
Problem Set 2

Submit your problem set by April 24 by emailing it to Fermi (fermima1@gmail.com) and James
(bartusek.james@gmail.com). Full credit will be given as long as you make an honest attempt to
solve each problem.

1. Give an interactive protocol between a prover and verifier that satisfies the following proper-
ties:

• Under a (plausibly post-quantum) hardness assumption, any efficient classical prover
convinces the verifier with probability at most negl(�).

• There exists an efficient quantum prover that makes the verifier accept with probability
1� negl(�).

You should not need to design a new protocol from scratch; instead, your protocol should
be based on a protocol covered in the lectures. You may use any claims stated in Additional
Resources.

2. The four-message proof of quantumness protocol we saw in the class can be seen as “enforcing
a qubit” — for any efficient prover that convinces the verifier to accept with overwhelming
probability, the measurement outcomes the verifier gets must be consistent with measuring
some one-qubit state | i in the standard/Hadamard bases. In this problem, we’ll formally
prove this.

(a) First, we’ll need a formal definition of an “approximate qubit.” Consider the following
two definitions:

• (Approximate qubit, Definition 1) An "-approximate-qubit is a triple (| i , X, Z)
such that | i 2 H,1 and X and Z are any binary observables (see Additional Re-
sources for a definition) satisfying

h | (XZ + ZX)2 | i  ".

• (Approximate qubit, Definition 2) An "-approximate-qubit is a triple (| i , X, Z)
such that there exists a Hilbert space H0 and an isometry V : H ! C2 ⌦ H0 (see
Additional Resources for a definition) such that

V X | i ⇡" (�X ⌦ Id)V | i and V Z | i ⇡" (�Z ⌦ Id)V | i ,

where | i ⇡" |�i means k| i � |�ik  " and �X ,�Z denote the Pauli operators

�X :=

✓
0 1
1 0

◆
, �Z :=

✓
1 0
0 �1

◆
.

1
Here, H denotes a finite-dimensional Hilbert space, i.e., a space isomorphic to Cd

for some positive integer d.
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Prove that these definitions are equivalent, up to a constant multiplicative factor in ".
While not required, you may find it helpful to prove the " = 0 case first (this corresponds
to two definitions of an exact qubit).2

(b) Consider any QPT prover that is accepted in Protocol 2 with probability 1.3 Suppose
we run the first two messages of the protocol to obtain (pk, y). Show how to use the
description of the prover’s current state and remaining algorithms to define a triple
(| i , X, Z) such that, with probability 1� negl(�) over (pk, y), (| i , X, Z) is a negl(�)-
approximate qubit.

3. (Quantum Goldreich-Levin) Let s 2 {0, 1}n be an unknown string. Suppose you are given
access to a classical oracle fs : {0, 1}n ! {0, 1} such that

Pr
r {0,1}n

[fs(r) = s · r] = 1

2
+ ".

Show how to output s with probability poly(") given only one (quantum) query to this oracle.

4. We saw in class that given access to a classical algorithm OLWE,A that on input y outputs the
shortest vector in span(A>, y), there exists an algorithm for solving the Short Integer Solution
(SIS) problem for A with respect to some bound �.4 That is, with probability 1 � negl(�),
the algorithm outputs a non-zero x such that Ax = 0 and kxk1  �.

(a) Suppose instead that OLWE,A(y) only outputs the shortest vector in span(A>, y) with
probability 1/poly(�). That is,

Pr
s,e

[OLWE,A(As+ e) = e] = 1/poly(�).

Show how to solve the SIS problem for A with probability 1/poly(�) given access to this
algorithm.

(b) Suppose instead that we have oracle access to a quantum algorithm that outputs the
shortest vector in span(A>, y) with probability 1/poly(�). That is, we have access to a
unitary ULWE,A such that measuring the first register of ULWE,A |As+ ei |0i yields e with
probability 1/poly(�). Show how to solve SIS with probability 1/poly(�) given access to
this unitary and its inverse.

5. In class, we proved that the YZ problem (Definition 8) is hard for any classical adversary
that (a) makes poly(�)-many non-adaptive queries to the random oracle and (b) outputs
c = (c1, . . . , cn) with the property that each ci was previously queried to the random oracle at

2
This problem is inspired by Exercise 2.1 in Thomas Vidick’s notes [Vid20]. Feel free to reference the notes if

you get stuck.
3
Note that this is technically unreasonable, since even the honest strategy only has some 1 � negl(�) of being

accepted on the equation test. However, this will (slightly) simplify the proof, and it is not too difficult to extend

what we will do to provers that are accepted with probability 1� negl(�).
4
You will not need to worry about the exact parameters (i.e. dimension of A, field size, value of �, etc.) in order

to answer this problem.

2



some point, assuming that the code C is “list-recoverable.” Show that if C is “list-recoverable
with errors” (Definition 9) the same result holds for an arbitrary classical adversary, i.e., one
that makes poly(�)-many adaptive queries to the random oracle.

