A one-query lower bound for unitary synthesis and breaking quantum cryptography

Fermi Ma
(Simons and Berkeley)

joint work with Alex Lombardi and John Wright

In complexity theory, problems have classical inputs/outputs.

In complexity theory, problems have classical inputs/outputs.

1) Given a 3-SAT formula ϕ, decide whether it is satisfiable.
2) Given a graph G, output a cycle that visits every vertex once.

In complexity theory, problems have classical inputs/outputs.

1) Given a 3-SAT formula ϕ, decide whether it is satisfiable.
2) Given a graph G, output a cycle that visits every vertex once.

This is even true for quantum complexity classes like BQP and QMA.

In complexity theory, problems have classical inputs/outputs.

1) Given a 3-SAT formula ϕ, decide whether it is satisfiable.
2) Given a graph G, output a cycle that visits every vertex once.

This is even true for quantum complexity classes like BQP and QMA.
3) Given a local Hamiltonian H, decide whether it has a low-energy ground state (QMA-complete).

In complexity theory, problems have classical inputs/outputs.

1) Given a 3-SAT formula ϕ, decide whether it is satisfiable.
2) Given a graph G, output a cycle that visits every vertex once.

This is even true for quantum complexity classes like BQP and QMA.
3) Given a local Hamiltonian H, decide whether it has a low-energy ground state (QMA-complete).
Even though this problem is "about" quantum states, the input and output are classical.

But some problems have inherently quantum inputs/outputs.

But some problems have inherently quantum inputs/outputs.

- State tomography: output classical description of $|\psi\rangle$ given many copies of $|\psi\rangle$.

But some problems have inherently quantum inputs/outputs.

- State tomography: output classical description of $|\psi\rangle$ given many copies of $|\psi\rangle$.
- Quantum error correction: decode a noisy quantum errorcorrecting codeword $|c\rangle$.

But some problems have inherently quantum inputs/outputs.

- State tomography: output classical description of $|\psi\rangle$ given many copies of $|\psi\rangle$.
- Quantum error correction: decode a noisy quantum errorcorrecting codeword $|c\rangle$.
- State distinguishing: distinguish two mixtures of quantum states ρ_{0}, ρ_{1}, given one of them at random.

But some problems have inherently quantum inputs/outputs.

- State tomography: output classical description of $|\psi\rangle$ given many copies of $|\psi\rangle$.
- Quantum error correction: decode a noisy quantum errorcorrecting codeword $|c\rangle$.
- State distinguishing: distinguish two mixtures of quantum states ρ_{0}, ρ_{1}, given one of them at random.
Physics: "decoding" black-hole radiation, computing AdS/CFT map

What can complexity theory say about these inherently quantum problems?

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
But for some quantum problems, it's not clear if this can be done.

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
But for some quantum problems, it's not clear if this can be done.
State distinguishing: distinguish two mixtures of quantum states ρ_{0}, ρ_{1}, given one of them at random.

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
But for some quantum problems, it's not clear if this can be done.
State distinguishing: distinguish two mixtures of quantum states ρ_{0}, ρ_{1}, given one of them at random.

Not known how to solve this using any oracle

Standard procedure: reduce your problem to some well-studied complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?
But for some quantum problems, it's not clear if this can be done.
State distinguishing: distinguish two mixtures of quantum states ρ_{0}, ρ_{1}, given one of them at random.

Not known how to solve this using any oracle, even an oracle for the halting problem!

Before we continue:

1-minute detour for quantum computing 101

Quantum Computing 101

Quantum Computing 101

- n-qubit pure state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.

Quantum Computing 101

- n-qubit pure state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.
- n-qubit unitary $=2^{n} \times 2^{n}$ complex rotation matrix.

Quantum Computing 101

- n-qubit pure state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.
- n-qubit unitary $=2^{n} \times 2^{n}$ complex rotation matrix.
- quantum computers are modeled as quantum circuits:

Quantum Computing 101

- n-qubit pure state $=2^{n}$-dim unit vector $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle$.
- n-qubit unitary $=2^{n} \times 2^{n}$ complex rotation matrix.
- quantum computers are modeled as quantum circuits:

Now back to:

Does complexity theory capture quantum problems?

