
Cryptographic testing of quantum devices

Lecturer: Umesh Vazirani
Scribe: James Bartusek

Today we’ll be looking at cryptographic testing of untrusted quantum devices.

Models for testing quantum devices. First, one can consider a “slightly quantum” polynomial
time verifier who can create single qubit states, for example in the set {|0i , |1i , |+i , |�i}. The basic
idea is to have the verifier prepare one of these at random and send it the prover. So, the verifier
knows exactly what the state is, but this qubit looks maximally mixed from the prover’s perspective.
By hiding the qubit and sending it to the prover, the verifier can enforce that the prover interacts
with it in some particular way.

Second, one can consider a model where the verifier is genuinely classical and polynomial time.
But now there are two untrusted devices A and B that are spatially separated and can’t talk to
each other, but (potentially) share entanglement. What kinds of behavior can the verifier enforce?
A few examples:

• Can test whether A and B share Bell states by playing the CHSH game.

• Can test that A and B are returning verified random bits.

• In fact, this can be used to verify arbitrary quantum computations.

All of these results stem from the ability to enforce “qubits” in the device’s space.
A third setting, that we’ll focus on today, considers a polynomial-time verifier and a single

computationally-bounded quantum prover. We will want to use (post-quantum) cryptography to
enforce qubits. At a very high level, the verifier will sample keys for a trapdoor function and
remember the trapdoor. The quantum prover will not know the trapdoor. We’ll take advantage
of this asymmetry to force the prover to set up a qubit |0i + (�1)c |1i for a random c, where the
verifier knows c, but the prover only knows an encryption of c. This essentially achieves the same
result as the first setting described above, where the verifier sends a random encrypted qubit to
the prover, but here we rely on computational assumptions and only use classical communication.

Trapdoor claw-free function. The crytographic primitive we will use is a trapdoor claw-free
function : a pair of functions f0, f1 : {0, 1}n ! {0, 1}m such that f0 and f1 are injective and have
the same image. This means that for any y in the image of f0, f1, there exists exactly one x0 and
one x1 such that f0(x0) = y = f1(x1). The triple (x0, x1, y) is called a claw, and the claw-free
assumption stipulates that no (quantum) polynomial-time adversary can output any claw (x0, x1, y)
given the descriptions f0, f1. Finally, there must exist a trapdoor td that can be sampled along
with f0, f1 that allows one to recover the preimages (x0, x1) given an image y.

The protocol. Here is how we can use a trapdoor claw-free function to set up a qubit in the
prover’s space. This idea is due to [BCM+18].

1

• The verifier samples f0, f1 along with a trapdoor td, and sends f0, f1 to the prover.

• The prover prepares the state
X

b2{0,1}

X

x2{0,1}n
|bi |xi |fb(x)i .

Then, it measures the final register in the standard basis to obtain y, and their remaining
state collapses to

|0i |x0i+ |1i |x1i .

• Next, the verifier issues a challenge 0 or 1.

• If 0, the prover measures in the standard basis to obtain (b, xb). If 1, the prover measures all
qubits in the Hadamard basis to obtain (c 2 {0, 1}, d 2 {0, 1}n). This operation is exactly
what happens in Simon’s algorithm. In particular, the prover will obtain (c, d) such that
(c, d) · ((0, x0)� (1, x1)) = 0.

It is useful to imagine what happens if the prover had just measured the final n qubits instead
of all n+ 1. In the case, the prover ends up with |0i+ (�1)c |1i.

Now, how does the verifier check these tests? In the case that the challenge is 0, the verifier
simply checks that fb(xb) = y. In the case that the challenge is 1, the verifier can recover x0, x1
from y (using the trapdoor td), and check that c = d · (x0 � x1).

Analysis. We will instantiate this template using post-quantum cryptography. Our first goal is a
“proof of quantumness”, which will convince the verifier that the prover did do something uniquely
quantum. The fact that we are using post-quantum cryptography in this setting is especially
interesting, because we are not simply asking the prover to break something (like factoring) that
we assume the classical machine cannot. The cryptography we use is assumed to be secure even
against the quantum prover!

Instead, we will use rewinding to obtain a separation between classical and quantum. In
particular, we will set up a situation where if a classical prover causes the verifier to accept the
protocol, then they could be rewound to find a claw, and thus break crypto. However, there will
exist quantum provers that cause the verifier to accept without breaking crypto, because they will
be performing measurements that cannot be reversed.

Suppose that a classical prover passes both the 0 and 1 challenges. Then, by rewinding, they
could be used to obtain (y, b, xb, c, d) where c = d · (x0, x1). That is, they don’t find an entire
claw (x0, x1), but rather one priemage xb along with some linear function of the other preimage
x1�b. Thus, we will want to argue that the output of this linear function is a hard-core bit of x1�b,
meaning a bit that cannot be guessed with probability non-negligibly greater than 1/2.

Let’s formalize what we want so far.

• We have f0, f1 : Zn
0

q ! {0, 1}m where n = n0 log(q) and a secret s 2 Zn
0

q such that for each claw
(x0, x1, y), it holds that x1 = x0�s. Note that it is crucial we are working with addition over
a larger field Zq rather than over {0, 1} because Simon’s algorithm would allow for recovery
of s in the binary field case.