6. The quantum YZ solver that we saw in class generates a uniformly random solution to the
YZ problem. Assuming that the Aaronson-Ambainis conjecture is true (Conjecture 1), prove
that there is no efficient quantum algorithm for the YZ problem that outputs a deterministic
solution. In other words, show that any quantum algorithm outputs a solution with non-zero
entropy (showing even negligible entropy will suffice for this problem).

7. (a) For (x, ✓) 2 {0, 1}2, let
��x✓

↵
:= H✓ |xi (where H = 1p

2

✓
1 1
1 �1

◆
denotes the Hadamard

gate). Consider the following challenger-adversary game:

i. The challenger samples uniformly random (x1, . . . , xn), (✓1, . . . , ✓n) and sends |x✓11 i⌦
· · ·⌦ |x✓nn i to the adversary.

ii. The adversary outputs two n-bit strings r, s, and wins if for all indices i where
✓i = 0, ri = xi, and for all indices i where ✓i = 1, si = xi.

Prove that no (even unbounded) adversary can win this game with probability better
than negl(n).

(b) Construct a quantum-communication bit commitment scheme that satisfies (a) classical-
style binding but is not (b) collapse-binding.
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Additional Resources

You may use (without proof) any of the claims in this section.

Definition 1 (Trapdoor claw-free function with adaptive hard-core bit). The family of functions
F = {fpk : {0, 1} ⇥ {0, 1}n(�) ! {0, 1}n(�)}

�2N,pk2{0,1}k(�) is a trapdoor claw-free function with
adaptive hard-code bit if it satisfies the following properties.

• Two-to-one. For each y 2 {0, 1}n(�), the set f�1pk (y) contains exactly two elements
(0, x0), (1, x1).

• Adaptive hard-core bit. For any QPT adversary {A�}�2N,

Pr

2

64d 6= 0n+1 ^ d · ((0, x0)� (1, x1)) = 0 :

pk {0, 1}k
(b, xb, d) A�(pk)

((0, x0), (1, x1)) := f�1pk (fpk(b, xb))

3

75 
1

2
+negl(�).

• Trapdoor. There exist algorithms (pk, td) Gen(1�) and (x0, x1) Invert(td, y) such that
the distribution of pk when sampled from Gen(1�) is uniform, and (x0, x1) Invert(td, y)
is such that fpk((0, x0)) = fpk((1, x1)) = y.

Protocol 2. (Four-message proof of quantumness) Let F = {fpk : {0, 1} ⇥ {0, 1}n(�) !
{0, 1}n(�)}

�2N,pk2{0,1}k(�) be a trapdoor claw-free function with adaptive hard-core bit (see Defi-
nition 1). Recall the following four-message protocol sketched in class based on F .

• The verifier samples (pk, td) Gen(1�) and sends pk to the prover.

• The prover returns a string y 2 {0, 1}n.

• The verifier samples a uniformly random challenge c {0, 1} and sends c to the prover.

– In the case c = 0 (a preimage test), the prover returns a string (b, xb) 2 {0, 1}n+1,
and the verifier accepts if and only if fpk((b, xb)) = y.

– In the case c = 1 (an equation test), the prover returns a string d 2 {0, 1}n+1, the
verifier runs (x0, x1) Invert(td, y), and accepts if and only if d·((0, x0)�(1, x1)) = 0.

Definition 3 (Binary Observable). A binary observable is any Hermitian (i.e., O† = O) oper-
ator O that satisfies O2 = I.

Since Hermitian operators must have real eigenvalues, a binary observable has at most two
eigenvalues: +1 and �1. Consequently, a binary observable can always be written in the form
O = ⇧+1 �⇧�1 where ⇧+1,⇧�1 are projections onto the +1,�1 eigenspaces and ⇧+1 +⇧�1 = I.

For example, the Pauli operator

�Z =

✓
1 0
0 �1

◆
= |0ih0|� |1ih1|

4



is a binary observable with +1-eigenspace |0ih0| and �1 eigenspace |1ih1|. The Pauli operator

�X =

✓
0 1
1 0

◆
= |+ih+|� |�ih�|

is a binary observable with +1-eigenspace |+ih+| and �1 eigenspace |�ih�|.

Definition 4 (Isometry). An isometry is a linear map V from a Hilbert space H to a (poten-
tially larger) Hilbert space H0 such that V †V = Id. Note that for any orthonormal set {vi}i
in H and {wi}i in H0, the operator

P
i
|wiihvi| is an isometry.