Does complexity theory capture quantum problems?

- solving a quantum problem means implementing a unitary.

Does complexity theory capture quantum problems?

- solving a quantum problem means implementing a unitary. - complexity theory is about implementing functions.

Does complexity theory capture quantum problems?

- solving a quantum problem means implementing a unitary.
- complexity theory is about implementing functions.

To apply complexity theory, we need to efficiently reduce the task of implementing a unitary U to implementing a function f.

Does complexity theory capture quantum problems?

- solving a quantum problem means implementing a unitary.
- complexity theory is about implementing functions.

To apply complexity theory, we need to efficiently reduce the task of implementing a unitary U to implementing a function f.

> The Unitary Synthesis Problem [AK06]:
> Is there a reduction that works for every U ?

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]

 Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?1) Efficient oracle alg $A^{(\cdot)}$:

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot)} \quad$ \# of gates $=\operatorname{poly}(n)$

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot)} \quad \quad \#$ of gates $=\operatorname{poly}(n)$

2) Given U, pick $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot): \quad \# \text { of gates }=\operatorname{poly}(n), ~(n) ~}$

2) Given U, pick $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$. Plug in $O_{f}:|z\rangle \rightarrow f(z) \cdot|z\rangle$.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

1) Efficient oracle alg $A^{(\cdot): \quad \# \text { of gates }=\operatorname{poly}(n), ~(n) ~}$

2) Given U, pick $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$. Plug in $O_{f}:|z\rangle \rightarrow f(z) \cdot|z\rangle$.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06] Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?

Prior best-known bounds

- Upper bound: $2^{n / 2}$ queries [Ros22]

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]

 Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?
Prior best-known bounds

- Upper bound: $2^{n / 2}$ queries [Ros22]
- Lower bound: none

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]

 Is there an efficient oracle algorithm $A^{(\cdot)}$ that can implement any n-qubit unitary U given some function f ?
Prior best-known bounds

- Upper bound: $2^{n / 2}$ queries [Ros22]
- Lower bound: none

Note: [AK06] prove a 1-query lower bound for a very special class of oracle algorithms.

Why has it been hard to prove lower bounds?

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Useless for $l>2 n$.

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Useless for $\ell>2 n$.
(2) Even one-query algorithms are very powerful!

Why has it been hard to prove lower bounds?

(1) Counting arguments don't work.

- $2^{2^{2 n}}$ different n-qubit unitaries (roughly).
- $2^{2^{\ell}}$ different functions $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$.

Useless for $l>2 n$.
(2) Even one-query algorithms are very powerful!

In fact, they can solve any classical input, quantum output problem. [Aar16, INNRY22, Ros23]

This work

Main result: There is no efficient one-query oracle algorithm $A^{(\cdot)}$ for the Unitary Synthesis Problem.

This work

Main result: There is no efficient one-query oracle algorithm $A^{(\cdot)}$ for the Unitary Synthesis Problem.

In fact, we rule out any algorithm that queries $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$ on inputs of bounded length $\ell=o\left(2^{n}\right)$

This work

Main result: There is no efficient one-query oracle algorithm $A^{(\cdot)}$ for the Unitary Synthesis Problem.

In fact, we rule out any algorithm that queries $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$ on inputs of bounded length $\ell=o\left(2^{n}\right)$ even if they have:

- unlimited space (number of qubits)
- unlimited size (number of quantum gates)

This work

Main result: There is no efficient one-query oracle algorithm $A^{(\cdot)}$ for the Unitary Synthesis Problem.

In fact, we rule out any algorithm that queries $f:\{0,1\}^{\ell} \rightarrow\{ \pm 1\}$ on inputs of bounded length $\ell=o\left(2^{n}\right)$ even if they have:

- unlimited space (number of qubits)
- unlimited size (number of quantum gates)

Note: when $\ell=2^{2 n}$, possible to learn description of U in one query.

Rest of this talk

Part 1:

Connect unitary synthesis to breaking quantum cryptography
Part 2:
A special case of our proof (if time)

Rest of this talk

Part 1:

Connect unitary synthesis to breaking quantum cryptography
Part 2:
A special case of our proof (if time)

We prove our result by studying pseudorandom states (PRS).

