
A one-query lower bound for unitary synthesis
and breaking quantum cryptography

Fermi Ma
(Simons and Berkeley)

1

joint work with Alex Lombardi and John Wright

2

Normally, we study computational problems that can be efficiently
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.

3

• 3SAT: given a formula 𝜙, compute the function 𝑓 𝜙 ∈ {0,1}
indicating whether 𝜙 is satisfiable.

Normally, we study computational problems that can be efficiently
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.

4

• 3SAT: given a formula 𝜙, compute the function 𝑓 𝜙 ∈ {0,1}
indicating whether 𝜙 is satisfiable.

• Hamiltonian cycle: given a graph 𝐺, compute any function 𝑓 𝐺
whose output is a Hamiltonian cycle of 𝐺.

Normally, we study computational problems that can be efficiently
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.

5

• 3SAT: given a formula 𝜙, compute the function 𝑓 𝜙 ∈ {0,1}
indicating whether 𝜙 is satisfiable.

• Hamiltonian cycle: given a graph 𝐺, compute any function 𝑓 𝐺
whose output is a Hamiltonian cycle of 𝐺.

• Local Hamiltonian: given a local Hamiltonian 𝐻, output 𝑓 𝐻 ∈
0,1 indicating whether 𝐻 has a low-energy ground state.

Normally, we study computational problems that can be efficiently
reduced to computing some function 𝑓: 0,1 ∗ → 0,1 ∗.

6

But what about problems with quantum inputs and outputs?

7

• State tomography: given many copies of a quantum state |𝜓⟩,
output a classical description of |𝜓⟩.

But what about problems with quantum inputs and outputs?

8

• State tomography: given many copies of a quantum state |𝜓⟩,
output a classical description of |𝜓⟩.

• Quantum error correction: given a noisy quantum codeword |𝑐⟩,
recover the original message.

But what about problems with quantum inputs and outputs?

9

• State tomography: given many copies of a quantum state |𝜓⟩,
output a classical description of |𝜓⟩.

• Quantum error correction: given a noisy quantum codeword |𝑐⟩,
recover the original message.

• State distinguishing: distinguish whether a given state |𝜓⟩ was
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

But what about problems with quantum inputs and outputs?

10

• State tomography: given many copies of a quantum state |𝜓⟩,
output a classical description of |𝜓⟩.

• Quantum error correction: given a noisy quantum codeword |𝑐⟩,
recover the original message.

• State distinguishing: distinguish whether a given state |𝜓⟩ was
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Physics: computing AdS/CFT map, decoding black-hole radiation

But what about problems with quantum inputs and outputs?

11

What can complexity theory say
about the hardness of these

inherently quantum problems?

12

Standard procedure: reduce your problem to some well-studied
complexity class.

13

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

14

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Issue: for some quantum problems, it’s not clear how to do this!

15

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

State distinguishing: distinguish whether a given state |𝜓⟩ was
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Issue: for some quantum problems, it’s not clear how to do this!

16

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Not known how to solve this using any oracle

State distinguishing: distinguish whether a given state |𝜓⟩ was
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Issue: for some quantum problems, it’s not clear how to do this!

17

Standard procedure: reduce your problem to some well-studied
complexity class.
Ex: is the problem easy given an oracle for NP? PSPACE?

Not known how to solve this using any oracle, even an oracle for the
halting problem!

State distinguishing: distinguish whether a given state |𝜓⟩ was
sampled from distribution 𝐷" or 𝐷# (promised it’s possible).

Issue: for some quantum problems, it’s not clear how to do this!

18

Before we continue:
1-minute detour for quantum computing 101

19

Quantum computing 101

20

• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

Quantum computing 101

21

• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

• 𝑛-qubit unitary = 2$×2$ rotation matrix.

Quantum computing 101

22

• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

• 𝑛-qubit unitary = 2$×2$ rotation matrix.

• efficient quantum computation = poly(𝑛)-size quantum circuit

Quantum computing 101

23

|𝜓⟩

|0⟩ancilla

input

garbage

output

Quantum computing 101

• 𝑛-qubit state = 2$-dim unit vector 𝜓 = ∑%∈ ",# ! 𝛼% 𝑥 .

• 𝑛-qubit unitary = 2$×2$ rotation matrix.

• efficient quantum computation = poly(𝑛)-size quantum circuit

poly 𝑛 gates

24

Now back to:
Does complexity theory capture quantum problems?