Lemma 5 (Jordan’s Lemma). Let P,Q be projectors on a finite-dimensional Hilbert space
H. Then there exists an orthogonal decomposition H = �iSi such that each Si is a 1- or
2-dimensional subspace that is invariant under P and Q. Furthermore, whenever Si is 2-
dimensional, there is a basis for it in which P and Q take the form

P =

✓
1 0
0 0

◆
, Q =

✓
cos2(✓) cos(✓) sin(✓)

cos(✓) sin(✓) sin2(✓)

◆

for some ✓ 2 [0,⇡/2).5

Fact 6. For any two binary observables X,Z, it holds that

1

4
(XZ + ZX)2 = XZ0XZ0 + Z1XZ1X,

where
Zb :=

1

2

⇣
Id+ (�1)bZ

⌘
.

That is, Zb is the projection onto the (�1)b eigenspace of Z (e.g. when Z = �Z, Z0 = |0ih0|
and Z1 = |1ih1|).

Remark 7 (Quantum access to a classical oracle). Given a deterministic classical functionality
f : {0, 1}n ! {0, 1}m, quantum oracle access to f means that we have access to the map
|xi |yi ! |xi |y � f(x)i. This is equivalent to having access to the map |xi ! (�1)f(x) |xi (in
the case where f has 1-bit output).

Definition 8 (Yamakawa-Zhandry Problem). Let C be a subspace of Zn
q and let H : [n]⌦ Zq !

{0, 1} be a random oracle. Find (c1, . . . , cn) 2 C such that H(i, ci) = 0 for all i 2 [n].

Definition 9 (List-Recoverable With Errors). A code C ⇢ ⌃n is list recoverable with errors6 if
there exists a constant " > 0 such that for any subsets Si ✓ ⌃ such that |Si|  poly(n) for
i 2 [n], it holds that

|{(c1, . . . , cn) 2 C : |{i 2 [n] : ci 2 Si}| � (1� ")n}|  poly(n).
5
That is, P is the projection onto |0i, and Q is a projection onto the vector cos(✓) |0i+ sin(✓) |1i (i.e., the result

of rotating |0i counterclockwise by ✓).
6
The notion of “list-recoverable”/“rectangle-evasive” that we saw in class corresponds to the " = 0 case.
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Conjecture 1 (Aaronson-Ambainis). Let ", � > 0 be real numbers. Given any quantum algo-
rithm A that makes Q quantum queries to a random oracle H : {0, 1}n ! {0, 1}, there exists
a deterministic classical algorithm B that makes poly(Q, 1/", 1/�) classical queries to H and
satisfies

Pr
H

⇥
|Pr

⇥
AH ! 1

⇤
�BH |  "

⇤
� 1� �.
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Hints

2. For part (a), use Jordan’s lemma (Lemma 5). For part (b), without loss of generality, we can
model the prover as follows.

• After the second message, it has an internal state | i which may depend on pk and y.
We will write this state on two registers (M,A), where M holds n + 1 qubits and A
holds an arbitrary (polynomial) number of qubits.

• Upon receiving the challenge bit c  {0, 1}, it first applies some unitary Uc to | pk,yi.
Then, if c = 0, it measures register M in the standard basis to obtain (b, xb) and if c = 1,
it measures register M in the Hadamard basis to obtain d.

• Moreover, we can assume that the prover applies U0 before receiving c, and in the case
that c = 0 immediately measures register M in the standard basis, while in the case of
c = 1 applies U := U1U

†
0 and then measures register M the Hadamard basis.

Now consider the following family of observables associated with the prover’s actions, where
each is defined based on (pk, y).

Z =
X

(b,x)2f�1
pk (y)

(�1)b |(b, x)ih(b, x)| ,

X =
X

d2{0,1}n+1

(�1)g(pk,y,d)U †(H⌦n+1
M

� IdA)(|dihd|M ⌦ IdA)(H
⌦n+1
M

� IdA)U,

for g(pk, y, d) ! {0, 1} that is defined to output 0 iff d 6= 0n+1 and d · ((0, x0), (1, x1)) = 0,
where ((0, x0), (1, x1)) := f�1pk (fpk(y)).

Finally, it may be helpful to use Fact 6.

3. Run the Bernstein-Vazirani algorithm. It is easy to show that when " = 1/2, the algorithm
outputs s with probability 1. Now, show that for any ", the state of the algorithm right
after its oracle query has inner product poly(") with the state that would have resulted from
querying the “perfect” oracle. Use this fact to show that the output of the algorithm is s with
probability poly(").

4. For part (a), use a similar argument as the previous question. For part (b), consider the state
of the algorithm

| i :=
X

s,e

exp

✓
�|x|2
t2

◆
|ei

X

���A>s+ e
E

Y

|0i
Z

right before applying the LWE solver. Let (⇧0,⇧1) be the binary projective measurement
that corresponds to running ULWE,A on registers (Y, Z) and measuring whether the output
register is equal to the vector stored in register X. Show that the inner product between | i
and ⇧0 | i /k⇧0 | i k is at least 1/poly(�), and use this to derive your algorithm and proof.
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