We prove our result by studying pseudorandom states (PRS).
PRS: efficiently-constructible family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

We prove our result by studying pseudorandom states (PRS).
PRS: efficiently-constructible family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- Pseudorandom state $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$

We prove our result by studying pseudorandom states (PRS).
PRS: efficiently-constructible family of n-qubit states $\left\{\left|\operatorname{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- Pseudorandom state $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

We prove our result by studying pseudorandom states (PRS)
PRS: efficiently-constructible family of n-qubit states $\left\{\left|\operatorname{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- Pseudorandom state $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Existence of secure PRS implies quantum bit commitments, secure computation, and many other important primitives.

We prove our result by studying pseudorandom states (PRS).
PRS: efficiently-constructible family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- Pseudorandom state $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Existence of secure PRS implies quantum bit commitments, secure computation, and many other important primitives.

Fundamental question: how hard is it to break a PRS?

We prove our result by studying pseudorandom states (PRS).
PRS: efficiently-constructible family of n-qubit states $\left\{\left|\mathrm{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- Pseudorandom state $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Existence of secure PRS implies quantum bit commitments, secure computation, and many other important primitives.

Fundamental question: how hard is it to break a PRS?
Our answer: probably harder than computing any function.

We prove our result by studying pseudorandom states (PRS).
PRS: efficiently-constructible family of n-qubit states $\left\{\left|\operatorname{PRS}_{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- Pseudorandom state $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Main result \#2: Relative to a random oracle R, there exists a PRS secure against any efficient oracle adversary $A^{(\cdot)}$ making one query to an arbitrary function f_{R}, which can depend on R.

We prove our result by studying pseudorandom states (PRS).
PRS: efficiently-constructible family of n-qubit states $\left\{\mid\right.$ PRS $\left.\left._{k}\right\rangle\right\}_{k \in[K]}$ where $K \ll N=2^{n}$, s.t. no efficient adversary can distinguish:

- Pseudorandom state $\left|\mathrm{PRS}_{k}\right\rangle$ for uniformly random $k \leftarrow[K]$
- Haar-random n-qubit state $|\psi\rangle$

Main result \#2: Relative to a random oracle R, there exists a PRS secure against any efficient oracle adversary $A^{(\cdot)}$ making one query to an arbitrary function f_{R}, which can depend on R.

Note: this result implies our unitary synthesis lower bound.

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the corresponding binary phase state $\left|\psi_{h}\right\rangle:=\frac{1}{\sqrt{N}} \sum_{x \in[N]} h(x)|x\rangle$. (recall $N=2^{n}$)

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the corresponding binary phase state $\left|\psi_{h}\right\rangle:=\frac{1}{\sqrt{N}} \sum_{x \in[N]} h(x)|x\rangle . \quad\left(\right.$ recall $N=2^{n}$)
PRS construction: given random oracle $R:[K] \times[N] \rightarrow\{ \pm 1\}$, our PRS family is $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where $R_{k}(x):=R(k, x)$.

Our PRS construction

For any function h : $[N] \rightarrow\{ \pm 1\}$, define the corresponding binary phase state $\left|\psi_{h}\right\rangle:=\frac{1}{\sqrt{N}} \sum_{x \in[N]} h(x)|x\rangle . \quad\left(\right.$ recall $N=2^{n}$)
PRS construction: given random oracle $R:[K] \times[N] \rightarrow\{ \pm 1\}$, our PRS family is $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where $R_{k}(x):=R(k, x)$.

Adversary's task is to distinguish:

Our PRS construction

For any function h : $[N] \rightarrow\{ \pm 1\}$, define the corresponding binary phase state $\left|\psi_{h}\right\rangle:=\frac{1}{\sqrt{N}} \sum_{x \in[N]} h(x)|x\rangle . \quad\left(\right.$ recall $N=2^{n}$)
PRS construction: given random oracle $R:[K] \times[N] \rightarrow\{ \pm 1\}$, our PRS family is $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where $R_{k}(x):=R(k, x)$.

