
A one-query lower bound for unitary synthesis
and breaking quantum cryptography

Fermi Ma
(Simons and Berkeley)

1

joint work with Alex Lombardi and John Wright

2

In complexity theory, problems have classical inputs/outputs.

3

1) Given a 3-SAT formula 𝜙, decide whether it is satisfiable.
2) Given a graph 𝐺, output a cycle that visits every vertex once.

In complexity theory, problems have classical inputs/outputs.

4

In complexity theory, problems have classical inputs/outputs.

1) Given a 3-SAT formula 𝜙, decide whether it is satisfiable.
2) Given a graph 𝐺, output a cycle that visits every vertex once.

This is even true for quantum complexity classes like BQP and QMA.

5

1) Given a 3-SAT formula 𝜙, decide whether it is satisfiable.
2) Given a graph 𝐺, output a cycle that visits every vertex once.

3) Given a local Hamiltonian 𝐻, decide whether it has a low-energy
ground state (QMA-complete).

In complexity theory, problems have classical inputs/outputs.

This is even true for quantum complexity classes like BQP and QMA.

6

1) Given a 3-SAT formula 𝜙, decide whether it is satisfiable.
2) Given a graph 𝐺, output a cycle that visits every vertex once.

3) Given a local Hamiltonian 𝐻, decide whether it has a low-energy
ground state (QMA-complete).
Even though this problem is “about” quantum states, the input and
output are classical.

In complexity theory, problems have classical inputs/outputs.

This is even true for quantum complexity classes like BQP and QMA.

7

But some problems have inherently quantum inputs/outputs.

8

• State tomography: output classical description of |𝜓⟩ given
many copies of |𝜓⟩.

But some problems have inherently quantum inputs/outputs.

9

• State tomography: output classical description of |𝜓⟩ given
many copies of |𝜓⟩.

• Quantum error correction: decode a noisy quantum error-
correcting codeword |𝑐⟩.

But some problems have inherently quantum inputs/outputs.

10

• State tomography: output classical description of |𝜓⟩ given
many copies of |𝜓⟩.

• Quantum error correction: decode a noisy quantum error-
correcting codeword |𝑐⟩.

• State distinguishing: distinguish two mixtures of quantum
states 𝜌!, 𝜌", given one of them at random.

But some problems have inherently quantum inputs/outputs.

11

• State tomography: output classical description of |𝜓⟩ given
many copies of |𝜓⟩.

• Quantum error correction: decode a noisy quantum error-
correcting codeword |𝑐⟩.

• State distinguishing: distinguish two mixtures of quantum
states 𝜌!, 𝜌", given one of them at random.

Physics: “decoding” black-hole radiation, computing AdS/CFT map

But some problems have inherently quantum inputs/outputs.

12

What can complexity theory say about
these inherently quantum problems?

13

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

14

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

But for some quantum problems, it’s not clear if this can be done.

15

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

State distinguishing: distinguish two mixtures of quantum states
𝜌!, 𝜌", given one of them at random.

But for some quantum problems, it’s not clear if this can be done.

16

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Not known how to solve this using any oracle

But for some quantum problems, it’s not clear if this can be done.

State distinguishing: distinguish two mixtures of quantum states
𝜌!, 𝜌", given one of them at random.

17

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Not known how to solve this using any oracle, even an oracle for the
halting problem!

But for some quantum problems, it’s not clear if this can be done.

State distinguishing: distinguish two mixtures of quantum states
𝜌!, 𝜌", given one of them at random.

18

Before we continue:
1-minute detour for quantum computing 101

19

Quantum Computing 101

20

• 𝑛-qubit pure state = 2#-dim unit vector 𝜓 = ∑$∈ !," ! 𝛼$ 𝑥 .

Quantum Computing 101

21

• 𝑛-qubit pure state = 2#-dim unit vector 𝜓 = ∑$∈ !," ! 𝛼$ 𝑥 .

• 𝑛-qubit unitary = 2#×2# complex rotation matrix.

Quantum Computing 101

22

• 𝑛-qubit pure state = 2#-dim unit vector 𝜓 = ∑$∈ !," ! 𝛼$ 𝑥 .

• 𝑛-qubit unitary = 2#×2# complex rotation matrix.

• quantum computers are modeled as quantum circuits:

|𝜓⟩

|0⟩ancilla

input

“garbage”

output

Quantum Computing 101

23

• 𝑛-qubit pure state = 2#-dim unit vector 𝜓 = ∑$∈ !," ! 𝛼$ 𝑥 .