2

• If we have d 2 {0, 1}n such that d · (bin(x0), bin(x1)) = c (where given x 2 Zn
0

q , we let bin(x)
be the binary representation in {0, 1}n), we can recover d0 2 Zn

0
q such that d0 · s = c (over

Zq). Let’s say that s 2 {0, 1}n0 . Then, we want that all (non-zero) linear functions of s to be
“hard-core” given f0, f1.

Now, we will briefly discuss how to argue that a qubit has actually been enforced by our protocol.
The key will be Jordan’s lemma, applied to the two projective measurements that a potentially
adversarial prover applies on challenge 0 and challenge 1. We will use the hard-code bit property to
argue that in most of the Jordan subspaces, the two projectors will be close to 45 degree, otherwise
the prover could be used to break crypto. This is essentially saying that these projectors must be
(almost) anticommuting, and thus define an (approximate) qubit in the prover’s space.

Instantiation. Next, we will discuss how to actually set up f0, f1. We will use the LWE (learning
with errors) assumption.

• Let q be a modulus, m and n be polynomials such that m is sufficiently larger than n, and
� be the Gaussian distribution with width � = 2

p
n. Given a random A Zm⇥n

q , a secret
s {0, 1}n, a vector e �m, and a random u Zm

q , we assume that (A,As+ e) and (A, u)
are computationally indistinguishable. Our functions f0, f1 will be defined by (A, t = As+e).

• We define f0(x) = Ax + e0, where e0 �m. That is, f0 actually outputs a probability
distribution over Zm

q .

• Now, ideally we want f1(x) = Ax+e0+As = A(x+e)+e0. However, since the prover does not
know s, we cannot define f1 this way. Instead, we’ll define f1(x) = As+e0+t = A(x+s)+e0+e.

• By setting the width of e0 much larger than e, we can show that the distributions output
by f0(x) and f1(x + s) are statistically close. Now, if the prover sets up the superposi-
tion described earlier and measures the final register, the remaining state will collapse to a
superposition over exactly two preimages with overwhelming probability.

So why does this give a pair of functions f0, f1 that satisfies the hard-core property? We won’t
fully prove this, but the key property is that LWE is leakage-resilient. To argue this, we switch
from a uniformly random A 2 Zm⇥n

q to a “lossy mode”, where A is sampled from a particular
distribution over matrices that are “close to” low rank. That is, we sample eA = BC + E for a
skinny matrix B, a wide matrix C, and Gaussian E �m⇥n, and argue that eA indistinguishable
from a uniformly random A, by LWE. But now, if we multiply A by s, we statistically lose (a lot
of) information about s, since it is first multiplied by a highly compressing matrix C (we will also
set parameters so that E does not preserve much information about s). In this world, we can argue
that the hard-core bit property holds statistically since there is (almost) no information about d ·s,
for any d. What is remarkable about this (compared to say, Goldreich-Levin) is that this holds for
every (even adaptively chosen) d.

Finally, we also have to show how to sample a trapdoor along with f0, f1. To do this, we sample
A along with a full-rank square matrix T such that TA = 0. Then given t = As+e, we can compute
Tt = TAs+ Te = Te, and then solve for e, using the fact that T is full rank.

3

Efficient certifiable randomness. The final thing we will discuss is how to obtain “a lot” of
certifiable randomness from the four-message protocol described above, following [MVV22]. Our
goal is to obtain n bits of randomness. Suppose that the verifier samples eA instead of A at the
beginning of the protocol. Now, when the prover measures the final register of their initial state to
obtain y, there will be exponentially many preimages that start with both 0 and 1. Then, when
an honest prover responds to the challenge 0 (a “generation round”), they will be measuring a string
(b, xb) with a lot of randomness. Unfortunately, doing this completely breaks the verifier’s test on
challenge 1 (a “test round”). Thus, we will have the verifier decide beforehand which challenge to
give, and sample eA in the case of a generation round and sample A in the case of a test round.

An issue that comes up in the proof is that on the one hand, we need to use the trapdoor to
verify the protocol, but on the other hand, A and eA are only indistinguishable without knowing
the trapdoor. To solve this issue, we note that it is possible to verify test rounds with knowledge
of s (and not T) with a quantum verifier. That is, we can take the final prover’s register |0i |x0i+
|1i |x1 = x0 � si (which they were about to measure in the Hadamard basis), and using knowledge
of s, obtain

|0i |x0i |x0i+ |1i |x1i |x1 + si = (|0i |x0i+ |1i |x1i)⌦ |x0i ,

and measure the final register to obtain x0 (and thus also x1 = x0 � s). We will only make use
of this quantum verifier as a thought experiment in the proof, and argue that the behavior of the
protocol does not change whether we use the quantum or the classical verifier.

We can claim the following:

1. The prover’s collapsed state after measuring y must be a uniform superposition of two preim-
ages (if not, we could distinguish A from eA).

2. The vector s is information-theoretically hidden in the lossy sample (there are exponentially
many choices for s), and thus there is a lot of entropy in the measurement of xb.

4