Adversary's task is to distinguish:

- $\left|\psi_{R_{k}}\right\rangle$ for uniformly random $k \leftarrow[K]$

Our PRS construction

For any function h : $[N] \rightarrow\{ \pm 1\}$, define the corresponding binary phase state $\left|\psi_{h}\right\rangle:=\frac{1}{\sqrt{N}} \sum_{x \in[N]} h(x)|x\rangle . \quad\left(\right.$ recall $N=2^{n}$)
PRS construction: given random oracle $R:[K] \times[N] \rightarrow\{ \pm 1\}$, our PRS family is $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where $R_{k}(x):=R(k, x)$.

Adversary's task is to distinguish:

- $\left|\psi_{R_{k}}\right\rangle$ for uniformly random $k \leftarrow[K]$
- $\left|\psi_{h}\right\rangle$ for uniformly random $h:[N] \rightarrow\{ \pm 1\}$

Our PRS construction

For any function $h:[N] \rightarrow\{ \pm 1\}$, define the corresponding binary phase state $\left|\psi_{h}\right\rangle:=\frac{1}{\sqrt{N}} \sum_{x \in[N]} h(x)|x\rangle$. (recall $N=2^{n}$)
PRS construction: given random oracle $R:[K] \times[N] \rightarrow\{ \pm 1\}$, our PRS family is $\left\{\left|\psi_{R_{k}}\right\rangle\right\}_{k \in[K]}$ where $R_{k}(x):=R(k, x)$.

Adversary's task is to distinguish:

- $\left|\psi_{R_{k}}\right\rangle$ for uniformly random $k \leftarrow[K]$
- $\left|\psi_{h}\right\rangle$ for uniformly random $h:[N] \rightarrow\{ \pm 1\}$
given 1 query to a function f, which can depend on R.

Next up: what does a one-query adversary look like?

One-query adversaries

$$
\text { input }|\psi\rangle\{\bar{Z}
$$

One-query adversaries

$$
\begin{array}{r}
\text { input }|\psi\rangle\lceil\equiv \\
\text { ancilla }|0\rangle\{\bar{Z}
\end{array}
$$

1) Initialize $\ell-n$ ancilla qubits

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.

One-query adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.
4) Measure $\{\Pi, \mathrm{I}-\Pi\}$ and return 1 if outcome is Π.

One-query

adversaries

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.
4) Measure $\{\Pi, \mathrm{I}-\Pi\}$ and return 1 if outcome is Π.

One-query

adversaries

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs } 1\right]=\| \Pi \cdot O_{f} \cdot U \cdot|\psi\rangle|0\rangle \|^{2}
$$

1) Initialize $\ell-n$ ancilla qubits
2) Apply ℓ-qubit unitary U.
3) Query oracle O_{f}, which maps $|z\rangle \rightarrow f(z) \cdot|z\rangle$ for $z \in\{0,1\}^{\ell}$.
4) Measure $\{\Pi, \mathrm{I}-\Pi\}$ and return 1 if outcome is Π.

One-query

adversaries

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs } 1\right]=\| \Pi \cdot O_{f} \cdot U \cdot|\psi\rangle|0\rangle \|^{2}
$$

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

One-query

adversaries

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs } 1\right]=\| \Pi \cdot O_{f} \cdot U \cdot|\psi\rangle|0\rangle \|^{2}
$$

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

(adversary picks $f=f_{R}$ to maximize this)

This optimization problem is very subtle!

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

(adversary picks $f=f_{R}$ to maximize this)

This optimization problem is very subtle!

We show:

- Carefully-chosen spectral relaxation gives an upper bound in terms of the operator norm of a certain random matrix.

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

(adversary picks $f=f_{R}$ to maximize this)

This optimization problem is very subtle!

We show:

- Carefully-chosen spectral relaxation gives an upper bound in terms of the operator norm of a certain random matrix.
- We bound this norm by appealing to matrix concentration.

Adversary's distinguishing advantage for fixed R is

$$
\underset{k \leftarrow[K]}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{R_{k}}\right\rangle\right) \text { outputs 1] }-\underset{h}{\mathbb{E}} \operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right)\right. \text { outputs 1] }\right.
$$

(adversary picks $f=f_{R}$ to maximize this)

Rest of this talk

Part 1:
Connect unitary synthesis to breaking quantum cryptography

Part 2:

A special case of our proof (if time)

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=$ Id.
Disclaimer: We can rule out these attacks with a counting argument, but today we'll see a different proof.