• 𝑛-qubit unitary = 2#×2# complex rotation matrix.

• quantum computers are modeled as quantum circuits:

|𝜓⟩

|0⟩ancilla

input

“garbage”

output

Quantum Computing 101

efficient unitary = poly 𝑛 -size circuit

24

Now back to:
Does complexity theory capture quantum problems?

25

Does complexity theory capture quantum problems?

• solving a quantum problem means implementing a unitary.

26

Does complexity theory capture quantum problems?

• solving a quantum problem means implementing a unitary.
• complexity theory is about implementing functions.

27

Does complexity theory capture quantum problems?

• solving a quantum problem means implementing a unitary.
• complexity theory is about implementing functions.

To apply complexity theory, we need to efficiently reduce the
task of implementing a unitary 𝑈 to implementing a function 𝑓.

28

Does complexity theory capture quantum problems?

• solving a quantum problem means implementing a unitary.
• complexity theory is about implementing functions.

To apply complexity theory, we need to efficiently reduce the
task of implementing a unitary 𝑈 to implementing a function 𝑓.

The Unitary Synthesis Problem [AK06]:
Is there a reduction that works for every 𝑈?

29

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

30

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

31

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

32

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}.

ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

33

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂+: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.

34

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂+: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.

𝑂+ 𝑂+

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

35

Prior best-known bounds

• Upper bound: 2#/- queries [Ros22]

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

36

Prior best-known bounds

• Upper bound: 2#/- queries [Ros22]
• Lower bound: none

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

37

Prior best-known bounds

• Upper bound: 2#/- queries [Ros22]
• Lower bound: none

Note: [AK06] prove a 1-query lower bound for a very special
class of oracle algorithms.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

38

Why has it been hard to prove lower bounds?

39

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

40

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

• 2-"! different 𝑛-qubit unitaries (roughly).

41

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

• 2-"! different 𝑛-qubit unitaries (roughly).
• 2-ℓ different functions 𝑓: 0,1 ℓ → {±1}.

42

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

• 2-"! different 𝑛-qubit unitaries (roughly).
• 2-ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

43

(2) Even one-query algorithms are very powerful!

(1) Counting arguments don’t work.

• 2-"! different 𝑛-qubit unitaries (roughly).
• 2-ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

Why has it been hard to prove lower bounds?

44

(2) Even one-query algorithms are very powerful!
In fact, they can solve any classical input, quantum output problem.

[Aar16, INNRY22, Ros23]

(1) Counting arguments don’t work.

• 2-"! different 𝑛-qubit unitaries (roughly).
• 2-ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

Why has it been hard to prove lower bounds?

45

This work

Main result: There is no efficient one-query oracle algorithm 𝐴(⋅) for
the Unitary Synthesis Problem.

46

This work

Main result: There is no efficient one-query oracle algorithm 𝐴(⋅) for
the Unitary Synthesis Problem.

In fact, we rule out any algorithm that queries 𝑓: 0,1 ℓ → {±1} on
inputs of bounded length ℓ = 𝑜(2#)

47

This work

Main result: There is no efficient one-query oracle algorithm 𝐴(⋅) for
the Unitary Synthesis Problem.

In fact, we rule out any algorithm that queries 𝑓: 0,1 ℓ → {±1} on
inputs of bounded length ℓ = 𝑜(2#) even if they have:
• unlimited space (number of qubits)
• unlimited size (number of quantum gates)

48

This work

Main result: There is no efficient one-query oracle algorithm 𝐴(⋅) for
the Unitary Synthesis Problem.

In fact, we rule out any algorithm that queries 𝑓: 0,1 ℓ → {±1} on
inputs of bounded length ℓ = 𝑜(2#) even if they have:
• unlimited space (number of qubits)
• unlimited size (number of quantum gates)

Note: when ℓ = 2-# , possible to learn description of 𝑈 in one query.

49

Rest of this talk

Part 1:
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof (if time)

50

Rest of this talk

Part 1:
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof (if time)

51

We prove our result by studying pseudorandom states (PRS).

52

We prove our result by studying pseudorandom states (PRS).

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:

53

We prove our result by studying pseudorandom states (PRS).

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:
• Pseudorandom state |PRS.⟩ for uniformly random 𝑘 ← [𝐾]

54

We prove our result by studying pseudorandom states (PRS).

