, it’s not clear how to do this!
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Before we continue: 
1-minute detour for quantum computing 101
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Quantum computing 101
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• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

Quantum computing 101
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• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

• 𝑛-qubit unitary = 2$×2$ rotation matrix.

Quantum computing 101
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• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

• 𝑛-qubit unitary = 2$×2$ rotation matrix.

• efficient quantum computation = poly(𝑛)-size quantum circuit

Quantum computing 101
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|𝜓⟩

|0⟩ancilla

input

garbage

output

Quantum computing 101

• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

• 𝑛-qubit unitary = 2$×2$ rotation matrix.

• efficient quantum computation = poly(𝑛)-size quantum circuit

poly 𝑛 gates
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Now back to: 
Does complexity theory capture quantum problems?
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Does complexity theory capture quantum problems?
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Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary
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Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary
• complexity theory is about implementing functions
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Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary
• complexity theory is about implementing functions

To apply complexity theory, we need to efficiently reduce the 
task of implementing a unitary 𝑈 to implementing a function 𝑓.
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Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary
• complexity theory is about implementing functions

To apply complexity theory, we need to efficiently reduce the 
task of implementing a unitary 𝑈 to implementing a function 𝑓.

The Unitary Synthesis Problem [AK06]:
Is there a reduction that works for every 𝑈?
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The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪ℓ qubits
ℓ = poly 𝑛

# of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. 

ℓ qubits
ℓ = poly 𝑛

# of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪ℓ qubits
ℓ = poly 𝑛

# of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂,: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.
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ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

ℓ qubits
ℓ = poly 𝑛

# of gates = poly 𝑛

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂,: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.

𝑂, 𝑂,

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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|𝜓⟩ 𝑈|𝜓⟩

1) Efficient oracle alg 𝐴(⋅): # of gates = poly 𝑛

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂,: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.

𝑂, 𝑂,

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

We want:
ancilla
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Prior best-known bounds

• Upper bound: 2$/. queries [Ros22]

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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Prior best-known bounds

• Upper bound: 2$/. queries [Ros22]
• Lower bound: none

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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Prior best-known bounds

• Upper bound: 2$/. queries [Ros22]
• Lower bound: none

Note: [AK06] prove a 1-query lower bound for a very special 
class of oracle algorithms.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement 
any 𝑛-qubit unitary 𝑈 given some function 𝑓?
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Why has it been hard to prove lower bounds? 
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Why has it been hard to prove lower bounds? 

(1) Counting arguments don’t work.



42

Why has it been hard to prove lower bounds? 
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• 2."! different 𝑛-qubit unitaries (roughly).
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Why has it been hard to prove lower bounds? 

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.
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Why has it been hard to prove lower bounds? 

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.
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(2) Even one-query algorithms are very powerful! 

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

Why has it been hard to prove lower bounds? 
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(2) Even one-query algorithms are very powerful! 
In fact, they can solve any classical input, quantum output problem. 

[Aar16, INNRY22, Ros23]

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

Why has it been hard to prove lower bounds? 
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This work

Main result: There’s no efficient one-query oracle algorithm for the 
Unitary Synthesis Problem.
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This work

Actually, we even rule out computationally unbounded algorithms, as 
long as they query 𝑓: 0,1 ℓ → {±1} on inputs of length ℓ = 𝑜(2$).

Main result: There’s no efficient one-query oracle algorithm for the 
Unitary Synthesis Problem.
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This work

Actually, we even rule out computationally unbounded algorithms, as 
long as they query 𝑓: 0,1 ℓ → {±1} on inputs of length ℓ = 𝑜(2$).

Note: when ℓ = 2.$ , possible to learn description of 𝑈 in one query.

Main result: There’s no efficient one-query oracle algorithm for the 
Unitary Synthesis Problem.
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Rest of this talk

Part 1: 
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof
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Rest of this talk

Part 1: 
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof
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We prove our result by studying pseudorandom states (PRS).
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We prove our result by studying pseudorandom states (PRS).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:



54

We prove our result by studying pseudorandom states (PRS).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
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We prove our result by studying pseudorandom states (PRS).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩
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We prove our result by studying pseudorandom states (PRS).

PRS → quantum commitments, multi-party computation, and more

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩
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We prove our result by studying pseudorandom states (PRS).

PRS → quantum commitments, multi-party computation, and more
Fundamental question: how hard is it to break a PRS?

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩
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We prove our result by studying pseudorandom states (PRS).

PRS → quantum commitments, multi-party computation, and more
Fundamental question: how hard is it to break a PRS?
Our answer: possibly harder than computing any function!

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩
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We prove our result by studying pseudorandom states (PRS).

Result #2: Exists a PRS secure against any efficient adversary 𝐴(⋅)
that queries an arbitrary function 𝑓 once

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩
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We prove our result by studying pseudorandom states (PRS).