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.

One-query adversaries:

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=$ Id.
Special class: $\quad n$-qubit input: $|\psi\rangle \equiv O_{f}=\Pi$

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=\mathrm{Id}$.
Special class: $\quad n$-qubit input: $|\psi\rangle \equiv O_{f}=\Pi$

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs 1] }=\| \Pi \cdot O_{f} \cdot|\psi\rangle \|^{2}\right.
$$

A special class of one-query adversaries

Assume adversary sets $\ell=n$ (no ancillas) and $U=$ Id.
Special class: $\quad n$-qubit input: $|\psi\rangle \equiv O_{f}=\Pi$

$$
\operatorname{Pr}\left[A^{f}(|\psi\rangle) \text { outputs 1] }=\| \Pi \cdot O_{f} \cdot|\psi\rangle \|^{2}\right.
$$

Distinguishing advantage:

$$
\underset{k \leftarrow[K]}{\mathbb{E}}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{R_{k}}\right\rangle-\underset{h}{\mathbb{E}}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle
$$

$$
\text { (adversary picks } f=f_{R} \text { to maximize this) }
$$

Technical tool: matrix concentration

Technical tool: matrix concentration

Scalar Chernoff bound: If X is a random scalar with bounded absolute value, then for i.i.d. X_{1}, \ldots, X_{K}

$$
\left|\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right| \approx 0\left(\frac{1}{\sqrt{K}}\right) \quad \text { (w.h.p.) }
$$

Technical tool: matrix concentration

Scalar Chernoff bound: If X is a random scalar with bounded absolute value, then for i.i.d. X_{1}, \ldots, X_{K}

$$
\begin{equation*}
\left|\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right| \approx 0\left(\frac{1}{\sqrt{K}}\right) \tag{w.h.p.}
\end{equation*}
$$

Matrix Chernoff bound: If X is a random $L \times L$ matrix with bounded operator norm, then for i.i.d. X_{1}, \ldots, X_{K}

$$
\left\|\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right\|_{\mathrm{op}} \approx 0\left(\frac{\sqrt{\log (L)}}{\sqrt{K}}\right) \quad \text { (w.h.p.) }
$$

Adversary's advantage (for this special class):
$\left.\max _{f:[\mathbb{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid$

Adversary's advantage (for this special class):

$$
\left.\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Matrix Chernoff:

$$
\left.\max _{|v\rangle}\left|\langle v| \cdot\left(\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right) \cdot\right| v\right\rangle \mid
$$

Adversary's advantage (for this special class):

$$
\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot \underbrace{O_{f} \cdot \Pi \cdot O_{f}}_{\text {max over matrices }} \cdot| \psi_{R_{k}}\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Matrix Chernoff:

$$
\left.\max _{|v\rangle} \left\lvert\,\langle |\langle v| \cdot\left(\frac{1}{K} \sum_{k} X_{\uparrow}-\mathbb{E}[X]\right) \cdot|v\rangle| | \xlongequal[\uparrow]{ }\right. \right\rvert\,
$$

Adversary's advantage (for this special class):

$$
\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}} \left\lvert\, \frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot \underbrace{O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid}_{\text {max over matrices }}\right.
$$

Matrix Chernoff:

$$
\begin{aligned}
\max _{|v\rangle} \mid & \left.\langle v| \cdot\left(\frac{1}{K} \sum_{k} X_{k}-\mathbb{E}[X]\right) \cdot|v\rangle \right\rvert\, \\
& \text { random matrices } \quad \text { max over unit vectors }
\end{aligned}
$$

Adversary's advantage (for this special class):

$$
\left.\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Key step: we can refactor this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$

$$
=\frac{1}{K} \sum_{k} X_{k}-E[X] \quad \begin{gathered}
f \text {-dependent } \\
\text { unit vector }
\end{gathered}
$$

Adversary's advantage (for this special class):

$$
\left.\max _{f:[\mathrm{N}] \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k}\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{R_{k}}\right\rangle-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{h}\right\rangle \mid
$$

Key step: we can refactor this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\left|v_{f}\right\rangle$

$$
=\frac{1}{K} \sum_{k} X_{k}-E[X] \quad \begin{array}{r}
f \text {-dependent } \\
\text { unit vector }
\end{array}
$$

Then matrix Chernoff will bound the max over all unit vectors.