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:
• Pseudorandom state |PRS.⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

55

We prove our result by studying pseudorandom states (PRS).

Existence of secure PRS implies quantum bit commitments,
secure computation, and many other important primitives.

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:
• Pseudorandom state |PRS.⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

56

We prove our result by studying pseudorandom states (PRS).

Existence of secure PRS implies quantum bit commitments,
secure computation, and many other important primitives.
Fundamental question: how hard is it to break a PRS?

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:
• Pseudorandom state |PRS.⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

57

We prove our result by studying pseudorandom states (PRS).

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:
• Pseudorandom state |PRS.⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

Existence of secure PRS implies quantum bit commitments,
secure computation, and many other important primitives.
Fundamental question: how hard is it to break a PRS?
Our answer: probably harder than computing any function.

58

We prove our result by studying pseudorandom states (PRS).

Main result #2: Relative to a random oracle 𝑅, there exists a PRS
secure against any efficient oracle adversary 𝐴(⋅) making one query
to an arbitrary function 𝑓2 , which can depend on 𝑅.

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:
• Pseudorandom state |PRS.⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

59

We prove our result by studying pseudorandom states (PRS).

Main result #2: Relative to a random oracle 𝑅, there exists a PRS
secure against any efficient oracle adversary 𝐴(⋅) making one query
to an arbitrary function 𝑓2 , which can depend on 𝑅.

Note: this result implies our unitary synthesis lower bound.

PRS: efficiently-constructible family of 𝑛-qubit states { PRS. }.∈[0]
where 𝐾 ≪ 𝑁 = 2# , s.t. no efficient adversary can distinguish:
• Pseudorandom state |PRS.⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

60

For any function ℎ: [𝑁] → {±1}, define the corresponding binary
phase state 𝜓3 ≔ "

4
∑$∈ 4 ℎ 𝑥 𝑥 . (recall 𝑁 = 2#)

Our PRS construction

61

For any function ℎ: [𝑁] → {±1}, define the corresponding binary
phase state 𝜓3 ≔ "

4
∑$∈ 4 ℎ 𝑥 𝑥 .

PRS construction: given random oracle 𝑅: 𝐾 × 𝑁 → {±1}, our
PRS family is {|𝜓2$⟩}.∈[0] where 𝑅. 𝑥 ≔ 𝑅(𝑘, 𝑥).

(recall 𝑁 = 2#)

Our PRS construction

62

For any function ℎ: [𝑁] → {±1}, define the corresponding binary
phase state 𝜓3 ≔ "

4
∑$∈ 4 ℎ 𝑥 𝑥 .

PRS construction: given random oracle 𝑅: 𝐾 × 𝑁 → {±1}, our
PRS family is {|𝜓2$⟩}.∈[0] where 𝑅. 𝑥 ≔ 𝑅(𝑘, 𝑥).

(recall 𝑁 = 2#)

Our PRS construction

Adversary’s task is to distinguish:

63

For any function ℎ: [𝑁] → {±1}, define the corresponding binary
phase state 𝜓3 ≔ "

4
∑$∈ 4 ℎ 𝑥 𝑥 .

PRS construction: given random oracle 𝑅: 𝐾 × 𝑁 → {±1}, our
PRS family is {|𝜓2$⟩}.∈[0] where 𝑅. 𝑥 ≔ 𝑅(𝑘, 𝑥).

(recall 𝑁 = 2#)

Our PRS construction

Adversary’s task is to distinguish:
• |𝜓2$⟩ for uniformly random 𝑘 ← [𝐾]

64

For any function ℎ: [𝑁] → {±1}, define the corresponding binary
phase state 𝜓3 ≔ "

4
∑$∈ 4 ℎ 𝑥 𝑥 .

PRS construction: given random oracle 𝑅: 𝐾 × 𝑁 → {±1}, our
PRS family is {|𝜓2$⟩}.∈[0] where 𝑅. 𝑥 ≔ 𝑅(𝑘, 𝑥).

(recall 𝑁 = 2#)

Our PRS construction

Adversary’s task is to distinguish:
• |𝜓2$⟩ for uniformly random 𝑘 ← [𝐾]

• |𝜓3⟩ for uniformly random ℎ: 𝑁 → {±1}

65

For any function ℎ: [𝑁] → {±1}, define the corresponding binary
phase state 𝜓3 ≔ "

4
∑$∈ 4 ℎ 𝑥 𝑥 .