Result #2: Exists a PRS secure against any efficient adversary 𝐴(⋅)
that queries an arbitrary function 𝑓 once, relative to a random 
oracle 𝑅 (where 𝑓 can be chosen based on 𝑅).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩
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We prove our result by studying pseudorandom states (PRS).

Note: this result implies our unitary synthesis lower bound.

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$ , s.t. 
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

Result #2: Exists a PRS secure against any efficient adversary 𝐴(⋅)
that queries an arbitrary function 𝑓 once, relative to a random 
oracle 𝑅 (where 𝑓 can be chosen based on 𝑅).
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Our PRS construction
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Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)
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Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function. 
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Adversary tries to distinguish

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function. 
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Adversary tries to distinguish
• |𝜓5$⟩ for random 𝑘 ← [𝐾]

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function. 
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Adversary tries to distinguish
• |𝜓5$⟩ for random 𝑘 ← [𝐾]

• |𝜓3⟩ for random ℎ: 𝑁 → {±1}

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function. 
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Adversary tries to distinguish
• |𝜓5$⟩ for random 𝑘 ← [𝐾]

• |𝜓3⟩ for random ℎ: 𝑁 → {±1}
given one query to a function 𝑓, which can depend on 𝑅 ≔ {𝑅/}.

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function. 
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Next up: what does a one-query adversary look like? 
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𝑂,
|𝜓⟩input

measurement Πunitary 𝑈

𝑏

One-query 
adversaries
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1) Initialize ℓ − 𝑛 ancilla qubits 

𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query 
adversaries
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𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query 
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits 
2) Apply ℓ-qubit unitary 𝑈.
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𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query 
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits 
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ. 
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𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query 
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits 
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ. 

𝑂, =
⋱

𝑓(𝑧)
⋱

2ℓ×2ℓ diagonal matrix, 
𝑧-th entry is 𝑓 𝑧 ∈ {±1}
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𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query 
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits 
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ. 
4) Measure {Π, I − Π} and return 1 if outcome is Π.
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1) Initialize ℓ − 𝑛 ancilla qubits 
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ. 
4) Measure {Π, I − Π} and return 1 if outcome is Π.

𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query 
adversaries
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1) Initialize ℓ − 𝑛 ancilla qubits 
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ. 
4) Measure {Π, I − Π} and return 1 if outcome is Π.

𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query 
adversaries

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ 𝑈 ⋅ 𝜓 |0⟩ .
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𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query 
adversaries

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ 𝑈 ⋅ 𝜓 |0⟩ .

Adversary’s distinguishing advantage for fixed 𝑅 is

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−



79

𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query 
adversaries

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ 𝑈 ⋅ 𝜓 |0⟩ .

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−
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Goal: bound maximum distinguishing advantage.

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−
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Goal: bound maximum distinguishing advantage.

The plan:

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−
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Goal: bound maximum distinguishing advantage.

The plan:
1) Use spectral relaxation to bound distinguishing advantage in 
terms of the norm of a random matrix

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−
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Goal: bound maximum distinguishing advantage.

The plan:
1) Use spectral relaxation to bound distinguishing advantage in 
terms of the norm of a random matrix
2) Apply matrix concentration

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−
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Rest of this talk

Part 1: 
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof
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A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.
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Disclaimer: We can rule out these attacks with a counting 
argument, but today we’ll see a different proof.

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.
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𝑈
|𝜓⟩

𝑂! Π|0⟩

𝑛-qubit input:

ancilla:

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

One-query 
adversaries:
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𝑈
|𝜓⟩

𝑂! Π|0⟩

𝑛-qubit input:

ancilla:

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

One-query 
adversaries:
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𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class: |𝜓⟩𝑛-qubit input:
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𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class:

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ |𝜓⟩
.

|𝜓⟩𝑛-qubit input:
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𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class:

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ |𝜓⟩
.

Distinguishing advantage:

(adversary picks 𝑓 = 𝑓5 to maximize this)

⟨𝜓5/| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ ⟨𝜓3| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

|𝜓⟩𝑛-qubit input:
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Technical tool: matrix concentration
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Technical tool: matrix concentration

Scalar Chernoff bound: If 𝑋 is a random scalar with bounded 
absolute value, then for i.i.d. 𝑋#, … , 𝑋1

1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ≈ 𝑂
1
𝐾

(w.h.p.)
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Scalar Chernoff bound: If 𝑋 is a random scalar with bounded 
absolute value, then for i.i.d. 𝑋#, … , 𝑋1

1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ≈ 𝑂
1
𝐾

Technical tool: matrix concentration

Matrix Chernoff bound: If 𝑋 is a random Hermitian 𝐿 ×𝐿 matrix
with bounded operator norm, then for i.i.d. 𝑋#, … , 𝑋1

1
𝐾
Z
/

𝑋/ − 𝔼 𝑋
67

≈ 𝑂
log(𝐿)
𝐾

(w.h.p.)