Adversary's advantage (for this special class):
$\left.\max _{f:\{\mathbb{N} \mid \rightarrow\{ \pm 1\}}\left|\frac{1}{K} \sum_{k} \frac{\left\langle\psi_{R_{k}}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\left|\psi_{R_{k}}\right\rangle}{}-\mathbb{E}_{h}\left\langle\psi_{h}\right| \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot\right| \psi_{h}\right\rangle \mid$
Since all the terms look identical, it suffices to just look at one term.

We'll rewrite this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\cdot\left|v_{f}\right\rangle$
$\overbrace{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f} \mid \psi_{R_{k}}}\rangle$

We'll rewrite this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\cdot\left|v_{f}\right\rangle$
$\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle$
(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right) \cdot \frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot$ (random matrix) $\cdot\left|v_{f}\right\rangle$
$\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle$
(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\begin{aligned}
&\left|\psi_{R_{k}}\right\rangle=\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right) \cdot \frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) \\
& \begin{array}{c}
N \times N \text { diagonal matrix, } \\
\\
\\
x \text {-th entry is } R_{k}(x)
\end{array} \\
& \text { superposition }
\end{aligned}
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$

$$
\overbrace{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle}
$$

(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left(\begin{array}{llll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+{ }_{N}\right\rangle}
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$

$$
\begin{equation*}
\stackrel{\langle }{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle}=\left\langle+_{N}\right| D_{R_{k}} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot D_{R_{k}}\left|+_{N}\right\rangle \tag{1}
\end{equation*}
$$

(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left(\begin{array}{llll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+{ }_{N}\right\rangle}
$$

We'll rewrite this as $\left\langle v_{f}\right| \cdot\left(\right.$ random matrix) $\cdot\left|v_{f}\right\rangle$
$\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle=\left\langle+_{N}\right| D_{R_{k}} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot D_{R_{k}}\left|+_{N}\right\rangle$
(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+_{N}\right\rangle}
$$

(2) O_{f} is a diagonal matrix, so it commutes with $D_{R_{k}}$

$$
\begin{align*}
& \overbrace{\left\langle\psi_{R_{k}}\right| O_{f} \cdot \Pi \cdot O_{f}\left|\psi_{R_{k}}\right\rangle}^{\text {We'l rewrite this as }\left\langle v_{f}\right| \cdot \text { (random matrix) }}\rangle=\left\langle+_{N}\right| D_{R_{k}} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot D_{R_{k}}\left|++_{N}\right\rangle \\
& \tag{1}\\
& \tag{2}\\
& =\left\langle+_{N}\right| O_{f} \cdot D_{R_{k}} \cdot \Pi \cdot D_{R_{k}} \cdot O_{f}\left|++_{N}\right\rangle
\end{align*}
$$

(1) Write the binary phase state $\left|\psi_{R_{k}}\right\rangle$ as

$$
\left|\psi_{R_{k}}\right\rangle=\underbrace{\left(\begin{array}{lll}
\ddots & & \\
& R_{k}(x) & \\
& & \ddots
\end{array}\right)}_{:=D_{R_{k}}} \cdot \underbrace{\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{:=\left|+_{N}\right\rangle}
$$

(2) O_{f} is a diagonal matrix, so it commutes with $D_{R_{k}}$

So we can rewrite the distinguishing advantage as

$$
\left\langle+_{N}\right| O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) O_{f}\left|+_{N}\right\rangle
$$

So we can rewrite the distinguishing advantage as

$$
\left\langle+_{N}\right| O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) \underbrace{O_{f}\left|+_{N}\right\rangle}_{\text {unit vector }}
$$