PRS construction: given random oracle 𝑅: 𝐾 × 𝑁 → {±1}, our
PRS family is {|𝜓2$⟩}.∈[0] where 𝑅. 𝑥 ≔ 𝑅(𝑘, 𝑥).

(recall 𝑁 = 2#)

Adversary’s task is to distinguish:
• |𝜓2$⟩ for uniformly random 𝑘 ← [𝐾]

• |𝜓3⟩ for uniformly random ℎ: 𝑁 → {±1}
given 1 query to a function 𝑓, which can depend on 𝑅.

Our PRS construction

66

Next up: what does a one-query adversary look like?

67

𝑂+
|𝜓⟩input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

68

1) Initialize ℓ − 𝑛 ancilla qubits

𝑂+
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

69

𝑂+
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.

70

𝑂+
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂+ , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.

71

𝑂+
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂+ , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.

𝑂+ =
⋱

𝑓(𝑧)
⋱

2ℓ×2ℓ diagonal matrix,
𝑧-th entry is 𝑓 𝑧 ∈ {±1}

72

𝑂+
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂+ , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.
4) Measure {Π, I − Π} and return 1 if outcome is Π.

73

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂+ , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.
4) Measure {Π, I − Π} and return 1 if outcome is Π.

𝑂+
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

74

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂+ , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.
4) Measure {Π, I − Π} and return 1 if outcome is Π.

𝑂+
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

Pr[𝐴+(|𝜓⟩) outputs 1] = Π ⋅ 𝑂+ ⋅ 𝑈 ⋅ 𝜓 |0⟩ -

75

𝑂+
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

Pr[𝐴+(|𝜓⟩) outputs 1] = Π ⋅ 𝑂+ ⋅ 𝑈 ⋅ 𝜓 |0⟩ -

Adversary’s distinguishing advantage for fixed 𝑅 is

Pr[𝐴+(|𝜓2$⟩) outputs 1] Pr[𝐴+(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

76

𝑂+
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

Pr[𝐴+(|𝜓⟩) outputs 1] = Π ⋅ 𝑂+ ⋅ 𝑈 ⋅ 𝜓 |0⟩ -

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓2 to maximize this)

Pr[𝐴+(|𝜓2$⟩) outputs 1] Pr[𝐴+(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

77

This optimization problem is very subtle!

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓2 to maximize this)

Pr[𝐴+(|𝜓2$⟩) outputs 1] Pr[𝐴+(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

78

This optimization problem is very subtle!

We show:
• Carefully-chosen spectral relaxation gives an upper bound in

terms of the operator norm of a certain random matrix.

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓2 to maximize this)

Pr[𝐴+(|𝜓2$⟩) outputs 1] Pr[𝐴+(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

79

This optimization problem is very subtle!

We show:
• Carefully-chosen spectral relaxation gives an upper bound in

terms of the operator norm of a certain random matrix.
• We bound this norm by appealing to matrix concentration.

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓2 to maximize this)

Pr[𝐴+(|𝜓2$⟩) outputs 1] Pr[𝐴+(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

80

Rest of this talk

Part 1:
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof (if time)

81

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

82

Disclaimer: We can rule out these attacks with a counting
argument, but today we’ll see a different proof.

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

83

𝑈
|𝜓⟩

𝑂! Π|0⟩

𝑛-qubit input:

ancilla:

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

One-query
adversaries:

84

𝑈
|𝜓⟩

𝑂! Π|0⟩

𝑛-qubit input:

ancilla:

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

One-query
adversaries:

85

𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class: |𝜓⟩𝑛-qubit input:

86

𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class:

𝑁×𝑁 diagonal matrix,
𝑥-th entry is 𝑓 𝑥 ∈ {±1}

𝑂+ =
⋱

𝑓(𝑥)
⋱

projection

|𝜓⟩𝑛-qubit input:

87

𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class:

Pr[𝐴+(|𝜓⟩) outputs 1] = Π ⋅ 𝑂+ ⋅ |𝜓⟩
-

|𝜓⟩𝑛-qubit input:

88

𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class:

Pr[𝐴+(|𝜓⟩) outputs 1] = Π ⋅ 𝑂+ ⋅ |𝜓⟩
-

Distinguishing advantage:

(adversary picks 𝑓 = 𝑓2 to maximize this)

⟨𝜓2.| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ ⟨𝜓3| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

|𝜓⟩𝑛-qubit input:

89

Technical tool: matrix concentration

90

Scalar Chernoff bound: If 𝑋 is a random scalar with bounded
absolute value, then for i.i.d. 𝑋", … , 𝑋0

1
𝐾
j
.