(w.h.p.)



max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩
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Adversary’s advantage (for this special class):



max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩
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max
|?⟩

⟨𝑣| ⋅
1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

Adversary’s advantage (for this special class):



max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩
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max
|?⟩

⟨𝑣| ⋅
1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

random matrices max over unit vectors

random vectors

Adversary’s advantage (for this special class):

max over matrices



max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩
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max
|?⟩

⟨𝑣| ⋅
1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

random matrices max over unit vectors

random vectors

Adversary’s advantage (for this special class):

max over matrices

?
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max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Key step: we can refactor this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

=
1
𝐾
Z
/

𝑋/ − 𝐸[𝑋]
𝑓-dependent 
unit vector
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max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Key step: we can refactor this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

𝑓-dependent 
unit vector

Then matrix Chernoff will bound the max over all unit vectors.

=
1
𝐾
Z
/

𝑋/ − 𝐸[𝑋]
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max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Since all the terms look identical, it 
suffices to just look at one term.
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We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩
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(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩
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(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩

𝑁×𝑁 diagonal matrix,
𝑥-th entry is 𝑅/(𝑥)

uniform 
superposition
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(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

≔ 𝐷5$ ≔ +4

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩
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(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩ = ⟨+4| 𝐷5$ ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ 𝐷5$ +4 (1)

≔ 𝐷5$ ≔ +4
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(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩ = ⟨+4| 𝐷5$ ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ 𝐷5$ +4 (1)

(2) 𝑂, is a diagonal matrix, so it commutes with 𝐷5/

≔ 𝐷5$ ≔ +4
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(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩ = ⟨+4| 𝐷5$ ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ 𝐷5$ +4
= +4 𝑂, ⋅ (𝐷5$ ⋅ Π ⋅ 𝐷5$) ⋅ 𝑂, +4

(1)
(2)

(2) 𝑂, is a diagonal matrix, so it commutes with 𝐷5/

≔ 𝐷5$ ≔ +4
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Distinguishing 
advantage

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩
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= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

Distinguishing 
advantage

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:
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= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

Distinguishing 
advantage

unit vector

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:
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= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

≤ #
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 67

Distinguishing 
advantage

unit vector

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:
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= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

≤ #
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 67

≈ 𝑂 $
1

Distinguishing 
advantage

unit vector

by Matrix Chernoff with 𝑋/ = 𝐷5$ ⋅ Π ⋅ 𝐷5$

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:
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How do we handle general one-
query adversaries?
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𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General 
one-query 
adversaries



116

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General 
one-query 
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”
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𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General 
one-query 
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩
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𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General 
one-query 
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂, !

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩
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𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General 
one-query 
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂, !

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

Our solution: Write 𝑉 ⋅ 𝐷3 +4 = y𝐷3 |wtB⟩ w.r.t. a 𝑉-dependent 
unit vector |wtB⟩. 
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𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General 
one-query 
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂, !

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

Our solution: Write 𝑉 ⋅ 𝐷3 +4 = y𝐷3 |wtB⟩ w.r.t. a 𝑉-dependent 
unit vector |wtB⟩. Commute y𝐷3 , 𝑂, to get spectral relaxation. 
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Future directions
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Future directions

Open problem #1: prove that our PRS distinguishing game is hard 
even given poly(𝑛) queries to an arbitrary 𝑓.
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Open problem #1: prove that our PRS distinguishing game is hard 
even given poly(𝑛) queries to an arbitrary 𝑓.

Open problem #2:
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even given poly(𝑛) queries to an arbitrary 𝑓.

random 
circuit 𝐶

Open problem #2:
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or |1$⟩
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circuit 𝐶
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Future directions

Open problem #1: prove that our PRS distinguishing game is hard 
even given poly(𝑛) queries to an arbitrary 𝑓.

|0$⟩
or |1$⟩

random 
circuit 𝐶

Task: given description of 𝐶 and 
2𝑛/3 qubits of 𝐶|𝑏$⟩, determine 𝑏.

Open problem #2:
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Open problem #1: prove that our PRS distinguishing game is hard 
even given poly(𝑛) queries to an arbitrary 𝑓.

|0$⟩
or |1$⟩

random 
circuit 𝐶

Task: given description of 𝐶 and 
2𝑛/3 qubits of 𝐶|𝑏$⟩, determine 𝑏.

Open problem #2:

Is this easy given a halting oracle?
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Future directions

Open problem #1: prove that our PRS distinguishing game is hard 
even given poly(𝑛) queries to an arbitrary 𝑓.

|0$⟩
or |1$⟩

random 
circuit 𝐶

Task: given description of 𝐶 and 
2𝑛/3 qubits of 𝐶|𝑏$⟩, determine 𝑏.

Open problem #2:

Is this easy given a halting oracle?

Thanks for listening!