So we can rewrite the distinguishing advantage as

$$
\begin{aligned}
& \left\langle+_{N}\right| O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) \underbrace{O_{f}\left|+_{N}\right\rangle}_{\text {unit vector }} \\
& \leq\left\|\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right\|_{\mathrm{op}}
\end{aligned}
$$

So we can rewrite the distinguishing advantage as

$$
\begin{aligned}
& \left\langle+_{N}\right| O_{f}\left(\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right) \underbrace{O_{f}\left|+_{N}\right\rangle}_{\text {unit vector }} \\
& \leq\left\|\frac{1}{K} \sum_{k} D_{R_{k}} \cdot \Pi \cdot D_{R_{k}}-\mathbb{E}_{h}\left[D_{h} \cdot \Pi \cdot D_{h}\right]\right\|_{\text {op }} \approx O\left(\sqrt{\frac{n}{K}}\right) \\
& \quad \\
& \quad \begin{array}{l}
\text { by Matrix Chernoff on the i.i.d. bounded } \\
\text { random matrices } D_{R_{k}} \cdot \Pi \cdot D_{R_{k}} .
\end{array}
\end{aligned}
$$

Extending this proof to general one-query adversaries requires more care.

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

$$
\operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right) \text { outputs 1] }=\left\langle+_{N}\right| D_{h} \cdot V^{\dagger} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot V \cdot D_{h}\left|+_{N}\right\rangle\right.
$$

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

$$
\operatorname{Pr}\left[A^{f}\left(\left|\psi_{h}\right\rangle\right) \text { outputs 1] }=\left\langle+_{N}\right| D_{h} \cdot V^{\dagger} \cdot O_{f} \cdot \Pi \cdot O_{f} \cdot V \cdot D_{h}\left|+_{N}\right\rangle\right.
$$

Challenge: unclear how to commute D_{h} and O_{f} !

General one-query adversaries

Def: isometry $V=U \cdot(\operatorname{Id} \otimes|0\rangle)$, i.e. "add ancillas + apply U "

$$
\operatorname{Pr}[A^{f}\left(\left|\psi_{h}\right\rangle\right) \text { outputs 1] }=\left\langle+_{N}\right| \underbrace{D_{h} \cdot V^{\dagger} \cdot O_{f}} \cdot \Pi \cdot \underbrace{O_{f} \cdot V \cdot D_{h}}\left|+{ }_{N}\right\rangle
$$

Challenge: unclear how to commute D_{h} and O_{f} !
Our solution: factor $V\left|\psi_{h}\right\rangle=\widetilde{D_{h}} \cdot\left|w t_{V}\right\rangle$ w.r.t. a V-dependent unit vector $\left|\mathrm{wt}_{V}\right\rangle$ to obtain spectral relaxation.

Conclusions

- Implementing unitaries and breaking quantum crypto might be harder than any classical problem.

Conclusions

- Implementing unitaries and breaking quantum crypto might be harder than any classical problem.
- Possibly no complexity-theoretic barriers to unconditionally proving hardness for many quantum tasks?

Conclusions

- Implementing unitaries and breaking quantum crypto might be harder than any classical problem.
- Possibly no complexity-theoretic barriers to unconditionally proving hardness for many quantum tasks?
Next steps:
Non-synthesis conjecture: our PRS distinguishing game is hard for any efficient oracle adversary A^{f} that makes poly (n) queries to f.

Conclusions

- Implementing unitaries and breaking quantum crypto might be harder than any classical problem.
- Possibly no complexity-theoretic barriers to unconditionally proving hardness for many quantum tasks?
Next steps:
Non-synthesis conjecture: our PRS distinguishing game is hard for any efficient oracle adversary A^{f} that makes poly (n) queries to f.

Challenge: hard to find the right spectral relaxation past one query.

Conclusions

- Implementing unitaries and breaking quantum crypto might be harder than any classical problem.
- Possibly no complexity-theoretic barriers to unconditionally proving hardness for many quantum tasks?
Next steps:
Non-synthesis conjecture: our PRS distinguishing game is hard for any efficient oracle adversary A^{f} that makes poly (n) queries to f.

Challenge: hard to find the right spectral relaxation past one query.

Thanks for listening!