25

Does complexity theory capture quantum problems?

26

Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary

27

Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary
• complexity theory is about implementing functions

28

Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary
• complexity theory is about implementing functions

To apply complexity theory, we need to efficiently reduce the
task of implementing a unitary 𝑈 to implementing a function 𝑓.

29

Does complexity theory capture quantum problems?

• some quantum problems require implementing a unitary
• complexity theory is about implementing functions

To apply complexity theory, we need to efficiently reduce the
task of implementing a unitary 𝑈 to implementing a function 𝑓.

The Unitary Synthesis Problem [AK06]:
Is there a reduction that works for every 𝑈?

30

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

31

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

32

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

33

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}.

ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

34

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

𝒪 𝒪ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂,: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.

35

ancilla

input output

1) Efficient oracle alg 𝐴(⋅):

ℓ qubits
ℓ = poly 𝑛

of gates = poly 𝑛

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂,: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.

𝑂, 𝑂,

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

36

|𝜓⟩ 𝑈|𝜓⟩

1) Efficient oracle alg 𝐴(⋅): # of gates = poly 𝑛

2) Given 𝑈, pick 𝑓: 0,1 ℓ → {±1}. Plug in 𝑂,: 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩.

𝑂, 𝑂,

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

We want:
ancilla

37

Prior best-known bounds

• Upper bound: 2$/. queries [Ros22]

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

38

Prior best-known bounds

• Upper bound: 2$/. queries [Ros22]
• Lower bound: none

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

39

Prior best-known bounds

• Upper bound: 2$/. queries [Ros22]
• Lower bound: none

Note: [AK06] prove a 1-query lower bound for a very special
class of oracle algorithms.

The Unitary Synthesis Problem [Aaronson-Kuperberg 06]
Is there an efficient oracle algorithm 𝐴(⋅) that can implement
any 𝑛-qubit unitary 𝑈 given some function 𝑓?

40

Why has it been hard to prove lower bounds?

41

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

42

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).

43

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.

44

Why has it been hard to prove lower bounds?

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

45

(2) Even one-query algorithms are very powerful!

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

Why has it been hard to prove lower bounds?

46

(2) Even one-query algorithms are very powerful!
In fact, they can solve any classical input, quantum output problem.

[Aar16, INNRY22, Ros23]

(1) Counting arguments don’t work.

• 2."! different 𝑛-qubit unitaries (roughly).
• 2.ℓ different functions 𝑓: 0,1 ℓ → {±1}.
Useless for ℓ > 2𝑛.

Why has it been hard to prove lower bounds?

47

This work

Main result: There’s no efficient one-query oracle algorithm for the
Unitary Synthesis Problem.

48

This work

Actually, we even rule out computationally unbounded algorithms, as
long as they query 𝑓: 0,1 ℓ → {±1} on inputs of length ℓ = 𝑜(2$).

Main result: There’s no efficient one-query oracle algorithm for the
Unitary Synthesis Problem.

49

This work

Actually, we even rule out computationally unbounded algorithms, as
long as they query 𝑓: 0,1 ℓ → {±1} on inputs of length ℓ = 𝑜(2$).

Note: when ℓ = 2.$, possible to learn description of 𝑈 in one query.

Main result: There’s no efficient one-query oracle algorithm for the
Unitary Synthesis Problem.

50

Rest of this talk

Part 1:
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof

51

Rest of this talk

Part 1:
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof

52

We prove our result by studying pseudorandom states (PRS).

53

We prove our result by studying pseudorandom states (PRS).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:

54

We prove our result by studying pseudorandom states (PRS).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]

55

We prove our result by studying pseudorandom states (PRS).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

56

We prove our result by studying pseudorandom states (PRS).

PRS → quantum commitments, multi-party computation, and more

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

57

We prove our result by studying pseudorandom states (PRS).

PRS → quantum commitments, multi-party computation, and more
Fundamental question: how hard is it to break a PRS?

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

58

We prove our result by studying pseudorandom states (PRS).

PRS → quantum commitments, multi-party computation, and more
Fundamental question: how hard is it to break a PRS?
Our answer: possibly harder than computing any function!

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

59

We prove our result by studying pseudorandom states (PRS).

Result #2: Exists a PRS secure against any efficient adversary 𝐴(⋅)
that queries an arbitrary function 𝑓 once

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

60

We prove our result by studying pseudorandom states (PRS).