𝑋. − 𝔼 𝑋 ≈ 𝑂
1
𝐾

Technical tool: matrix concentration

(w.h.p.)

91

Scalar Chernoff bound: If 𝑋 is a random scalar with bounded
absolute value, then for i.i.d. 𝑋", … , 𝑋0

1
𝐾
j
.

𝑋. − 𝔼 𝑋 ≈ 𝑂
1
𝐾

Technical tool: matrix concentration

Matrix Chernoff bound: If 𝑋 is a random 𝐿 ×𝐿 matrix with bounded
operator norm, then for i.i.d. 𝑋", … , 𝑋0

1
𝐾
j
.

𝑋. − 𝔼 𝑋
56

≈ 𝑂
log(𝐿)
𝐾

(w.h.p.)

(w.h.p.)

max
+: 8 →{±"}

1
𝐾
j
.

⟨𝜓2$| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩

92

Adversary’s advantage (for this special class):

max
+: 8 →{±"}

1
𝐾
j
.

⟨𝜓2$| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩

93

max
|>⟩

⟨𝑣| ⋅
1
𝐾
j
.

𝑋. − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

Adversary’s advantage (for this special class):

max
+: 8 →{±"}

1
𝐾
j
.

⟨𝜓2$| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩

94

max
|>⟩

⟨𝑣| ⋅
1
𝐾
j
.

𝑋. − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

random matrices max over unit vectors

random vectors

Adversary’s advantage (for this special class):

max over matrices

max
+: 8 →{±"}

1
𝐾
j
.

⟨𝜓2$| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩

95

max
|>⟩

⟨𝑣| ⋅
1
𝐾
j
.

𝑋. − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

random matrices max over unit vectors

random vectors

Adversary’s advantage (for this special class):

max over matrices

?

96

max
+: 8 →{±"}

1
𝐾
j
.

⟨𝜓2$| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Key step: we can refactor this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

=
1
𝐾
j
.

𝑋. − 𝐸[𝑋]
𝑓-dependent
unit vector

97

max
+: 8 →{±"}

1
𝐾
j
.

⟨𝜓2$| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Key step: we can refactor this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

𝑓-dependent
unit vector

Then matrix Chernoff will bound the max over all unit vectors.

=
1
𝐾
j
.

𝑋. − 𝐸[𝑋]

98

max
+: 8 →{±"}

1
𝐾
j
.

⟨𝜓2$| ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ |𝜓2.⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Since all the terms look identical, it
suffices to just look at one term.

99

We’ll rewrite this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

⟨𝜓2$| 𝑂+ ⋅ Π ⋅ 𝑂+ |𝜓2$⟩

100

(1) Write the binary phase state |𝜓2$⟩ as

|𝜓2$⟩ =
⋱

𝑅. 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

⟨𝜓2$| 𝑂+ ⋅ Π ⋅ 𝑂+ |𝜓2$⟩

101

(1) Write the binary phase state |𝜓2$⟩ as

|𝜓2$⟩ =
⋱

𝑅. 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

⟨𝜓2$| 𝑂+ ⋅ Π ⋅ 𝑂+ |𝜓2$⟩

𝑁×𝑁 diagonal matrix,
𝑥-th entry is 𝑅.(𝑥)

uniform
superposition

102

(1) Write the binary phase state |𝜓2$⟩ as

|𝜓2$⟩ =
⋱

𝑅. 𝑥
⋱

⋅
1
𝑁

1
⋮
1

≔ 𝐷2$ ≔ +4

We’ll rewrite this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

⟨𝜓2$| 𝑂+ ⋅ Π ⋅ 𝑂+ |𝜓2$⟩

103

(1) Write the binary phase state |𝜓2$⟩ as

|𝜓2$⟩ =
⋱

𝑅. 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

⟨𝜓2$| 𝑂+ ⋅ Π ⋅ 𝑂+ |𝜓2$⟩ = ⟨+4| 𝐷2$ ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ 𝐷2$ +4 (1)

≔ 𝐷2$ ≔ +4

104

(1) Write the binary phase state |𝜓2$⟩ as

|𝜓2$⟩ =
⋱

𝑅. 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

⟨𝜓2$| 𝑂+ ⋅ Π ⋅ 𝑂+ |𝜓2$⟩ = ⟨+4| 𝐷2$ ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ 𝐷2$ +4 (1)

(2) 𝑂+ is a diagonal matrix, so it commutes with 𝐷2.