Result #2: Exists a PRS secure against any efficient adversary 𝐴(⋅)
that queries an arbitrary function 𝑓 once, relative to a random
oracle 𝑅 (where 𝑓 can be chosen based on 𝑅).

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

61

We prove our result by studying pseudorandom states (PRS).

Note: this result implies our unitary synthesis lower bound.

PRS: family of 𝑛-qubit states { PRS/ }/∈[1] where 𝐾 ≪ 𝑁 = 2$, s.t.
no efficient adversary can distinguish:
• |PRS/⟩ for uniformly random 𝑘 ← [𝐾]
• Haar-random 𝑛-qubit state |𝜓⟩

Result #2: Exists a PRS secure against any efficient adversary 𝐴(⋅)
that queries an arbitrary function 𝑓 once, relative to a random
oracle 𝑅 (where 𝑓 can be chosen based on 𝑅).

62

Our PRS construction

63

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

64

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function.

65

Adversary tries to distinguish

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function.

66

Adversary tries to distinguish
• |𝜓5$⟩ for random 𝑘 ← [𝐾]

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function.

67

Adversary tries to distinguish
• |𝜓5$⟩ for random 𝑘 ← [𝐾]

• |𝜓3⟩ for random ℎ: 𝑁 → {±1}

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function.

68

Adversary tries to distinguish
• |𝜓5$⟩ for random 𝑘 ← [𝐾]

• |𝜓3⟩ for random ℎ: 𝑁 → {±1}
given one query to a function 𝑓, which can depend on 𝑅 ≔ {𝑅/}.

Our PRS construction

For any function ℎ: [𝑁] → {±1}, define the binary phase state

𝜓3 ∝ Z
%∈ 4

ℎ 𝑥 𝑥 (recall 𝑁 = 2$)

Our PRS: {|𝜓5$⟩}/∈[1] where each 𝑅/ is a random function.

69

Next up: what does a one-query adversary look like?

70

𝑂,
|𝜓⟩input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

71

1) Initialize ℓ − 𝑛 ancilla qubits

𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

72

𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.

73

𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.

74

𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.

𝑂, =
⋱

𝑓(𝑧)
⋱

2ℓ×2ℓ diagonal matrix,
𝑧-th entry is 𝑓 𝑧 ∈ {±1}

75

𝑂,
|𝜓⟩

|0⟩ancilla

input

measurement Πunitary 𝑈

𝑏

One-query
adversaries

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.
4) Measure {Π, I − Π} and return 1 if outcome is Π.

76

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.
4) Measure {Π, I − Π} and return 1 if outcome is Π.

𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

77

1) Initialize ℓ − 𝑛 ancilla qubits
2) Apply ℓ-qubit unitary 𝑈.
3) Query oracle 𝑂, , which maps 𝑧 → 𝑓 𝑧 ⋅ |𝑧⟩ for 𝑧 ∈ 0,1 ℓ.
4) Measure {Π, I − Π} and return 1 if outcome is Π.

𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ 𝑈 ⋅ 𝜓 |0⟩ .

78

𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ 𝑈 ⋅ 𝜓 |0⟩ .

Adversary’s distinguishing advantage for fixed 𝑅 is

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

79

𝑂,
|𝜓⟩

|0⟩ancilla

input
𝑈 Π

One-query
adversaries

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ 𝑈 ⋅ 𝜓 |0⟩ .

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

80

Goal: bound maximum distinguishing advantage.

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

81

Goal: bound maximum distinguishing advantage.

The plan:

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

82

Goal: bound maximum distinguishing advantage.

The plan:
1) Use spectral relaxation to bound distinguishing advantage in
terms of the norm of a random matrix

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

83

Goal: bound maximum distinguishing advantage.

The plan:
1) Use spectral relaxation to bound distinguishing advantage in
terms of the norm of a random matrix
2) Apply matrix concentration

Adversary’s distinguishing advantage for fixed 𝑅 is

(adversary picks 𝑓 = 𝑓5 to maximize this)

Pr[𝐴,(|𝜓5$⟩) outputs 1] Pr[𝐴,(|𝜓3⟩) outputs 1]𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

84

Rest of this talk

Part 1:
Connect unitary synthesis to breaking quantum cryptography

Part 2:
A special case of our proof

85

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

86

Disclaimer: We can rule out these attacks with a counting
argument, but today we’ll see a different proof.

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

87

𝑈
|𝜓⟩

𝑂! Π|0⟩

𝑛-qubit input:

ancilla:

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

One-query
adversaries:

88

𝑈
|𝜓⟩

𝑂! Π|0⟩

𝑛-qubit input:

ancilla:

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

One-query
adversaries:

89

𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class: |𝜓⟩𝑛-qubit input:

90

𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class:

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ |𝜓⟩
.

|𝜓⟩𝑛-qubit input:

91

𝑂! Π

A special class of one-query adversaries
Assume adversary sets ℓ = 𝑛 (no ancillas) and 𝑈 = Id.

Special class:

Pr[𝐴,(|𝜓⟩) outputs 1] = Π ⋅ 𝑂, ⋅ |𝜓⟩
.

Distinguishing advantage:

(adversary picks 𝑓 = 𝑓5 to maximize this)

⟨𝜓5/| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ ⟨𝜓3| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩𝔼
𝑘 ← [𝐾]

𝔼
ℎ

−

|𝜓⟩𝑛-qubit input:

92

Technical tool: matrix concentration

93

Technical tool: matrix concentration

Scalar Chernoff bound: If 𝑋 is a random scalar with bounded
absolute value, then for i.i.d. 𝑋#, … , 𝑋1

1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ≈ 𝑂
1
𝐾

(w.h.p.)

94

Scalar Chernoff bound: If 𝑋 is a random scalar with bounded
absolute value, then for i.i.d. 𝑋#, … , 𝑋1

1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ≈ 𝑂
1
𝐾

Technical tool: matrix concentration

Matrix Chernoff bound: If 𝑋 is a random Hermitian 𝐿 ×𝐿 matrix
with bounded operator norm, then for i.i.d. 𝑋#, … , 𝑋1

1
𝐾
Z
/

𝑋/ − 𝔼 𝑋
67

≈ 𝑂
log(𝐿)
𝐾

(w.h.p.)

(w.h.p.)

max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

95

Adversary’s advantage (for this special class):

max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

96

max
|?⟩

⟨𝑣| ⋅
1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

Adversary’s advantage (for this special class):

max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

97

max
|?⟩

⟨𝑣| ⋅
1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

random matrices max over unit vectors

random vectors

Adversary’s advantage (for this special class):

max over matrices

max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

98

max
|?⟩

⟨𝑣| ⋅
1
𝐾
Z
/

𝑋/ − 𝔼 𝑋 ⋅ 𝑣

Matrix Chernoff:

random matrices max over unit vectors

random vectors

Adversary’s advantage (for this special class):

max over matrices

?

99

max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Key step: we can refactor this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

=
1
𝐾
Z
/

𝑋/ − 𝐸[𝑋]
𝑓-dependent
unit vector

100

max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Key step: we can refactor this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

𝑓-dependent
unit vector

Then matrix Chernoff will bound the max over all unit vectors.

=
1
𝐾
Z
/

𝑋/ − 𝐸[𝑋]

101

max
,: 9 →{±#}

1
𝐾
Z
/

⟨𝜓5$| ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ |𝜓5/⟩ − 𝔼3⟨𝜓3| ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ |𝜓3⟩

Adversary’s advantage (for this special class):

Since all the terms look identical, it
suffices to just look at one term.

102

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩

103

(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩

104

(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩

𝑁×𝑁 diagonal matrix,
𝑥-th entry is 𝑅/(𝑥)

uniform
superposition

105

(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

≔ 𝐷5$ ≔ +4

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩

106

(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩ = ⟨+4| 𝐷5$ ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ 𝐷5$ +4 (1)

≔ 𝐷5$ ≔ +4

107

(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩ = ⟨+4| 𝐷5$ ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ 𝐷5$ +4 (1)

(2) 𝑂, is a diagonal matrix, so it commutes with 𝐷5/

≔ 𝐷5$ ≔ +4

108

(1) Write the binary phase state |𝜓5$⟩ as

|𝜓5$⟩ =
⋱

𝑅/ 𝑥
⋱

⋅
1
𝑁

1
⋮
1

We’ll rewrite this as ⟨𝑣,| ⋅ randommatrix ⋅ |𝑣,⟩

⟨𝜓5$| 𝑂, ⋅ Π ⋅ 𝑂, |𝜓5$⟩ = ⟨+4| 𝐷5$ ⋅ 𝑂,⋅ Π ⋅ 𝑂, ⋅ 𝐷5$ +4
= +4 𝑂, ⋅ (𝐷5$ ⋅ Π ⋅ 𝐷5$) ⋅ 𝑂, +4

(1)
(2)

(2) 𝑂, is a diagonal matrix, so it commutes with 𝐷5/

≔ 𝐷5$ ≔ +4

109

Distinguishing
advantage

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

110

= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

Distinguishing
advantage

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:

111

= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

Distinguishing
advantage

unit vector

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:

112

= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

≤ #
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 67

Distinguishing
advantage

unit vector

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:

113

= ⟨+4|𝑂,
#
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 𝑂,|+4⟩

≤ #
1
∑/𝐷5$ ⋅ Π ⋅ 𝐷5$ − 𝔼3 𝐷3 ⋅ Π ⋅ 𝐷3 67

≈ 𝑂 $
1

Distinguishing
advantage

unit vector

by Matrix Chernoff with 𝑋/ = 𝐷5$ ⋅ Π ⋅ 𝐷5$

1
𝐾
Z
/

⟨𝜓5$|𝑂,⋅ Π ⋅ 𝑂,|𝜓5/⟩ − 𝔼3⟨𝜓3|𝑂, ⋅ Π ⋅ 𝑂,|𝜓3⟩

Rewrite as:

114

How do we handle general one-
query adversaries?

115

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

116

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

117

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

118

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂, !

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

119

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂, !

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

Our solution: Write 𝑉 ⋅ 𝐷3 +4 = y𝐷3 |wtB⟩ w.r.t. a 𝑉-dependent
unit vector |wtB⟩.

120

𝑈
|𝜓3⟩

𝑂! Π
|0⟩

𝑛 qubit input:

ancilla:

General
one-query
adversaries

Def: isometry 𝑉 = 𝑈 ⋅ (Id ⊗ |0⟩), i.e. “add ancillas + apply 𝑈”

Challenge: unclear how to commute 𝐷3 and 𝑂, !

Pr[𝐴,(|𝜓3⟩) outputs 1] = +4 𝐷3 ⋅ 𝑉A ⋅ 𝑂, ⋅ Π ⋅ 𝑂, ⋅ 𝑉 ⋅ 𝐷3 |+4⟩

Our solution: Write 𝑉 ⋅ 𝐷3 +4 = y𝐷3 |wtB⟩ w.r.t. a 𝑉-dependent
unit vector |wtB⟩. Commute y𝐷3 , 𝑂, to get spectral relaxation.

121

Future directions

122

Future directions

Open problem #1: prove that our PRS distinguishing game is hard
even given poly(𝑛) queries to an arbitrary 𝑓.

123

Future directions

Open problem #1: prove that our PRS distinguishing game is hard
even given poly(𝑛) queries to an arbitrary 𝑓.

Open problem #2:

124

Future directions

Open problem #1: prove that our PRS distinguishing game is hard
even given poly(𝑛) queries to an arbitrary 𝑓.

random
circuit 𝐶

Open problem #2:

125

Future directions

Open problem #1: prove that our PRS distinguishing game is hard
even given poly(𝑛) queries to an arbitrary 𝑓.

|0$⟩
or |1$⟩

random
circuit 𝐶

Open problem #2:

126

Future directions

Open problem #1: prove that our PRS distinguishing game is hard
even given poly(𝑛) queries to an arbitrary 𝑓.

|0$⟩
or |1$⟩

random
circuit 𝐶

Task: given description of 𝐶 and
2𝑛/3 qubits of 𝐶|𝑏$⟩, determine 𝑏.

Open problem #2:

127

Future directions

Open problem #1: prove that our PRS distinguishing game is hard
even given poly(𝑛) queries to an arbitrary 𝑓.

|0$⟩
or |1$⟩

random
circuit 𝐶

Task: given description of 𝐶 and
2𝑛/3 qubits of 𝐶|𝑏$⟩, determine 𝑏.

Open problem #2:

Is this easy given a halting oracle?

128

Future directions

Open problem #1: prove that our PRS distinguishing game is hard
even given poly(𝑛) queries to an arbitrary 𝑓.

|0$⟩
or |1$⟩

random
circuit 𝐶

Task: given description of 𝐶 and
2𝑛/3 qubits of 𝐶|𝑏$⟩, determine 𝑏.

Open problem #2:

Is this easy given a halting oracle?

Thanks for listening!