≔ 𝐷2$ ≔ +4

105

(1) Write the binary phase state |𝜓2$⟩ as

|𝜓2$⟩ =
⋱

𝑅. 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣+| ⋅ randommatrix ⋅ |𝑣+⟩

⟨𝜓2$| 𝑂+ ⋅ Π ⋅ 𝑂+ |𝜓2$⟩ = ⟨+4| 𝐷2$ ⋅ 𝑂+⋅ Π ⋅ 𝑂+ ⋅ 𝐷2$ +4
= +4 𝑂+ ⋅ 𝐷2$ ⋅ Π ⋅ 𝐷2$ ⋅ 𝑂+ +4

(1)
(2)

(2) 𝑂+ is a diagonal matrix, so it commutes with 𝐷2.

≔ 𝐷2$ ≔ +4

106

⟨+4|𝑂+
"
0
∑.𝐷2$ ⋅ Π ⋅ 𝐷2$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂+|+4⟩

So we can rewrite the distinguishing advantage as

107

⟨+4|𝑂+
"
0
∑.𝐷2$ ⋅ Π ⋅ 𝐷2$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂+|+4⟩

So we can rewrite the distinguishing advantage as

unit vector

108

⟨+4|𝑂+
"
0
∑.𝐷2$ ⋅ Π ⋅ 𝐷2$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂+|+4⟩

≤ "
0
∑.𝐷2$ ⋅ Π ⋅ 𝐷2$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 56

So we can rewrite the distinguishing advantage as

unit vector

109

⟨+4|𝑂+
"
0
∑.𝐷2$ ⋅ Π ⋅ 𝐷2$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂+|+4⟩

≤ "
0
∑.𝐷2$ ⋅ Π ⋅ 𝐷2$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 56

≈ 𝑂 #
0

So we can rewrite the distinguishing advantage as

unit vector

by Matrix Chernoff on the i.i.d. bounded
random matrices 𝐷2$ ⋅ Π ⋅ 𝐷2$.

110

Extending this proof to general one-query
adversaries requires more care.

111

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

112

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

113

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Pr[𝐴+(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉@ ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

114

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂+ !

Pr[𝐴+(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉@ ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

115

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂+ !

Pr[𝐴+(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉@ ⋅ 𝑂+ ⋅ Π ⋅ 𝑂+ ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

Our solution: factor 𝑉 𝜓3 = |𝐷3 ⋅ |wtA⟩ w.r.t. a 𝑉-dependent
unit vector |wtA⟩ to obtain spectral relaxation.

116

Conclusions
• Implementing unitaries and breaking quantum crypto might be

harder than any classical problem.

117

Conclusions
• Implementing unitaries and breaking quantum crypto might be

harder than any classical problem.
• Possibly no complexity-theoretic barriers to unconditionally

proving hardness for many quantum tasks?

118

Conclusions

Non-synthesis conjecture: our PRS distinguishing game is hard for
any efficient oracle adversary 𝐴+ that makes poly(𝑛) queries to 𝑓.

• Implementing unitaries and breaking quantum crypto might be
harder than any classical problem.

• Possibly no complexity-theoretic barriers to unconditionally
proving hardness for many quantum tasks?

Next steps:

119

Conclusions

Non-synthesis conjecture: our PRS distinguishing game is hard for
any efficient oracle adversary 𝐴+ that makes poly(𝑛) queries to 𝑓.

Challenge: hard to find the right spectral relaxation past one query.

• Implementing unitaries and breaking quantum crypto might be
harder than any classical problem.

• Possibly no complexity-theoretic barriers to unconditionally
proving hardness for many quantum tasks?

Next steps:

120

Conclusions

Non-synthesis conjecture: our PRS distinguishing game is hard for
any efficient oracle adversary 𝐴+ that makes poly(𝑛) queries to 𝑓.

Challenge: hard to find the right spectral relaxation past one query.

Thanks for listening!

• Implementing unitaries and breaking quantum crypto might be
harder than any classical problem.

• Possibly no complexity-theoretic barriers to unconditionally
proving hardness for many quantum tasks?

Next steps:

