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Abstract

The existence of pseudorandom unitaries (PRUs)—efficient quantum circuits that are
computationally indistinguishable from Haar-random unitaries—has been a central open
question, with significant implications for cryptography, complexity theory, and funda-
mental physics. In this work, we close this question by proving that PRUs exist, assuming
that any quantum-secure one-way function exists. We establish this result for both (1)
the standard notion of PRUs, which are secure against any efficient adversary that makes
queries to the unitary 𝑈 , and (2) a stronger notion of PRUs, which are secure even against
adversaries that can query both the unitary 𝑈 and its inverse 𝑈 †. In the process, we prove
that any algorithm that makes queries to a Haar-random unitary can be efficiently simu-
lated on a quantum computer, up to inverse-exponential trace distance.
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1 Introduction

This paper resolves the question: can efficient quantum circuits behave like truly random unitaries?
Specifically, we prove that pseudorandom unitaries (PRUs) exist assuming the existence of any
quantum-secure one-way function. First proposed by Ji, Liu, and Song in 2017 [JLS17], a PRU
is the unitary analogue of a pseudorandom function (PRF) [GGM86]. A PRU consists of a family
of efficiently computable quantum circuits with the guarantee that no polynomial-time quantum al-
gorithm can distinguish between queries to a unitary sampled from the PRU family and a unitary
sampled from the Haar measure.

Random unitaries play an essential role throughout quantum information science, arising in quan-
tum algorithms, quantum supremacy experiments, quantum learning, cryptographic protocols, and
much more [HLSW04, KLR+08, AAB+19, BFNV19, HKP20, AQY22, HKT+22, EFH+22, HBC+22,
Mov23, KQST23, LMW24]. In physics, highly chaotic systems such as black holes are often modeled as
Haar-random unitary transformations [CGAH+17, NVH18, CHJLY17, KTP20, CSM+23]. However,
this approach has a fundamental problem: Haar-random unitaries are inherently unphysical, requiring
exponential complexity to even specify. The notion of a PRU offers a tantalizing solution: efficient
circuits that are as good as Haar-random. In fact, the idea that PRUs are a more accurate model of
black hole dynamics is behind recent advances in fundamental physics [KTP20, YE23, EFL+24].

Despite considerable interest, the question of whether PRUs actually exist has remained open. In
the past couple of years, a series of works has established that weaker notions are possible [LQS+23,
BM24, HBK23, MPSY24, AGKL24]. For example, [MPSY24, CBB+24] constructed non-adaptive
PRUs, which are secure against restricted adversaries that makes all of their queries at once in parallel.
While these works represent important progress, the broader goal remains elusive, and constructing
a PRU remains one of the central challenges in quantum cryptography.

1.1 Our results

In this work, we give the first proof that PRUs exist.

Theorem 1. PRUs exist assuming the existence of any quantum-secure one-way function.

In fact, we go one step further. Theorem 1 is about PRUs that satisfy the original definition of [JLS18],
which are secure against adversaries that can query an oracle for 𝑈 , but not the inverse unitary 𝑈 †.
We therefore define strong PRUs, which are indistinguishable from Haar-random even to adverasaries
that can query both 𝑈 and 𝑈 †. Our second main result builds strong PRUs from one-way functions.1

Theorem 2. Strong PRUs exist assuming the existence of any quantum-secure one-way function.

While Theorem 2 technically subsumes Theorem 1, the proof of Theorem 2 is significantly more
involved. Since Theorem 1 may suffice for many applications, we present them separately. By es-
tablishing the existence of PRUs, our work provides the foundation for new avenues of research in
quantum computation, cryptography, and fundamental physics.

1.2 Our techniques

We achieve our results on PRUs by proving that any quantum oracle algorithm 𝒜𝑈 that queries an
𝑛-qubit Haar-random unitary 𝑈 can be efficiently simulated with a remarkably simple procedure:

1. Initialize an external register E to the state |∅⟩, where ∅ denotes the empty set. (Aside: When
we write a set inside a ket, e.g., |𝑆⟩E, we are simply using the set 𝑆 as a label for a unit vector.
The inner product ⟨𝑅|𝑆⟩ equals 1 if 𝑅 = 𝑆 and 0 otherwise.)

1The notion of strong PRUs is also discussed in [MPSY24] as an open question.
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2. Run the oracle algorithm 𝒜, replacing each query to 𝑈 with the following linear map:

𝑉 : |𝑥⟩ |𝑆⟩E ↦→
1√︀

2𝑛 − |𝑆|

∑︁
𝑦∈{0,1}𝑛:
𝑦 ̸∈𝑆𝑌

|𝑦⟩ |𝑆 ∪ {(𝑥, 𝑦)}⟩E , (1.1)

where 𝑆𝑌 denotes the set of all 𝑦 such that (𝑥, 𝑦) ∈ 𝑆 for some 𝑥. In words, 𝑉 maps 𝑥 to a uniform
superposition over 𝑦 ∈ {0, 1}𝑛, except those that already appear in 𝑆, and simultaneously
“records” (𝑥, 𝑦) by inserting it into 𝑆. We refer to 𝑉 as the path-recording oracle.

We prove that the following mixed states have trace distance 𝑂(𝑡2/2𝑛):

• E𝑈 |𝒜𝑈 ⟩⟨𝒜𝑈 |, the state of 𝒜 after 𝑡 queries to a Haar-random unitary 𝑈 , where |𝒜𝑈 ⟩ :=
𝑈 · 𝐴𝑡 · · ·𝑈 · 𝐴1 |0⟩ denotes the state of the algorithm after 𝑡 queries to 𝑈 , and |0⟩ denotes an
arbitrary initial state.

• TrE( |𝒜𝑉 ⟩⟨𝒜𝑉 |), where |𝒜𝑉 ⟩AE := 𝑉 · 𝐴𝑡 · · · ·𝑉 · 𝐴1 |0⟩ |∅⟩E denotes the global state of the
algorithm and the external register E after 𝑡 queries to 𝑉 .

Despite the extensive literature on Haar-random unitaries, to the best of our knowledge, this “path-
recording” characterization was not known before.23 Furthermore, it is easy to show that 𝑉 can be
efficiently implemented on a quantum computer; see Appendix A. This establishes the following fact:

Any algorithm that queries a Haar-random unitary can be efficiently simulated
on a quantum computer up to inverse-exponential trace distance.

As we now explain, this new path-recording perspective is the key to our PRU proof.

How to construct PRUs. The main technical step in our PRU proof is to show that a 𝑡-query
oracle algorithm 𝒜 can only distinguish between

• 𝑃𝜋 ·𝐹𝑓 ·𝐶, where 𝑃𝜋 =
∑︀

𝑥 |𝜋(𝑥)⟩⟨𝑥| for a random permutation 𝜋 ← 𝑆2𝑛 , 𝐹𝑓 =
∑︀

𝑥(−1)𝑓(𝑥) |𝑥⟩⟨𝑥|
for a random function 𝑓 ← {0, 1}2𝑛 , and 𝐶 is a random 𝑛-qubit Clifford.4

• a Haar-random 𝑛-qubit unitary 𝑈 ,

with probability 1/2 + 𝑡2/2𝑛.
Our proof works by purifying the randomness of the PRU. Ignoring 𝐶 for now, suppose we initialize

an external register to the uniform superposition ∝
∑︀

𝜋∈𝑆2𝑛
|𝜋⟩⊗

∑︀
𝑓∈{0,1}2𝑛 |𝑓⟩ over all permutations

𝜋 and functions 𝑓 . In this view, a query to a random 𝑃𝜋 ·𝐹𝑓 is equivalent to a query to a fixed unitary
that applies 𝑃𝜋 · 𝐹𝑓 controlled on |𝜋⟩ |𝑓⟩, i.e., the map

|𝑥⟩ ⊗ |𝜋, 𝑓⟩ ↦→ (−1)𝑓(𝑥) · |𝜋(𝑥)⟩ ⊗ |𝜋, 𝑓⟩ . (1.2)

Equivalently, we can view this map as sending 𝑥 to a superposition over all 𝑦, while simultaneously
multiplying the purifying register by the coefficient 𝛿𝜋(𝑥)=𝑦 · (−1)𝑓(𝑥):

|𝑥⟩ ⊗ |𝜋, 𝑓⟩ ↦→
∑︁

𝑦∈{0,1}𝑛
|𝑦⟩ ⊗

(︁
𝛿𝜋(𝑥)=𝑦 · (−1)𝑓(𝑥) · |𝜋, 𝑓⟩

)︁
. (1.3)

2We note that [AMR20] proves that there exists a space-efficient (but otherwise inefficient) way to exactly simulate
Haar-random unitaries. Moreover, their proof is non-constructive, i.e., they do not give a simulator.

3This can also be viewed as an analog of Zhandry’s compressed oracles for Haar-random unitaries [Zha19].
4This 𝑃𝐹𝐶 construction was introduced by [MPSY24], who proved security against non-adaptive adversaries, i.e.,

adversaries that make all of their oracle queries at once, in parallel.
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After 𝑡 queries to the purified 𝑃𝜋 ·𝐹𝑓 , the global state including the purifying registers is (proportional
to) a sum of terms

|𝑦𝑡⟩⟨𝑥𝑡| ·𝐴𝑡 · · · |𝑦1⟩⟨𝑥1| ·𝐴1 |0𝑛⟩ ⊗
∑︁
𝜋∈𝑆2𝑛

|𝜋, 𝑓⟩ · 𝛿𝜋(𝑥1)=𝑦1 · · · 𝛿𝜋(𝑥𝑡)=𝑦𝑡 · (−1)
𝑓(𝑥1)+···+𝑓(𝑥𝑡)

⏟  ⏞  
∝|pf{(𝑥1,𝑦1),...,(𝑥𝑡,𝑦𝑡)}⟩

, (1.4)

over all possible 𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡 ∈ {0, 1}𝑛, i.e., over all Feynman paths.
Crucially, when all the 𝑥1, . . . , 𝑥𝑡 are distinct, these |pf{(𝑥1,𝑦1),...,(𝑥𝑡,𝑦𝑡)}⟩ states are orthogonal and

is isometric to |{(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)}⟩. Since the algorithm is not given the purifying registers, a query
to a random 𝑃𝜋 · 𝐹𝑓 is identical to a query to the path-recording oracle 𝑉 described earlier—except
on paths where there is a collision among the inputs 𝑥1, . . . , 𝑥𝑡.

This is where 𝐶 comes in. We prove that 𝑉 satisfies a key property: for any 𝑛-qubit unitary 𝐶,

(𝑉 · 𝐶) ·𝐴𝑡 · · · (𝑉 · 𝐶) ·𝐴1 |0𝑛⟩ |∅⟩E = ((𝐶 ⊗ Id)⊗𝑡)E · 𝑉 ·𝐴𝑡 · · ·𝑉 ·𝐴1 |0𝑛⟩ |∅⟩E . (1.5)

This says that applying 𝐶 to the adversary’s register before each query to 𝑉 is equivalent to
applying 𝐶 to each 𝑥𝑖 in the purifying register |{(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)}⟩. When 𝐶 is sampled from
any 2-design, the randomness of 𝐶 ensures there are no collisions in the 𝑥1, . . . , 𝑥𝑡 with overwhelming
probability. Consequently, we show that queries to 𝑉 are indistinguishable from queries to 𝑃𝜋 ·𝐹𝑓 ·𝐶,
as long as 𝐶 is sampled from any 2-design. By instantiating the 2-design to be either (1) a random
Clifford or (2) a Haar-random unitary, we show that both 𝑃𝜋 · 𝐹𝑓 ·𝐶 and Haar-random unitaries are
indistinguishable from 𝑉 , and thus, from each other.

Strong PRUs and a symmetrized path-recording oracle ̃︀𝑉 . To obtain strong PRUs, we use
the construction: 𝐷 · 𝑃𝜋 · 𝐹𝑓 · 𝐶, where 𝐷,𝐶 are both random 𝑛-qubit Cliffords, 𝑃𝜋 is the same as
before, and 𝐹𝑓 is a random 𝑞-ary phase (for any 𝑞 ≥ 3). By analyzing the purification of 𝑃𝜋 · 𝐹𝑓 , we
show that when 𝒜 makes forward and inverse queries, the purifying registers, viewed in the right basis,
“record” information from two Feynman paths: one set 𝑆for consists of (𝑥, 𝑦) tuples corresponding to
the forward queries, and another set 𝑆 inv of tuples (𝑥, 𝑦) corresponds to the inverse queries. Whereas
each query in the standard PRU proof always inserts a tuple (𝑥, 𝑦) into the set 𝑆, when both forward
and inverse queries are allowed, the effect is more intricate:

• A forward query will sometimes add a tuple to 𝑆for, but other times delete a tuple from 𝑆 inv.

• An inverse query will sometimes add a tuple to 𝑆 inv, but other times delete a tuple from 𝑆for.

We prove that this behavior corresponds to a more general “symmetrized” path recording oracle ̃︀𝑉 .
Moreover, as long as 𝐷,𝐶 are sampled from any 2-design, the adversary cannot distinguish between
queries to 𝐷 · 𝑃𝜋 · 𝐹𝑓 · 𝐶 and queries to ̃︀𝑉 , and using similar reasoning as the standard PRU proof,
conclude both of the following (1) strong PRUs exist and (2) ̃︀𝑉 is indistinguishable from Haar-random
even under inverse queries. As we show in Appendix A, ̃︀𝑉 can also be implemented efficiently, and
consequently any algorithm that makes forward and inverse queries to a Haar-random unitary can
also be simulated to inverse exponential error.

Our proof leverages the following property of 2-designs: if one samples 𝐶 from a 2-design and
applies 𝐶 ⊗𝐶 to any state (where 𝐶 denotes the complex conjugate), then with overwhelmingly high
probability, the result is either (a) a pair of distinct elements, or (b) the maximally entangled state.
At a very high level, the fact that there are two kinds of outcomes after twirling by 𝐶 ⊗ 𝐶 is related
to how the purification “decides” whether it should add or delete a tuple (𝑥, 𝑦).

We remark that the strong PRU proof is significantly more involved than standard PRU proof,
and the reader may find it beneficial to start with the standard PRU proof.

3



A new approach to random unitaries. More broadly, the path-recording oracle unlocks a new
way to proving theorems about random unitaries. Before this work, analyzing mixed states such as
E𝑈 |Adv𝑈 ⟩⟨Adv𝑈 | often necessitated the use of Weingarten calculus, involving intricate asymptotic
bounds on Weingarten functions through sophisticated combinatorial and representation-theoretic
calculations. Our approach circumvents this complexity entirely.5

We demonstrate the power of this approach by giving an elementary proof of the “gluing lemma”
recently proven by [SHH24]. This lemma states that if two Haar-random unitaries 𝑈1 and 𝑈2 overlap,
with 𝑈1 acting on systems A,B and 𝑈2 on B,C (where B has a super-logarithmic number of qubits),
then queries to 𝑈2 · 𝑈1 are indistinguishable from queries to a larger Haar-random unitary 𝑈 acting
on A,B,C. Using this lemma (and our Theorem 1), [SHH24] constructed low-depth PRUs secure
against forward queries. However, their proof of the gluing lemma is highly technical, relying on
careful representation-theoretic analysis and tight bounds on Weingarten functions.

The path-recording oracle yields an elementary proof of the gluing lemma (see Part III). The key
insight is to replace the Haar-random unitaries with path-recording oracles. This reduces to showing
that the composition of two independent path-recording oracles 𝑉2 · 𝑉1, where 𝑉1 acts on (A,B,E1)
and 𝑉2 acts on (B,C,E2), approximates a single path-recording oracle 𝑉 acting on (A,B,C,E).

Given the central role of random unitaries in physics and quantum computing, we expect the
path-recording framework to have broad applications in the future.
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2 Preliminaries

This section establishes basic notation, definitions, and lemmas that we use throughout the paper.

Notation. We write 𝑁 := 2𝑛, where 𝑛 typically denotes the number of qubits. We write [𝑁 ] :=
{1, . . . , 𝑁} to denote the set of integers from 1 to𝑁 , and we will identify [𝑁 ] with {0, 1}𝑛 by associating
each integer 𝑖 ∈ [𝑁 ] with the string 𝑥 ∈ {0, 1}𝑛 corresponding to the binary representation of 𝑖 − 1.
For any integer 1 ≤ 𝑡 ≤ 𝑁 , let [𝑁 ]𝑡dist denote the set of length-𝑡 sequences of distinct integers from 1
to 𝑁 , i.e.,

[𝑁 ]𝑡dist := {(𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡 : 𝑥𝑖 ̸= 𝑥𝑗 for all 𝑖 ̸= 𝑗}. (2.1)
5Alternatively, one can view our technique as deriving a simplified and approximate version of the Weingarten

calculus from purely elementary arguments.
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For 𝑡 = 0, we adopt the convention that [𝑁 ]𝑡dist := {()} is a set with a single element () denoting a
length-0 sequence. For any permutation 𝜋 ∈ Sym𝑡, let 𝑆𝜋 be a unitary that acts on (C𝑁 )𝑡 as follows:

𝑆𝜋 : |𝑥1, . . . , 𝑥𝑡⟩ ↦→ |𝑥𝜋−1(1), . . . , 𝑥𝜋−1(𝑡)⟩ . (2.2)

Quantum registers. We use capital sans-serif letters to label quantum registers. For a register A,
the associated Hilbert space is denoted ℋA. When a quantum state is supported on multiple registers,
such as (A,B), this means that |𝜓⟩ ∈ ℋA ⊗ ℋB. To clarify which systems a state is defined on, we
sometimes include the register labels as subscripts in dark gray sans-serif font, e.g., |𝜓⟩AB. If a linear
operator 𝑈 acts only on subsystem A, we may write this as 𝑈A. Such an operator can be extended
to a larger system by acting trivially on other registers; for example, (𝑈A ⊗ IdB) · |𝜓⟩AB. To reduce
notational clutter, we often omit the “⊗IdB” and simply write 𝑈A · |𝜓⟩AB. Similarly, when summing
operators that act on different registers, such as 𝑈A and 𝑉AB, we write 𝑈A+𝑉AB to mean 𝑈A⊗IdB+𝑉AB.

Given a projector Π acting on register A, we say that a state |𝜓⟩ ∈ ℋA is in the image of Π
if Π |𝜓⟩ = |𝜓⟩. For a state |𝜓⟩ ∈ ℋA ⊗ ℋB, we similarly say that |𝜓⟩ is in the image of ΠA if
ΠA |𝜓⟩AB = (ΠA ⊗ IdB) · |𝜓⟩AB = |𝜓⟩AB.

Given a state |𝜓⟩ on systems (A,B), we denote the partial trace over system B as TrB(|𝜓⟩⟨𝜓|).
Occasionally, we will write this as Tr−A(|𝜓⟩⟨𝜓|), where the minus sign indicates tracing out all systems
except A.

2.1 Relations and variable-length registers

Fix a choice of 𝑁 = 2𝑛. A relation 𝑅 is defined as a multiset 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} of ordered
pairs (𝑥𝑖, 𝑦𝑖) ∈ [𝑁 ]2. This definition deviates slightly from the standard notion of a relation, which is
typically an ordinary set of ordered pairs without repeated elements. The size of the relation refers
to the number of ordered pairs in the relation, including multiplicities. We denote this by |𝑅|, as the
size corresponds to the cardinality of 𝑅 as a multiset.

Definition 1. Let ℛ denote the infinite set of all relations 𝑅. For any 𝑡 ≥ 0, let ℛ𝑡 denote the set
of all size-𝑡 relations.

Definition 2. For a relation 𝑅, we use Dom(𝑅) to denote the set

Dom(𝑅) = {𝑥 : 𝑥 ∈ [𝑁 ], ∃𝑦 s.t.(𝑥, 𝑦) ∈ 𝑅}, (2.3)

and Im(𝑅) to denote the set

Im(𝑅) = {𝑦 : 𝑦 ∈ [𝑁 ],∃𝑥 s.t.(𝑥, 𝑦) ∈ 𝑅}. (2.4)

Note that while 𝑅 may be a multi-set, Dom(𝑅) and Im(𝑅) are ordinary sets, i.e., they will not have
repeated elements.

Each relation 𝑅 ∈ ℛ is associated with a relation state |𝑅⟩, defined as follows.

Notation 1 (Relation states). For a relation 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)}, define the corresponding
relation state |𝑅⟩ to be the state

|𝑅⟩ :=
∑︀

𝜋∈Sym𝑡
|𝑥𝜋(1), 𝑦𝜋(1), . . . , 𝑥𝜋(𝑡), 𝑦𝜋(𝑡)⟩√︁

𝑡! ·
∑︀

(𝑥,𝑦)∈[𝑁 ]2 num(𝑅, (𝑥, 𝑦))!
. (2.5)

where num(𝑅, (𝑥, 𝑦)) denotes the number of times the tuple (𝑥, 𝑦) appears in 𝑅.
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An elementary counting argument yields the following result.

Fact 1. For any relation 𝑅 ∈ ℛ, the state |𝑅⟩ is a unit vector.

The relation states |𝑅⟩ for 𝑅 ∈ ℛ𝑡 can also be viewed as the standard basis for the symmetric
subspace of (C𝑁2

)⊗𝑡. Note that this is only true because we allow for multi-set relations. Specifically,
if Π𝑁

2,𝑡
sym denotes the projector onto the symmetric subspace of (C𝑁2

)⊗𝑡, we have the equality

Π𝑁
2,𝑡

sym =
∑︁
𝑅∈ℛ𝑡

|𝑅⟩⟨𝑅| . (2.6)

However, we will typically use the following notation to refer to this projector.

Notation 2. For any integer 𝑡 ≥ 0, we define

Πℛ𝑡 :=
∑︁

𝑅∈ℛ:|𝑅|=𝑡

|𝑅⟩⟨𝑅| = Π𝑁
2,𝑡

sym . (2.7)

Notation 3 (Restricted sets of relations). Define the following restricted sets of relations:

• Let ℛinj
𝑡 be the set of all injective relations, i.e., relations 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} of size 𝑡,

where (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡dist. Let ℛinj := ∪𝑁𝑡=0ℛ
inj
𝑡 .

• Let ℛbij
𝑡 be the set of all bijective relations, i.e., relations 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} of size 𝑡,

where (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡dist and (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡dist. Let ℛbij := ∪𝑁𝑡=0ℛ
bij
𝑡 .

If the tuples in a relation 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} are distinct, i.e., (𝑥𝑖, 𝑦𝑖) ̸= (𝑥𝑗 , 𝑦𝑗) for 𝑖 ̸= 𝑗,
the normalization factor simplifies to 1/

√
𝑡!, i.e.,

|𝑅⟩ = 1√
𝑡!

∑︁
𝜋∈Sym𝑡

|𝑥𝜋(1), 𝑦𝜋(1), . . . , 𝑥𝜋(𝑡), 𝑦𝜋(𝑡)⟩ . (2.8)

Note that any relation 𝑅 ∈ ℛinj or 𝑅 ∈ ℛbij satisfies this condition.
In both Parts I and II, we will consider linear maps that send superpositions of |𝑅⟩ for 𝑅 ∈ ℛ𝑡

to superpositions of |𝑅′⟩ for 𝑅′ ∈ ℛ𝑡+1. This motivates the definition of variable-length registers.

2.1.1 Variable-length registers

For every integer 𝑡 ≥ 0 let R(𝑡) be a register associated with the Hilbert space ℋR(𝑡) := (C𝑁 ⊗C𝑁 )⊗𝑡.
Let R be a register corresponding to the infinite dimensional Hilbert space

ℋR :=

∞⨁︁
𝑡=0

ℋR(𝑡) =

∞⨁︁
𝑡=0

(C𝑁 ⊗ C𝑁 )⊗𝑡. (2.9)

When 𝑡 = 0, the space (C𝑁 ⊗C𝑁 )⊗0 = C is a one-dimensional Hilbert space. Thus, ℋR(𝑡) is spanned
by the states |𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡⟩ where 𝑥𝑖, 𝑦𝑖 ∈ [𝑁 ]. Note that the relation states |𝑅⟩ for 𝑅 ∈ ℛ𝑡 span
the symmetric subspace of ℋR(𝑡) .

We will sometimes divide up the R(𝑡) register into R(𝑡) := (R
(𝑡)
X ,R

(𝑡)
Y ) where R

(𝑡)
X refers to the

registers containing |𝑥1, . . . , 𝑥𝑡⟩ and R
(𝑡)
Y refers to the registers containing |𝑦1, . . . , 𝑦𝑡⟩. We denote

R(𝑡)X, 𝑖 as the register containing |𝑥𝑖⟩ and R(𝑡)Y, 𝑖 as the register containing |𝑦𝑖⟩. Following our
convention for defining the length/size of a relation 𝑅, we say that a state |𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡⟩ has
length/size 𝑡. Two states of different lengths are orthogonal by definition, since ℋR is a direct sum⨁︀∞

𝑡=0ℋR(𝑡) .
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Notation 4 (Extending fixed-length operators to variable-length). For any operator 𝑂 defined on
the fixed-size Hilbert space ℋR(𝑡) , we abuse notation by using 𝑂 to also refer to its extension on all of
ℋR. The extended operator is the direct sum of 𝑂 and the 0 operator on ℋR(𝑡′) for all 𝑡′ ̸= 𝑡.

Hence, if two operators 𝑂1 and 𝑂2 act on ℋR(𝑡) and ℋR(𝑡′) , respectively, then 𝑂1 +𝑂2 is the sum
of their extensions over all of ℋR. We can now define the projector Πℛ that projects onto the span
of all relation states.

Notation 5. We define the projector

Πℛ :=

∞∑︁
𝑡=0

Πℛ𝑡 =
∑︁
𝑅∈ℛ

|𝑅⟩⟨𝑅| , (2.10)

that projects onto the span of all relation states |𝑅⟩ for all 𝑅 ∈ ℛ.

Finally, we introduce the notion of variable-length tensor powers, which will be useful to describe
applying an operator to each |𝑥𝑖, 𝑦𝑖⟩ in a state |𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡⟩, in settings where 𝑡 is not explicitly
known.

Notation 6 (Variable-length tensor powers). For any unitary 𝑈 ∈ 𝒰(𝑁2), let

𝑈⊗* :=
∞∑︁
𝑡=0

𝑈⊗𝑡 (2.11)

be a unitary that acts on the Hilbert space ℋR.

2.1.2 Pairs of variable-length registers

In Part II, we will consider states of the form |𝐿⟩L |𝑅⟩R, where |𝐿⟩ and |𝑅⟩ are both relation states,
and L is another variable-length register defined analogously to R. Throughout Part II, we will use
the following definitions.

Notation 7 (Fixed-length projectors). For any integers ℓ, 𝑟 ≥ 0, let Πℓ,𝑟 denote the projector acting
on ℋL ⊗ℋR that projects onto the fixed-length Hilbert space ℋL(ℓ) ⊗ℋR(𝑟).

Notation 8 (Maximum-length projectors). For any integer 𝑡 ≥ 0, let Π≤𝑡 denote the projector acting
on ℋL ⊗ℋR onto the Hilbert space

⨁︀
ℓ,𝑟≥0:ℓ+𝑟≤𝑡ℋL(ℓ) ⊗ℋR(𝑟).

Notation 9 (Length-restricted operators). For any operator 𝐵 that acts on the variable-length reg-
isters R and R, let 𝐵ℓ,𝑟 := 𝐵 · Πℓ,𝑟 denote the restriction of 𝐵 to input states where registers R and
R have lengths ℓ and 𝑟. Let 𝐵≤𝑡 := 𝐵 · Π≤𝑡 denote the restriction of 𝐵 to inputs states where the
combined length of L and R is at most 𝑡.

Note that, with this notation, (𝐵≤ 𝑡)† does not necessarily equal (𝐵†)≤𝑡. We adopt the convention
that 𝐵†≤𝑡 refers to (𝐵≤𝑡)

†.

2.2 The Haar measure, unitary 𝑡-designs, and twirling channels

Definition 3 (Haar measure). The Haar measure over the 𝑛-qubit unitary group 𝒰(2𝑛) is the unique
probability measure 𝜇 on 𝒰(2𝑛) that is:

1. Left-invariant: For any measurable set 𝑆 ⊆ 𝒰(2𝑛) and any 𝑉 ∈ 𝒰(2𝑛), 𝜇(𝑉 𝑆) = 𝜇(𝑆).
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2. Right-invariant: For any measurable set 𝑆 ⊆ 𝒰(2𝑛) and any 𝑉 ∈ 𝒰(2𝑛), 𝜇(𝑆𝑉 ) = 𝜇(𝑆).

3. Normalized: 𝜇(𝒰(2𝑛)) = 1.

The Haar measure provides a notion of uniform distribution over the unitary group.

We will refer to the Haar measure as 𝜇Haar.

Definition 4 (Unitary 𝑡-design). A distribution D on 𝑛-qubit unitaries is a unitary 𝑡-design if

E
𝑈∼D

[𝑈⊗𝑡 ⊗ 𝑈 †,⊗𝑡] =
∫︁
𝒰(2𝑛)

𝑈⊗𝑡 ⊗ 𝑈 †,⊗𝑡𝑑𝜇(𝑈), (2.12)

where 𝜇 is the Haar measure over the unitary group 𝒰(2𝑛).

Notation 10. Define the equality projector

Πeq =
∑︁
𝑥∈[𝑁 ]

|𝑥⟩⟨𝑥| ⊗ |𝑥⟩⟨𝑥| . (2.13)

In the following, when we write E𝜓 and E𝑈 without any specified distribution, we always refer to
the uniform distribution over pure states and the Haar measure over unitary groups, respectively. We
will use the following standard fact about Haar-random states and the symmetric subspace.

Fact 2. The expectation over Haar measure satisfies

E
𝜓←C𝑁

|𝜓⟩⟨𝜓|⊗2 = Π𝑁,2sym

Tr
(︁
Π𝑁,2sym

)︁ =
Π𝑁,2sym(︀
𝑁+1
2

)︀ , (2.14)

where Π𝑁,𝑘sym is the projector onto the symmetric subspace of (C𝑁 )⊗𝑘.

We will use the following elementary claim about unitary 2-designs in Parts I and II.

Claim 1 (Standard twirling). For any 𝑛-qubit unitary 2-design D,

E
𝑈←D

[︁
(𝑈 ⊗ 𝑈)† ·Πeq · (𝑈 ⊗ 𝑈)

]︁
=

2

𝑁 + 1
·Π𝑁,2sym. (2.15)

Proof.

E
𝑈←D

[︁
(𝑈 † ⊗ 𝑈 †) ·Πeq · (𝑈 ⊗ 𝑈)

]︁
= E

𝑈←D

∑︁
𝑥∈[𝑁 ]

𝑈 † |𝑥⟩⟨𝑥|𝑈 ⊗ 𝑈 † |𝑥⟩⟨𝑥|𝑈 (definition of Πeq)

= E
𝑈

∑︁
𝑥∈[𝑁 ]

𝑈 † |𝑥⟩⟨𝑥|𝑈 ⊗ 𝑈 † |𝑥⟩⟨𝑥|𝑈 (D is a 2-design)

= 𝑁 · E
𝜓
|𝜓⟩⟨𝜓| ⊗ |𝜓⟩⟨𝜓| (𝑈 † |𝑥⟩ is a Haar-random state)

=
2

𝑁 + 1
·Π𝑁,2sym. (Fact 2)

From the above claim, we immediately obtain the following lemma, which was also also used
by [MPSY24] to construct non-adaptive PRUs.
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Lemma 2.1 (Twirling into the distinct subspace). Given two integers 𝑛, 𝑡 > 0. Define the distinct
subspace projector acting on 𝑛𝑡 qubits as follows,

Πdist :=
∑︁

(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡dist

|𝑥1⟩⟨𝑥1| ⊗ . . .⊗ |𝑥𝑡⟩⟨𝑥𝑡| . (2.16)

For any 𝑛-qubit unitary 2-design D and any state 𝜌 on at least 𝑛𝑡 qubits, we have

Tr

(︂
E

𝐶←D
(Πdist ⊗ Id) · (𝐶⊗𝑡 ⊗ Id) · 𝜌 · (𝐶†,⊗𝑡 ⊗ Id) · (Πdist ⊗ Id)

)︂
≥ 1− 𝑡(𝑡− 1)

𝑁 + 1
. (2.17)

Proof. From the definition of the distinct subspace projector, we have

Id−Πdist =
∑︁

(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡∖[𝑁 ]𝑡dist

|𝑥1, . . . , 𝑥𝑡⟩⟨𝑥1, . . . , 𝑥𝑡| . (2.18)

Because for any (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡 ∖ [𝑁 ]𝑡dist, there exists 𝑖 ̸= 𝑗, such that 𝑥𝑖 = 𝑥𝑗 , we have∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡∖[𝑁 ]𝑡dist

|𝑥1, . . . , 𝑥𝑡⟩⟨𝑥1, . . . , 𝑥𝑡| ⪯
∑︁

1≤𝑖<𝑗≤𝑡
Πeq

X𝑖,X𝑗
, (2.19)

where ⪯ here denotes the PSD order and Πeq
X𝑖,X𝑗

is the equality projector in Eq. (2.13) on the 𝑖-th
and 𝑗-th 𝑛-qubit register X𝑖,X𝑗 . This implies the following:

1− Tr

(︂
E

𝐶←D
(Πdist ⊗ Id) · (𝐶⊗𝑡 ⊗ Id) · 𝜌 · (𝐶†,⊗𝑡 ⊗ Id) · (Πdist ⊗ Id)

)︂
(2.20)

= 1− Tr

(︂
E

𝐶←D
(Πdist ⊗ Id) · (𝐶⊗𝑡 ⊗ Id) · 𝜌 · (𝐶†,⊗𝑡 ⊗ Id)

)︂
(2.21)

= Tr

⎛⎝ E
𝐶←D

⎛⎝ ∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡∖[𝑁 ]𝑡dist

|𝑥1, . . . , 𝑥𝑡⟩⟨𝑥1, . . . , 𝑥𝑡| ⊗ Id

⎞⎠ · (𝐶⊗𝑡 ⊗ Id) · 𝜌 · (𝐶†,⊗𝑡 ⊗ Id)

⎞⎠ (2.22)

≤
∑︁

1≤𝑖<𝑗≤𝑡
E

𝐶←D
Tr
(︁
(Πeq

X𝑖,X𝑗
⊗ Id) · (𝐶⊗𝑡 ⊗ Id) · 𝜌 · (𝐶†,⊗𝑡 ⊗ Id)

)︁
(2.23)

=
∑︁

1≤𝑖<𝑗≤𝑡
E

𝐶←D
Tr
(︁
Πeq

X𝑖,X𝑗
· 𝐶⊗2 · 𝜌X𝑖,X𝑗

· 𝐶†,⊗2
)︁

(where 𝜌X𝑖,X𝑗
:= Tr−X𝑖,X𝑗

(𝜌))

=
∑︁

1≤𝑖<𝑗≤𝑡

2

𝑁 + 1
Tr
(︀
Π𝑁,2sym · 𝜌X𝑖,X𝑗

)︀
≤

∑︁
1≤𝑖<𝑗≤𝑡

2

𝑁 + 1
=
𝑡(𝑡− 1)

𝑁
. (2.24)

This completes the proof.

The following claim will only be used in Part II.

Notation 11. Let

|EPR𝑁 ⟩ :=
1√
𝑁

∑︁
𝑥∈[𝑁 ]

|𝑥⟩ |𝑥⟩ . (2.25)

Claim 2 (Mixed twirling). For any 𝑛-qubit unitary 2-design D,

E
𝑈←D

[︁
(𝑈 ⊗ 𝑈)† ·Πeq · (𝑈 ⊗ 𝑈)

]︁
= |EPR𝑁 ⟩⟨EPR𝑁 |+

1

𝑁 + 1
(Id− |EPR𝑁 ⟩⟨EPR𝑁 |). (2.26)
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Proof. Label the registers that 𝑈 and 𝑈 act on as 𝐴 and 𝐵 respectively. For any operator 𝑋 acting
on 𝐴,𝐵, define the partial transpose as

𝑋𝑇𝐵 =
(︁ ∑︁
𝑖,𝑗,𝑘,ℓ

𝑋𝑖𝑗𝑘𝑙 |𝑖⟩⟨𝑗|𝐴 ⊗ |𝑘⟩⟨ℓ|𝐵
)︁𝑇𝐵

=
∑︁
𝑖,𝑗,𝑘,ℓ

𝑋𝑖𝑗𝑘𝑙 |𝑖⟩⟨𝑗|𝐴 ⊗ |ℓ⟩⟨𝑘|𝐵 . (2.27)

We will use the identity

(𝑈 ⊗ 𝑈)† ·𝑋 · (𝑈 ⊗ 𝑈) =
(︁
(𝑈 ⊗ 𝑈)† ·𝑋𝑇𝐵 · (𝑈 ⊗ 𝑈)

)︁𝑇𝐵
. (2.28)

Since (Πeq)𝑇𝐵 = Πeq,

E
𝑈←D

(𝑈 ⊗ 𝑈)† ·Πeq · (𝑈 ⊗ 𝑈) (2.29)

=
(︁

E
𝑈←D

(𝑈 ⊗ 𝑈)† ·Πeq · (𝑈 ⊗ 𝑈)
)︁𝑇𝐵

(2.30)

=
(︁ 2

𝑁 + 1
·Π𝑁,2sym

)︁𝑇𝐵
(by Claim 1)

=
2

𝑁 + 1
·

(︃ ∑︁
𝑥∈[𝑁 ]

|𝑥𝑥⟩⟨𝑥𝑥|+
∑︁

𝑥,𝑦∈[𝑁 ],𝑥<𝑦

(︁ |𝑥𝑦⟩+ |𝑦𝑥⟩√
2

)︁(︁ ⟨𝑥𝑦|+ ⟨𝑦𝑥|√
2

)︁)︃𝑇𝐵
(2.31)

=
2

𝑁 + 1
·

(︃ ∑︁
𝑥∈[𝑁 ]

|𝑥𝑥⟩⟨𝑥𝑥|+ 1

2

∑︁
𝑥,𝑦∈[𝑁 ],𝑥<𝑦

(︁
|𝑥𝑦⟩⟨𝑥𝑦|+ |𝑥𝑦⟩⟨𝑦𝑥|+ |𝑦𝑥⟩⟨𝑥𝑦|+ |𝑦𝑥⟩⟨𝑦𝑥|

)︁)︃𝑇𝐵
(2.32)

=
2

𝑁 + 1
·

(︃ ∑︁
𝑥∈[𝑁 ]

|𝑥𝑥⟩⟨𝑥𝑥|+ 1

2

∑︁
𝑥,𝑦∈[𝑁 ],𝑥<𝑦

(︁
|𝑥𝑦⟩⟨𝑥𝑦|+ |𝑥𝑥⟩⟨𝑦𝑦|+ |𝑦𝑦⟩⟨𝑥𝑥|+ |𝑦𝑥⟩⟨𝑦𝑥|

)︁)︃
(2.33)

=
2

𝑁 + 1
·

(︃
1

2

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑥𝑥⟩⟨𝑦𝑦|+ 1

2

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑥𝑦⟩⟨𝑥𝑦|

)︃
(2.34)

=
1

𝑁 + 1
· Id+ 𝑁

𝑁 + 1
|EPR𝑁 ⟩⟨EPR𝑁 | (2.35)

= |EPR𝑁 ⟩⟨EPR𝑁 |+
1

𝑁 + 1
(Id− |EPR𝑁 ⟩⟨EPR𝑁 |). (2.36)

This completes the proof.

2.3 Oracle adversaries

We first define oracle adversaries that make only forward queries to an 𝑛-qubit unitary oracle 𝒪. This
definition will be used exclusively in Part I.

Definition 5 (Oracle adversaries with forward queries, used in Part I). A 𝑡-query oracle adversary 𝒜
that makes only forward queries is parameterized by a sequence of (𝑛+𝑚)-qubit unitaries (𝐴1, . . . , 𝐴𝑡),
which act on registers (A,B), where A is the 𝑛-qubit query register and B is an 𝑚-qubit ancilla. We
assume without loss of generality that the adversary’s initial state is |0𝑛+𝑚⟩AB. The state of the
algorithm after 𝑡 queries to 𝒪 is

|𝒜𝒪𝑡 ⟩AB :=

𝑡∏︁
𝑖=1

(︁
𝒪A ·𝐴𝑖,AB

)︁
|0𝑛+𝑚⟩AB . (2.37)
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We also define an oracle adversary that can make both forward and inverse queries to an 𝑛-qubit
unitary oracle 𝒪. This definition will be used exclusively in Part II.

Definition 6 (Oracle adversaries with forward and inverse queries, used in Part II). A 𝑡-query oracle
adversary 𝒜 that makes both forward and inverse queries is parameterized by

• a sequence of (𝑛+𝑚)-qubit unitaries (𝐴1, . . . , 𝐴𝑡), which act on registers (A,B), where A is the
𝑛-qubit query register and B is an 𝑚-qubit ancilla, and

• a sequence of bits (𝑏1, . . . , 𝑏𝑡) where 𝑏𝑖 = 0 means that the adversary’s 𝑖th oracle query is to 𝒪,
and 𝑏𝑖 = 1 means that query is to 𝒪†.

We assume without loss of generality that the adversary’s initial state is |0𝑛+𝑚⟩AB. The state of the
algorithm after 𝑡 queries to 𝒪 is

|𝒜𝒪𝑡 ⟩AB :=

𝑡∏︁
𝑖=1

(︃(︁
(1− 𝑏𝑖) · 𝒪A + 𝑏𝑖 · 𝒪†A

)︁
·𝐴𝑖,AB

)︃
|0𝑛+𝑚⟩AB . (2.38)

2.4 Pseudorandom unitaries

Definition 7 (pseudorandom unitaries). We say {𝒰𝑛}𝑛∈N is a secure PRU if, for all 𝑛 ∈ N, 𝒰𝑛 =
{𝑈𝑘}𝑘∈𝒦𝑛 is a set of 𝑛-qubit unitaries where 𝒦𝑛 denotes the keyspace, satisfying the following:

• Efficient computation: There exists a poly(𝑛)-time quantum algorithm that implements the
𝑛-qubit unitary 𝑈𝑘 for all 𝑘 ∈ 𝒦𝑛.

• Indistinguishability from Haar: For any oracle adversary 𝒜 that runs in time poly(𝑛) (the
runtime is the total number of gates that 𝒜 uses, counting oracle gates as 1), and measures a
two-outcome observable 𝐷𝒜 with eigenvalues {0, 1} after the queries, we have⃒⃒⃒⃒

E
𝒪←𝒰𝑛

Tr
(︀
𝐷𝒜 · |𝒜𝒪⟩⟨𝒜𝒪|AB

)︀
− E
𝒪∼Haar

Tr
(︀
𝐷𝒜 · |𝒜𝒪⟩⟨𝒜𝒪|AB

)︀⃒⃒⃒⃒
≤ negl(𝑛), (2.39)

where negl(𝑛) is any function that is 𝑜(1/𝑛𝑐) for all 𝑐 > 0.

A standard PRU (i.e., the original [JLS18] notion) is one where indistinguishability holds against
oracle adversaries that only make forward queries to 𝒪. A strong PRU is one where indistinguisha-
bility holds against oracle adversaries that make both forward and inverse queries to 𝒪.

2.5 Useful lemmas

The following lemma will be used in Part I to bound the distance between a pair of mixed states who
purifications are related by a projection that acts only on the purifying register.

Lemma 2.2. Let 𝜌CD be a density matrix on registers C,D and let ΠD be a projector that acts on
register D. Then

‖TrD(𝜌CD)− TrD(ΠD · 𝜌CD ·ΠD)‖1 = 1− Tr(ΠD · 𝜌CD). (2.40)

Proof. We can decompose TrD(𝜌CD) as follows:

TrD(𝜌CD) = TrD(𝜌CD ·ΠD) + TrD(𝜌CD · (Id−ΠD)) (2.41)
= TrD(ΠD · 𝜌CD ·ΠD) + TrD((Id−ΠD) · 𝜌CD · (Id−ΠD)) (2.42)

11



where the second equality uses the fact that ΠD = IdC ⊗ Π′D, which allows us to invoke the cyclic
property of TrD. Using Eq. (2.42), we have

‖TrD(𝜌CD)− TrD(ΠD · 𝜌CD ·ΠD)‖1 (2.43)
= ‖TrD((Id−ΠD) · 𝜌CD · (Id−ΠD))‖1 (2.44)
= Tr((Id−ΠD) · 𝜌CD · (Id−ΠD)) (since ‖𝑀‖1 = Tr(𝑀) for PSD 𝑀)
= Tr((Id−ΠD) · 𝜌CD) (2.45)
= 1− Tr(ΠD · 𝜌CD). (2.46)

We will use the following “sequential” gentle measurement lemma in Part II.

Lemma 2.3 (sequential gentle measurement). Let |𝜓⟩ be a normalized state, 𝑃1, . . . , 𝑃𝑡 be projectors,
and 𝑈1, . . . , 𝑈𝑡 be unitaries.

‖𝑈𝑡 . . . 𝑈1 |𝜓⟩ − 𝑃𝑡𝑈𝑡 . . . 𝑃1𝑈1 |𝜓⟩‖2 ≤ 𝑡
√︁

1− ‖𝑃𝑡𝑈𝑡 . . . 𝑃1𝑈1 |𝜓⟩‖22. (2.47)

To prove this, we will need the following version of the standard gentle measurement lemma.

Lemma 2.4 (gentle measurement). For any projector Π and sub-normalized state |𝜓⟩ satisfying
⟨𝜓|𝜓⟩ ≤ 1, we have

‖(Id−Π) |𝜓⟩‖2 ≤
√︁

1− ‖Π |𝜓⟩‖22. (2.48)

Proof of Lemma 2.4. By direct expansion, we have

‖ |𝜓⟩ −Π |𝜓⟩‖22 = ⟨𝜓| (Id−Π) |𝜓⟩ = ⟨𝜓|𝜓⟩ − ⟨𝜓|Π |𝜓⟩ ≤ 1− ‖Π |𝜓⟩‖22. (2.49)

Proof of Lemma 2.3. We prove this lemma by induction. For 𝑡 = 0, we have ‖ |𝜓⟩ − |𝜓⟩‖2 = 0 =
1− ‖ |𝜓⟩‖22. So the base case holds. Suppose the inductive hypothesis holds for 𝑡− 1, i.e.,

‖𝑈𝑡−1 . . . 𝑈1 |𝜓⟩ − 𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖2 ≤ (𝑡− 1)

√︁
1− ‖𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖22 (2.50)

= (𝑡− 1)

√︁
1− ‖𝑈𝑡𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖22 (2.51)

≤ (𝑡− 1)

√︁
1− ‖𝑃𝑡𝑈𝑡𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖22. (2.52)

The second line uses the unitary invariance of ‖·‖2. The third line uses the fact that 𝑃𝑡 is a projector
and hence cannot increase the norm. We can use the unitary invariance of ‖·‖2 to obtain

‖𝑈𝑡−1 . . . 𝑈1 |𝜓⟩ − 𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖2 = ‖𝑈𝑡 . . . 𝑈1 |𝜓⟩ − 𝑈𝑡𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖2. (2.53)

Next we use Lemma 2.4 to obtain

‖(Id− 𝑃𝑡)𝑈𝑡𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖2 ≤
√︁
1− ‖𝑃𝑡𝑈𝑡 . . . 𝑃1𝑈1 |𝜓⟩‖22. (2.54)

Together, we have

‖𝑈𝑡 . . . 𝑈1 |𝜓⟩ − 𝑃𝑡𝑈𝑡 . . . 𝑃1𝑈1 |𝜓⟩‖2 (2.55)
≤ ‖𝑈𝑡−1 . . . 𝑈1 |𝜓⟩ − 𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖2 + ‖(Id− 𝑃𝑡)𝑈𝑡𝑃𝑡−1𝑈𝑡−1 . . . 𝑃1𝑈1 |𝜓⟩‖2 (2.56)

≤ (𝑡− 1)

√︁
1− ‖𝑃𝑡𝑈𝑡 . . . 𝑃1𝑈1 |𝜓⟩‖22 +

√︁
1− ‖𝑃𝑡𝑈𝑡 . . . 𝑃1𝑈1 |𝜓⟩‖22. (2.57)

This concludes the proof.
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Part I

Standard PRUs

The goal of Part I is to construct standard PRUs (i.e., the definition of [JLS18]), which are secure
against adversaries that only make forward queries to the unitary oracle.

3 The purified permutation-function oracle

In this section, we analyze the view of an adversary that makes forward queries to an oracle for 𝑃𝜋 ·𝐹𝑓 ,
for uniformly random 𝜋 ← Sym𝑁 and 𝑓 ← {0, 1}𝑁 . These operators are defined as

𝑃𝜋 :=
∑︁
𝑥∈[𝑁 ]

|𝜋(𝑥)⟩⟨𝑥| and 𝐹𝑓 :=
∑︁
𝑥∈[𝑁 ]

(−1)𝑓(𝑥) |𝑥⟩⟨𝑥| . (3.1)

Our first step will be to consider a purification of the adversary’s state where the randomness of 𝜋
and 𝑓 is replaced by the uniform superposition

1√
𝑁 !

∑︁
𝜋∈Sym𝑁

|𝜋⟩P ⊗
1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

|𝑓⟩F , (3.2)

and each query is implemented by the purified permutation-function oracle pfO, which applies 𝑃𝜋 ·𝐹𝑓
controlled on |𝜋⟩ |𝑓⟩.

Definition 8 (purified permutation-function oracle). The purified permutation-function oracle pfO
is a unitary acting on registers A,P,F, where

• P is a register associated with the Hilbert space ℋP, defined to be the span of the orthonormal
states |𝜋⟩ for all 𝜋 ∈ Sym𝑁 .

• F is a register associated with the Hilbert space ℋF, defined to be the span of the orthonormal
states |𝑓⟩ for all 𝑓 ∈ {0, 1}𝑁 .

The unitary pfO is defined to act as follows:

pfOAPF |𝑥⟩A |𝜋⟩P |𝑓⟩F := (−1)𝑓(𝑥) |𝜋(𝑥)⟩A |𝜋⟩P |𝑓⟩F , (3.3)

for all 𝑥 ∈ [𝑁 ], 𝜋 ∈ Sym𝑁 , and 𝑓 ∈ {0, 1}𝑁 .

When P and F are initialized to the uniform superposition over permutations and functions re-
spectively, the view of an adversary that queries the pfO is equivalent to the view of an adversary
that queries the standard oracle 𝑃𝜋 · 𝐹𝑓 , for uniformly random 𝜋 ← Sym𝑁 and 𝑓 ← {0, 1}𝑁 .

Claim 3 (Equivalence of the purified and standard oracles). For any oracle adversary 𝒜, the following
oracle instantiations are perfectly indistinguishable:

• (Queries to a random 𝑃𝜋 · 𝐹𝑓 ) Sample a uniformly random 𝜋 ← Sym𝑁 , 𝑓 ← {0, 1}𝑁 . On each
query, apply 𝑃𝜋 · 𝐹𝑓 to register A.

• (Queries to pfO) Initialize registers P,F to 1√
𝑁 !

∑︀
𝜋∈Sym𝑁

|𝜋⟩P ⊗
1√
2𝑁

∑︀
𝑓∈{0,1}𝑁 |𝑓⟩F. At each

query, apply pfO to registers A,P,F.
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Proof. Since the adversary’s view does not contain the P,F registers, the adversary’s view in the
second case is unchanged if the P,F registers are measured at the end. Since pfO is controlled on
the P,F registers, the queries to pfO commute with the measurement of the P,F registers. Hence,
measuring the P,F registers at the end produces the same view as measuring at the beginning, which
is equivalent to the first case.

The key to understanding the oracle pfO is to consider how it acts on the following “pf-relation
states”, defined below.

Definition 9 (pf-relation state). For 0 ≤ 𝑡 ≤ 𝑁 and 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} ∈ ℛ𝑡, let

|pf𝑅⟩PF :=
1√︀

(𝑁 − 𝑡)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝑅 |𝜋⟩P ⊗
1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓(𝑥1)+···+𝑓(𝑥𝑡) |𝑓⟩F , (3.4)

where 𝛿𝜋,𝑅 is an indicator variable that equals 1 if 𝜋(𝑥) = 𝑦 for all (𝑥, 𝑦) ∈ 𝑅, and is 0 otherwise.

Note that for 𝑡 = 0 and 𝑅 = ∅, the pf-relation state |pf∅⟩PF is the uniform superposition over all
permutations 𝜋 ∈ Sym𝑁 and all functions 𝑓 ∈ {0, 1}𝑁 ,

|pf∅⟩PF :=
1√
𝑁 !

∑︁
𝜋∈Sym𝑁

|𝜋⟩P ⊗
1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

|𝑓⟩F . (3.5)

3.1 Orthonormality of the pf-relation states

Claim 4 (Orthonormality of the distinct sets of pf-relation states). { |pf𝑅⟩}𝑅∈ℛbij forms a set of
orthonormal vectors.

Proof of Claim 4. We first recall the definition of |pf𝑅⟩:

|pf𝑅⟩PF =
1√︀

(𝑁 − 𝑡)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝑅 |𝜋⟩P ⊗
1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓(𝑥1)+···+𝑓(𝑥𝑡) |𝑓⟩F . (3.6)

For 𝑥 ∈ [𝑁 ], let 𝑒𝑥 ∈ {0, 1}𝑁 denote the 𝑁 -dimensional vector that has a 1 in the 𝑥-th position, and
is 0 everywhere else. Then by writing 𝑓(𝑥) as 𝑓(𝑥) = 𝑓 · 𝑒𝑥, we get

1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓(𝑥1)+···+𝑓(𝑥𝑡) |𝑓⟩F =
1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓 ·(𝑒𝑥1+···+𝑒𝑥𝑡 ) |𝑓⟩F (3.7)

= 𝐻⊗𝑁 |𝑒𝑥1 + · · ·+ 𝑒𝑥𝑡 (mod 2)⟩F . (3.8)

When 𝑥1, . . . , 𝑥𝑡 are distinct, 𝑒𝑥1 + · · · + 𝑒𝑥𝑡( mod 2) is a vector in {0, 1}𝑁 whose 𝑥-th entry is 1 if
𝑥 ∈ {𝑥1, . . . , 𝑥𝑡}, and 0 otherwise. Since this is simply the indicator vector for the set {𝑥1, . . . , 𝑥𝑡},
there exists an isometry that maps

1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓(𝑥1)+···+𝑓(𝑥𝑡) |𝑓⟩F ↦→ |{𝑥1, . . . , 𝑥𝑡}⟩ . (3.9)

Applying this to the F register of |pf𝑅⟩, this tells us there is an isometry 𝑀 such that for all 𝑅 ∈ ℛbij,

𝑀 : |pf𝑅⟩ ↦→
1√︀

(𝑁 − 𝑡)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝑅 |𝜋⟩P ⊗ |{𝑥1, . . . , 𝑥𝑡}⟩ . (3.10)
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Consider 𝑅,𝑆 ∈ ℛbij, where 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥|𝑅|, 𝑦|𝑅|)} and 𝑆 = {(𝑥′1, 𝑦′1), . . . , (𝑥′|𝑆|, 𝑦
′
|𝑆|)}.

⟨pf𝑅|pf𝑆⟩ = ⟨pf𝑅|𝑀 † ·𝑀 |pf𝑆⟩ (3.11)

=
1√︀

(𝑁 − |𝑅|)!(𝑁 − |𝑆|)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝑅 · 𝛿𝜋,𝑆 ⟨{𝑥1, . . . , 𝑥|𝑅|}|{𝑥′1, . . . , 𝑥′|𝑆|}⟩ . (3.12)

This expression is equal to zero if Dom(𝑅) ̸= Dom(𝑆) due to the ⟨{𝑥1, . . . , 𝑥|𝑅|}|{𝑥′1, . . . , 𝑥′|𝑆|}⟩ term.
Thus, it remains to consider 𝑅,𝑆 such that Dom(𝑅) = Dom(𝑆). This means that |𝑅| = |𝑆| and
thus Eq. (3.12) simplifies to

1

(𝑁 − |𝑅|)!
∑︁

𝜋∈Sym𝑁

𝛿𝜋,𝑅 · 𝛿𝜋,𝑆 . (3.13)

There are two cases to consider:

• In the first case, 𝑅 ̸= 𝑆. Then there exists 𝑥, 𝑦, 𝑦′ such that (𝑥, 𝑦) ∈ 𝑅, (𝑥, 𝑦′) ∈ 𝑆, and 𝑦 ̸= 𝑦′.
But then the above expression will be 0, since there are no permutations 𝜋 satisfying both
𝜋(𝑥) = 𝑦 and 𝜋(𝑥) = 𝑦′.

• In the other case, 𝑅 = 𝑆. Then the sum is over all permutations 𝑃 such that 𝜋(𝑥) = 𝑦 for all
(𝑥, 𝑦) ∈ 𝑅. There are (𝑁 − |𝑅|)! such permutations, and so in this case the sum becomes 1.

This completes the proof.

3.2 How pfO acts on the pf-relation states

Claim 5 (Action of pfO on pf-relation states). For 0 ≤ 𝑡 < 𝑁 , 𝑅 ∈ ℛ𝑡 and 𝑥 ∈ [𝑁 ],

pfO |𝑥⟩A |pf𝑅⟩PF =
1√︀

𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ]

|𝑦⟩A |pf𝑅∪{(𝑥,𝑦)}⟩PF . (3.14)

Proof of Claim 5. From the definitions of pfO and |pf𝑅⟩ (Eq. (3.3) and Eq. (3.4)), we have

pfO |𝑥⟩A |pf𝑅⟩PF

=
∑︁

𝜋∈Sym𝑁

(−1)𝑓(𝑥) |𝜋(𝑥)⟩A
1√︀

(𝑁 − 𝑡)!
𝛿𝜋,𝑅 |𝜋⟩P ⊗

1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓(𝑥1)+···+𝑓(𝑥𝑡) |𝑓⟩F . (3.15)

We now rewrite the right-hand side of Eq. (3.15) using the substitution |𝜋(𝑥)⟩ =
∑︀

𝑦∈[𝑁 ] 𝛿𝜋(𝑥)=𝑦 |𝑦⟩.
This gives

(3.15) =
∑︁

𝜋∈Sym𝑁

(−1)𝑓(𝑥)
∑︁
𝑦∈[𝑁 ]

𝛿𝜋,{(𝑥,𝑦)} |𝑦⟩A
1√︀

(𝑁 − 𝑡)!
𝛿𝜋,𝑅 |𝜋⟩P

⊗ 1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓(𝑥1)+···+𝑓(𝑥𝑡) |𝑓⟩F . (3.16)

Since 𝛿𝜋,𝑅 · 𝛿𝜋,{(𝑥,𝑦)} = 𝛿𝜋,𝑅∪{(𝑥,𝑦)}, we can rearrange the expression to get

(3.16) =
1√
𝑁 − 𝑡

∑︁
𝑦∈[𝑁 ]

|𝑦⟩A
1√︀

(𝑁 − 𝑡− 1)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝑅∪{(𝑥,𝑦)} |𝜋⟩
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⊗ 1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

(−1)𝑓(𝑥1)+···+𝑓(𝑥𝑡)+𝑓(𝑥) |𝑓⟩F (3.17)

=
1√
𝑁 − 𝑡

∑︁
𝑦∈[𝑁 ]

|𝑦⟩A |pf𝑅∪{(𝑥,𝑦)}⟩PF , (3.18)

which completes the proof.

4 The path-recording oracle 𝑉

In this section, we define the path-recording oracle. The path-recording oracle 𝑉 acts on an 𝑛-qubit
query register A held by the adversary, as well as a variable-length relation R containing a relation
state |𝑅⟩ (see Section 2.1). In section Section 4.3, we connect the path-recording oracle 𝑉 to the pfO
oracle. In Appendix A.2, we sketch how to implement 𝑉 efficiently.

4.1 Defining 𝑉

Definition 10 (Path-recording oracle). The path-recording oracle 𝑉 is a linear map 𝑉 : ℋA⊗ℋR →
ℋA ⊗ℋR defined as follows. For all 𝑥 ∈ [𝑁 ] and 𝑅 ∈ ℛinj such that |𝑅| < 𝑁 ,

𝑉 : |𝑥⟩A |𝑅⟩R ↦→
1√︀

𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩A |𝑅 ∪ {(𝑥, 𝑦)}⟩R . (4.1)

Note that 𝑅 ∪ {(𝑥, 𝑦)} ∈ ℛinj since 𝑦 /∈ Im(𝑅).

Lemma 4.1 (Partial isometry). The path-recording oracle 𝑉 is an isometry on the subspace of ℋA⊗
ℋR spanned by the states |𝑥⟩ |𝑅⟩ for 𝑥 ∈ [𝑁 ] and 𝑅 ∈ ℛinj such that |𝑅| < 𝑁 .

Proof of Lemma 4.1. To prove that 𝑉 is an isometry on the specified subspace, it suffices to show
that for all 𝑥, 𝑥′ ∈ [𝑁 ] and 𝑅,𝑅′ ∈ ℛinj with |𝑅|, |𝑅′| < 𝑁 ,

⟨𝑥′|A ⟨𝑅
′|R 𝑉

† · 𝑉 |𝑥⟩A |𝑅⟩R = ⟨𝑥′|𝑥⟩A · ⟨𝑅
′|𝑅⟩R . (4.2)

We proceed by considering two cases:

• Case 1: |𝑅| ≠ |𝑅′|. 𝑉 |𝑥⟩A |𝑅⟩R and 𝑉 |𝑥′⟩A |𝑅′⟩R are orthogonal because, by the definition of
𝑉 , these two states are supported on relation states of different sizes. Therefore, the left-hand
side of Eq. (4.2) is zero, which equals the right-hand side, since ⟨𝑅′|𝑅⟩R = 0 for |𝑅| ≠ |𝑅′|.

• Case 2: |𝑅| = |𝑅′| = 𝑡 for some 0 ≤ 𝑡 ≤ 𝑁 − 1. In this case, we expand the left-hand side:

⟨𝑥′|A ⟨𝑅
′|R 𝑉

† · 𝑉 |𝑥⟩A |𝑅⟩R

=

(︃
1√
𝑁 − 𝑡

∑︁
𝑦′∈[𝑁 ],

𝑦′ ̸∈Im(𝑅′)

⟨𝑦′|A ⟨𝑅
′ ∪ {(𝑥′, 𝑦′)}|R

)︃
·

(︃
1√
𝑁 − 𝑡

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩A |𝑅 ∪ {(𝑥, 𝑦)}⟩R

)︃

(4.3)

=
1

𝑁 − 𝑡
∑︁
𝑦∈[𝑁 ]

𝑦 ̸∈Im(𝑅′)∪Im(𝑅)

⟨𝑅′ ∪ {(𝑥′, 𝑦)}|𝑅 ∪ {(𝑥, 𝑦)}⟩R (4.4)

Now, we consider two sub-cases:
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– Case 2a: (𝑥,𝑅) ̸= (𝑥′, 𝑅′). For 𝑦 ̸∈ Im(𝑅)∪Im(𝑅′), the term ⟨𝑅′ ∪ {(𝑥′, 𝑦)}|𝑅 ∪ {(𝑥, 𝑦)}⟩R
is always zero because either 𝑥 ̸= 𝑥′ or 𝑅 ̸= 𝑅′. Therefore, Eq. (4.4) is equal to zero, which
matches the right-hand side of the original equation.

– Case 2b: (𝑥,𝑅) = (𝑥′, 𝑅′). In this case, we have:

(4.4) =
1

𝑁 − 𝑡
∑︁

𝑦∈[𝑁 ]∖Im(𝑅)

⟨𝑅 ∪ {(𝑥, 𝑦)}|𝑅 ∪ {(𝑥, 𝑦)}⟩R (4.5)

=
1

𝑁 − 𝑡
· (𝑁 − 𝑡) · 1 = 1, (4.6)

which again matches the right-hand side of the original equation.

This shows that Eq. (4.2) holds in all cases, completing the proof.

Next, we define the state |𝒜𝑉𝑡 ⟩ABR to be the state of the state of the entire system after the
adversary has made 𝑡 queries to the path recording oracle, with the R register initialized to |∅⟩, the
state associated with the empty set.

Definition 11. Given a 𝑡-query adversary 𝒜 specified by a 𝑡-tuple of unitaries (𝐴1,AB, . . . , 𝐴𝑡,AB),
define the state

|𝒜𝑉𝑡 ⟩ABR :=

𝑡∏︁
𝑖=1

(︁
𝑉 ·𝐴𝑖,AB

)︁
|0⟩AB |∅⟩R . (4.7)

In fact, it will be useful to define a version of this state in which an arbitrary 𝑛-qubit unitary 𝐺
is applied to the adversary’s query register A before each query to 𝑉 .

Definition 12. Given an 𝑛-qubit unitary 𝐺 and a 𝑡-query adversary 𝒜 specified by a 𝑡-tuple of
unitaries (𝐴1,AB, . . . , 𝐴𝑡,AB), define the state

|𝒜𝑉 ·𝐺𝑡 ⟩ABR :=

𝑡∏︁
𝑖=1

(︁
𝑉 ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB |∅⟩R . (4.8)

One consequence of Lemma 4.1 is that |𝒜𝑉 ·𝐺𝑡 ⟩ABR has unit norm as long as 𝑡 ≤ 𝑁 .

Lemma 4.2 ( |𝒜𝑉 ·𝐺𝑡 ⟩ABR has unit norm). For any adversary 𝒜 making 𝑡 ≤ 𝑁 forward queries, and
any 𝑛-qubit unitary 𝐺, |𝒜𝑉 ·𝐺𝑡 ⟩ABR has unit norm.

Proof of Lemma 4.2. We say that a state on registers (A,B,R) is supported on ℛinj if the state is
contained in the span of |𝑥⟩A |𝑧⟩B |𝑅⟩R for 𝑅 ∈ ℛinj and any 𝑥, 𝑧. We will prove by induction on 𝑡

that for all 0 ≤ 𝑡 ≤ 𝑁 , |𝒜𝑉 ·𝐺𝑡 ⟩ABR is a unit-norm state supported on ℛinj
𝑡 .

Base case (𝑡 = 0): |𝒜𝑉 ·𝐺0 ⟩ = |0⟩AB |∅⟩R. This state clearly has unit norm, and |∅⟩R ∈ ℛ
inj
0 , so the

claim holds for 𝑡 = 0.
Inductive step: Assume the claim is true for some 0 ≤ 𝑡 < 𝑁 , i.e., |𝒜𝑉 ·𝐺𝑡 ⟩ABR is a unit-norm state
supported on ℛinj

𝑡 . We will prove that it must hold for 𝑡+ 1. By definition, we have:

|𝒜𝑉 ·𝐺𝑡+1 ⟩ = 𝑉 ·𝐺A ·𝐴𝑡+1,AB |𝒜𝑉 ·𝐺𝑡 ⟩ (4.9)

This state is unit norm because:

1. 𝐺A ·𝐴𝑡+1,AB is a unitary that acts only on the A and B registers, and so 𝐺A ·𝐴𝑡+1,AB |𝒜𝑉 ·𝐺𝑡 ⟩ is
still a unit-norm state supported on ℛinj

𝑡 .
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2. By Lemma 4.1, 𝑉 is an isometry on states supported on ℛinj
𝑡 . Moreover, the definition of 𝑉 ,

ensures that it maps states supported on ℛinj
𝑡 to states supported on ℛinj

𝑡+1 for 0 ≤ 𝑡 < 𝑁 . Thus,
|Ψ𝐺

𝑡+1⟩ is a unit-norm state supported on ℛinj
𝑡+1.

Hence, for all 0 ≤ 𝑡 ≤ 𝑁 , |𝒜𝑉 ·𝐺𝑡 ⟩ABR is a unit-norm state supported on ℛinj
𝑡 .

4.2 Right unitary invariance

Our next step is to prove that 𝑉 satisfies right unitary invariance: for any unitary 𝐺, queries to
𝑉 ·𝐺A are perfectly indistinguishable from queries to 𝑉 , from the point of view of the adversary who
cannot access the purifying register R. This is captured by the following lemma.

Lemma 4.3 (Right unitary invariance). For any 𝑛-qubit unitary 𝐺, we have

|𝒜𝑉 ·𝐺𝑡 ⟩ABR = (𝐺
R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) |𝒜𝑉𝑡 ⟩ABR . (4.10)

Note that

TrR( |𝒜𝑉 ·𝐺𝑡 ⟩⟨𝒜𝑉 ·𝐺𝑡 |ABR)
= TrR((𝐺R

(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) |𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR (𝐺R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

)†) (by Lemma 4.3)

= TrR( |𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR), (by the cyclic property of TrR)

where the first line corresponds to the adversary’s view after making 𝑡 queries to 𝑉 ·𝐺A, and the last
line corresponds to its view after making 𝑡 queries to 𝑉 .

Fact 3 (Explicit form). From the definition of 𝑉 and |𝑅⟩R, we can expand out |𝒜𝑉 ·𝐺𝑡 ⟩ABR to obtain

|𝒜𝑉 ·𝐺𝑡 ⟩ABR =

√︂
(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |{(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1⟩R (4.11)

=

√︂
(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃

⊗ 1√
𝑡!

∑︁
𝜋∈Sym𝑡

(︂
𝑆𝜋 |𝑥1⟩R(𝑡)

X,1

. . . |𝑥𝑡⟩R(𝑡)
X,𝑡

)︂
⊗
(︂
𝑆𝜋 |𝑦1⟩R(𝑡)

Y,1

. . . |𝑦𝑡⟩R(𝑡)
Y,𝑡

)︂
, (4.12)

Proof of Lemma 4.3. Our proof will use the following trivial identities for registers A and (R
(𝑡)
X,𝑖)𝑖∈[𝑁 ]:∑︁

𝑧∈[𝑁 ]

|𝑧⟩⟨𝑧|A = IdA, (4.13)

∑︁
𝑧∈[𝑁 ]

|𝑧⟩⟨𝑧|
R
(𝑡)
X,𝑖

= Id
R
(𝑡)
X,𝑖

. (4.14)

For any 𝑛-qubit unitary 𝐺 and 𝑥, 𝑧 ∈ [𝑁 ], we have

⟨𝑥|A𝐺A |𝑧⟩A = ⟨𝑥|
R
(𝑡)
X,𝑖

𝐺
R
(𝑡)
X,𝑖

|𝑧⟩
R
(𝑡)
X,𝑖

. (4.15)
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Therefore, we have∑︁
𝑥∈[𝑁 ]

|𝑥⟩
R
(𝑡)
X,𝑖

⊗ ⟨𝑥|A𝐺A =
∑︁

𝑥,𝑧∈[𝑁 ]

|𝑥⟩
R
(𝑡)
X,𝑖

⊗ ( ⟨𝑥|A𝐺A |𝑧⟩A) ⟨𝑧|A (Using Eq. (4.13))

=
∑︁

𝑥,𝑧∈[𝑁 ]

|𝑥⟩
R
(𝑡)
X,𝑖

⊗
(︂
⟨𝑥|

R
(𝑡)
X,𝑖

𝐺
R
(𝑡)
X,𝑖

|𝑧⟩
R
(𝑡)
X,𝑖

)︂
⟨𝑧|A (Using Eq. (4.15))

=
∑︁

𝑥,𝑧∈[𝑁 ]

(︂
|𝑥⟩⟨𝑥|

R
(𝑡)
X,𝑖

𝐺
R
(𝑡)
X,𝑖

|𝑧⟩
R
(𝑡)
X,𝑖

)︂
⊗ ⟨𝑧|A (4.16)

=
∑︁
𝑧∈[𝑁 ]

𝐺
R
(𝑡)
X,𝑖

|𝑧⟩
R
(𝑡)
X,𝑖

⊗ ⟨𝑧|A (Using Eq. (4.14))

=
∑︁
𝑥∈[𝑁 ]

𝐺
R
(𝑡)
X,𝑖

|𝑥⟩
R
(𝑡)
X,𝑖

⊗ ⟨𝑥|A . (Relabeling 𝑧 with 𝑥)

Applying the above identity to registers R
(𝑡)
X,1, . . . ,R

(𝑡)
X,𝑡 to Fact 3 yields

|𝒜𝑉 ·𝐺𝑡 ⟩ =
√︂

(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩A ⊗ ⟨𝑥𝑖|A𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ (4.17)

1√
𝑡!

∑︁
𝜋∈Sym𝑡

(︂
𝑆𝜋 |𝑥1⟩R(𝑡)

X,1

. . . |𝑥𝑡⟩R(𝑡)
X,𝑡

)︂
⊗
(︂
𝑆𝜋 |𝑦1⟩R(𝑡)

Y,1

. . . |𝑦𝑡⟩R(𝑡)
Y,𝑡

)︂
(4.18)

=

√︂
(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ (4.19)

1√
𝑡!

∑︁
𝜋∈Sym𝑡

(︂
𝑆𝜋 𝐺R

(𝑡)
X,1

|𝑥1⟩R(𝑡)
X,1

. . . 𝐺
R
(𝑡)
X,𝑡

|𝑥𝑡⟩R(𝑡)
X,𝑡

)︂
⊗
(︂
𝑆𝜋 |𝑦1⟩R(𝑡)

Y,1

. . . |𝑦𝑡⟩R(𝑡)
Y,𝑡

)︂
(4.20)

= (𝐺
R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) |𝒜𝑉𝑡 ⟩ (4.21)

The last line follows from the fact that (𝐺
R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) acts identically on all 𝑡 registers, so

𝑆𝜋 · (𝐺R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) = (𝐺
R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) · 𝑆𝜋. (4.22)

This concludes the proof.

Corollary 4.1 (Trace distance between original state and the projected state).⃦⃦⃦⃦
TrR

(︂
Πdist

R
(𝑡)
𝑋

· E
𝐶←D

|𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR ·Π
dist

R
(𝑡)
𝑋

)︂
− TrR

(︂
E

𝐶←D
|𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR

)︂⃦⃦⃦⃦
1

≤ 𝑡(𝑡− 1)

𝑁 + 1
. (4.23)

Proof. The trace distance can be bounded as follows,⃦⃦⃦⃦
TrR

(︂
Πdist

R
(𝑡)
𝑋

· E
𝐶←D

|𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR ·Π
dist

R
(𝑡)
𝑋

)︂
− TrR

(︂
E

𝐶←D
|𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR

)︂⃦⃦⃦⃦
1

(4.24)

= 1− Tr

(︂
E

𝐶←D
Πdist

R
(𝑡)
𝑋

· |𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR ·Π
dist

R
(𝑡)
𝑋

)︂
(Lemma 2.2)
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= 1− Tr

(︂
E

𝐶←D
Πdist

R
(𝑡)
X

· 𝐶⊗𝑡
R
(𝑡)
X

· |𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABPF · 𝐶
⊗𝑡
R
(𝑡)
X

·Πdist

R
(𝑡)
𝑋

)︂
(By Lemma 4.3)

≤ 𝑡(𝑡− 1)

𝑁 + 1
, (By Lemma 2.1)

which completes the proof of this corollary.

4.3 Relating 𝑉 to pfO

We now connect the path-recording oracle 𝑉 to the pfO oracle defined previously. We begin by
defining the pfO analog of |𝒜𝑉 ·𝐺𝑡 ⟩ABR.

Definition 13. Given an 𝑛-qubit unitary 𝐺 and a 𝑡-query adversary 𝒜 specified by a 𝑡-tuple of
unitaries (𝐴1,AB, . . . , 𝐴𝑡,AB), define

|𝒜pfO·𝐺
𝑡 ⟩ABPF :=

𝑡∏︁
𝑖=1

(︁
pfO ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB |pf∅⟩PF . (4.25)

Recall that

|pf∅⟩PF :=
1√
𝑁 !

∑︁
𝜋∈Sym𝑁

|𝜋⟩P ⊗
1√
2𝑁

∑︁
𝑓∈{0,1}𝑁

|𝑓⟩F . (4.26)

We can expand the definition of |𝒜pfO·𝐺
𝑡 ⟩ABPF to obtain the following.

Fact 4 (Explicit form of |𝒜pfO·𝐺
𝑡 ⟩ABPF).

|𝒜pfO·𝐺
𝑡 ⟩ABPF =

√︂
(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |pf{(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1

⟩PF .

(4.27)

While the state |pf{(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1
⟩ is supported on an exponential number of qubits, we can compress

the environment using the following linear operator Comp. By Claim 4, Comp is a partial isometry.
Intuitively, Comp “compresses” the state |pf𝑅⟩, which requires an exponential number of qubits 𝑛, to
|𝑅⟩, which is only as big as the size of the relation.

Definition 14. Define Comp : ℋP ⊗ℋF → ℋR to be

Comp :=
∑︁
𝑅∈ℛbij

|𝑅⟩⟨pf𝑅| (4.28)

Next, we will use Comp to relate the path-recording oracle 𝑉 to the purified permutation-function
oracle. To do so, we will need to define the following projectors.

Definition 15 (Distinct subspace projector). Given 0 ≤ 𝑡 ≤ 𝑁 . Let

Πdist

R
(𝑡)
X

:=
∑︁

(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡dist

|𝑥1⟩⟨𝑥1|R(𝑡)
X,1

⊗ . . .⊗ |𝑥𝑡⟩⟨𝑥𝑡|R(𝑡)
X,𝑡

. (4.29)

Definition 16 (Distinct subspace projector for pf-relation states). Let

̃︀Πdist
PF :=

∑︁
𝑅∈ℛbij,
|𝑅|=𝑡

|pf𝑅⟩⟨pf𝑅| . (4.30)
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Lemma 4.4 (Relating 𝑉 and pfO states). For all 𝑛-qubit unitaries 𝐺,

Comp · ̃︀Πdist
PF · |𝒜

pfO·𝐺
𝑡 ⟩ABPF = Πdist

R
(𝑡)
X

· |𝒜𝑉 ·𝐺𝑡 ⟩ (4.31)

Proof. By Fact 3, we have

|𝒜𝑉 ·𝐺𝑡 ⟩ =
√︂

(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |{(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1⟩R . (4.32)

Applying Πdist

R
(𝑡)
X

to this state selects the terms corresponding to (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡dist:

Πdist

R
(𝑡)
X

· |𝒜𝑉 ·𝐺𝑡 ⟩ =
√︂

(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡dist
(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |{(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1⟩R .

(4.33)

By Fact 4,

|𝒜pfO·𝐺
𝑡 ⟩ABPF =

√︂
(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |pf{(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1

⟩PF .

(4.34)

Applying ̃︀Πdist
PF selects the terms corresponding to (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡dist and (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡dist:̃︀Πdist

PF · |𝒜
pfO·𝐺
𝑡 ⟩ABPF (4.35)

=

√︂
(𝑁 − 𝑡)!
𝑁 !

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡dist
(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |pf{(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1

⟩PF . (4.36)

Since Comp maps |pf𝑅⟩ to |𝑅⟩ for all 𝑅 ∈ ℛbij, applying Comp to the right-hand side of Eq. (4.36)
yields the right-hand side of Eq. (4.33), which proves the claim.

Corollary 4.2 (Trace distance between original state and the projected state).⃦⃦⃦⃦
TrPF

(︂
E

𝐶←D
|𝒜pfO·𝐶

𝑡 ⟩⟨𝒜pfO·𝐶
𝑡 |ABPF

)︂
− TrPF

(︂̃︀Πdist
PF · E

𝐶←D
|𝒜pfO·𝐶

𝑡 ⟩⟨𝒜pfO·𝐶
𝑡 |ABPF · ̃︀Πdist

PF

)︂⃦⃦⃦⃦
1

≤ 𝑡(𝑡− 1)

𝑁 + 1
.

(4.37)

Proof. By Lemma 2.2, we have⃦⃦⃦⃦
TrPF

(︂
E

𝐶←D
|𝒜pfO·𝐶

𝑡 ⟩⟨𝒜pfO·𝐶
𝑡 |ABPF

)︂
− TrPF

(︂̃︀Πdist
PF · E

𝐶←D
|𝒜pfO·𝐶

𝑡 ⟩⟨𝒜pfO·𝐶
𝑡 |ABPF · ̃︀Πdist

PF

)︂⃦⃦⃦⃦
1

= 1− Tr

(︂̃︀Πdist
PF · E

𝐶←D
|𝒜pfO·𝐶

𝑡 ⟩⟨𝒜pfO·𝐶
𝑡 |ABPF · ̃︀Πdist

PF

)︂
(4.38)

Next, observe that ̃︀Πdist
PF = Comp† · Comp · ̃︀Πdist

PF since

Comp† · Comp · ̃︀Πdist
PF (4.39)
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=
(︁ ∑︁
𝑅∈ℛbij

|pf𝑅⟩⟨𝑅|
)︁
·
(︁ ∑︁
𝑅∈ℛbij

|𝑅⟩⟨pf𝑅|
)︁
·
(︁ ∑︁
𝑅∈ℛbij,
|𝑅|=𝑡

|pf𝑅⟩⟨pf𝑅|
)︁

(4.40)

=
∑︁

𝑅∈ℛbij,
|𝑅|=𝑡

|pf𝑅⟩⟨pf𝑅| = ̃︀Πdist
PF . (4.41)

By plugging this identity into (4.38), we get

(4.38) = 1− Tr

(︂
Comp† · Comp · ̃︀Πdist

PF · E
𝐶←D

|𝒜pfO·𝐶
𝑡 ⟩⟨𝒜pfO·𝐶

𝑡 |ABPF · ̃︀Πdist
PF

)︂
(4.42)

= 1− Tr

(︂
Comp · ̃︀Πdist

PF · E
𝐶←D

|𝒜pfO·𝐶
𝑡 ⟩⟨𝒜pfO·𝐶

𝑡 |ABPF · ̃︀Πdist
PF · Comp†

)︂
(4.43)

= 1− Tr

(︂
E

𝐶←D
Πdist

R
(𝑡)
X

· |𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR ·Π
dist

R
(𝑡)
𝑋

)︂
(By Lemma 4.4)

≤ 𝑡(𝑡− 1)

𝑁 + 1
, (By Corollary 4.1)

which completes the proof.

5 The PRU proof

5.1 Setup

We define a distribution over 𝑛-qubit unitaries parameterized by any 𝑛-qubit unitary 2-design D.

Definition 17 (PRU(D) distribution). Let D be a distribution supported on 𝒰(𝑁). The distribution
PF(D) is defined as follows:

1. Sample a uniformly random permutation 𝜋 ← Sym𝑁 , a uniformly random 𝑓 ← {0, 1}𝑁 , and a
uniformly random 𝑛-qubit unitary 𝐶 ← D.

2. Output the unitary 𝒪 := 𝑃𝜋 · 𝐹𝑓 · 𝐶.

The goal of this section is to prove the following theorem.

Theorem 3 (PF(D) is indistinguishable from Haar-random). Let 𝒜 be a 𝑡-query oracle adversary
that only makes forward queries, and let D be an exact unitary 2-design. Then

TD

(︂
E

𝒪←PF(D)
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | , E

𝒪←𝜇Haar
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |

)︂
≤ 4𝑡(𝑡− 1)

𝑁 + 1
(5.1)

Since quantum-secure pseudorandom permutations and pseudorandom functions exist assuming
one-way functions [Zha16, Zha21], the existence of computationally-secure PRU follows immediately
from Theorem 3.

Theorem 4. If quantum-secure one-way functions exist, then pseudorandom unitaries exist.

The main technical component of the proof of Theorem 3 is the following lemma.

Lemma 5.1 (PRU(D) is indistinguishable from 𝑉 ). Let 𝒜 be a 𝑡-query oracle adversary and let D
be an exact unitary 2-design. Then

TD

(︂
E

𝒪←PF(D)
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | , TrR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR

)︀)︂
≤ 2𝑡(𝑡− 1)

𝑁 + 1
(5.2)
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Lemma 5.1 implies Theorem 3. Lemma 5.1 implies Theorem 3 by the following argument. We
can instantiate D = 𝜇Haar, i.e., D outputs a Haar-random 𝑛-qubit unitary. Then the output of
PRU(D) = PRU(𝜇Haar) is 𝑃𝜋 · 𝐹𝑓 ·𝐶 for random 𝜋, 𝑓 and Haar-random 𝐶. By invariance of the Haar
measure, this is exactly the same as outputting a Haar-random unitary. Thus, we have the following
corollary of Lemma 5.1.

Theorem 5 (𝑉 is indistinguishable from Haar random). Let 𝒜 be a 𝑡-query oracle adversary. Then

TD

(︂
E

𝒪∼𝜇Haar
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | ,TrR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR

)︀)︂
≤ 2𝑡(𝑡− 1)

𝑁 + 1
(5.3)

Theorem 3 follows from combining Lemma 5.1 and Theorem 5 using the triangle inequality. It
remains to prove Lemma 5.1.

5.2 Proof of Lemma 5.1

Proof of Lemma 5.1. We will use a hybrid argument. Define the mixed states

𝜌
(D)
0 := E

𝒪←PF(D)
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | (5.4)

𝜌
(D)
1 := TrPF

(︂
E

𝐶←D
|𝒜pfO·𝐶

𝑡 ⟩⟨𝒜pfO·𝐶
𝑡 |ABPF

)︂
(5.5)

𝜌
(D)
2 := TrPF

(︂̃︀Πdist
PF · E

𝐶←D
|𝒜pfO·𝐶

𝑡 ⟩⟨𝒜pfO·𝐶
𝑡 |ABPF · ̃︀Πdist

PF

)︂
(5.6)

𝜌
(D)
3 := TrR

(︂
Πdist

R
(𝑡)
𝑋

· E
𝐶←D

|𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR ·Π
dist

R
(𝑡)
𝑋

)︂
(5.7)

𝜌
(D)
4 := TrR

(︂
E

𝐶←D
|𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR

)︂
(5.8)

𝜌5 := TrR
(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR

)︀
. (5.9)

We argue indistinguishability between each consecutive pair of mixed states:

• 𝜌
(D)
0 = 𝜌

(D)
1 by Claim 3.

• ‖𝜌(D)
1 − 𝜌(D)

2 ‖ 1 ≤ 𝑡(𝑡− 1)/(𝑁 + 1) by Corollary 4.2.

• 𝜌
(D)
2 = 𝜌

(D)
3 , since by Lemma 4.4, these are two mixed states whose purifications are related by

the Comp isometry, which only acts on the purifying register.

• ‖𝜌(D)
3 − 𝜌(D)

4 ‖ 1 ≤ 𝑡(𝑡− 1)/(𝑁 + 1) by Corollary 4.1.

• 𝜌
(D)
4 = 𝜌

(D)
5 since

𝜌
(D)
4 = E

𝐶←D
TrR

(︀
|𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |ABR

)︀
= E

𝐶←D
TrR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR

)︀
= 𝜌5, (5.10)

where the second equality follows from Lemma 4.3, which states that for any 𝐶, |𝒜𝑉 ·𝐶𝑡 ⟩⟨𝒜𝑉 ·𝐶𝑡 |
and |𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 | are related by a unitary on the purifying register.

Using the triangle inequality, we obtain Eq. (5.2), which completes the proof.
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Part II

Strong PRUs
The goal of Part II is to construct strong PRUs, which are secure against adversaries that make both
forward and inverse queries to the unitary oracle. It is important to note that several operators that
were defined in Part I, including pfO,Comp and 𝑉 , will be have new definitions in Part II.

6 The purified permutation-function oracle

In this section, we analyze the view of an adversary that makes queries to an oracle 𝑃𝜋 · 𝐹𝑓 , for
uniformly random 𝜋 ← Sym𝑁 and a random ternary function 𝑓 ← {0, 1, 2}𝑁 . We will do this by
analyzing the purified permutation-function permutation oracle, which uses a purification of 𝜋 and 𝑓 .

Definition 18 (Purified permutation-function oracle). The purified permutation-function oracle pfO
is a unitary acting on registers A,P,F, where

• P is a register associated with the Hilbert space ℋP, defined to be the span of the orthonormal
states |𝜋⟩ for all 𝜋 ∈ Sym𝑁 .

• F is a register associated with the Hilbert space ℋF, defined to be the span of the orthonormal
states |𝑓⟩ for all 𝑓 ∈ {0, 1, 2}𝑁 .

The unitary pfO is defined to act as follows:

pfOAPF |𝑥⟩A |𝜋⟩P |𝑓⟩F := 𝜔
𝑓(𝑥)
3 |𝜋(𝑥)⟩A |𝜋⟩P |𝑓⟩F , (6.1)

=
∑︁
𝑦∈[𝑁 ]

|𝑦⟩A 𝛿𝜋(𝑥)=𝑦 |𝜋⟩𝜔
𝑓(𝑥)
3 |𝑓⟩ , (6.2)

for all 𝑥 ∈ [𝑁 ], 𝜋 ∈ Sym𝑁 , and 𝑓 ∈ {0, 1, 2}𝑁 . Here, 𝜔3 = exp(2𝜋𝑖/3).

The action of pfO† is

pfO† |𝑦⟩A |𝜋⟩ |𝑓⟩ =
∑︁
𝑥∈[𝑁 ]

|𝑥⟩A 𝛿𝜋(𝑥)=𝑦 |𝜋⟩𝜔
−𝑓(𝑥)
3 |𝑓⟩ . (6.3)

The view of an adversary that queries the purified oracle is equivalent to the view of an adversary
that queries the standard oracle 𝑃𝜋 · 𝐹𝑓 , for uniformly random 𝜋 ← Sym𝑁 and 𝑓 ← {0, 1, 2}𝑁 .

Claim 6 (Equivalence of purified and standard oracles). For any oracle adversary 𝒜, the following
oracle instantiations are perfectly indistinguishable:

• (Queries to a random 𝑃𝜋 ·𝐹𝑓 ) Sample a uniformly random 𝜋 ← Sym𝑁 , 𝑓 ← {0, 1, 2}𝑁 . On each
query, apply 𝑃𝜋 · 𝐹𝑓 to register A.

• (Queries to pfO) Initialize registers P,F to 1√
𝑁 !

∑︀
𝜋∈Sym𝑁

|𝜋⟩P⊗
1√
2𝑁

∑︀
𝑓∈{0,1,2}𝑁 |𝑓⟩F. At each

query, apply pfO to registers A,P,F.

The proof is the same as the proof of Claim 3 in Part I.
Next, we define the following states on the P,F registers.
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Definition 19 (pf-relation state). For 𝐿 = {(𝑥1, 𝑦1), . . . , (𝑥ℓ, 𝑦ℓ)} ∈ ℛℓ and 𝑅 = {(𝑥′1, 𝑦′1), . . . , (𝑥′𝑟, 𝑦′𝑟)} ∈
ℛ𝑟, where ℓ and 𝑟 are non-negative integers such that ℓ+ 𝑟 ≤ 𝑁 , let

|pf𝐿,𝑅⟩ :=
1√︀

(𝑁 − ℓ− 𝑟)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝐿∪𝑅 |𝜋⟩
1√
3𝑁

∑︁
𝑓∈{0,1,2}𝑁

𝜔
𝑓(𝑥1)+···+𝑓(𝑥ℓ)−(𝑓(𝑥′1)+···+𝑓(𝑥′𝑟))
3 |𝑓⟩ , (6.4)

where 𝛿𝜋,𝐿∪𝑅 is an indicator variable that equals 1 if 𝜋(𝑥) = 𝑦 for all (𝑥, 𝑦) ∈ 𝐿∪𝑅, and is 0 otherwise.

Note that when ℓ = 𝑟 = 0, i.e., 𝐿 = 𝑅 = ∅ are both the empty relation, the pf-relation state
|pf∅,∅⟩PF is the uniform superposition over all permutations 𝜋 ∈ Sym𝑁 and all ternary functions
𝑓 ∈ {0, 1, 2}𝑁 ,

|pf∅,∅⟩PF :=
1√
𝑁 !

∑︁
𝜋∈Sym𝑁

|𝜋⟩P ⊗
1√
3𝑁

∑︁
𝑓∈{0,1}𝑁

|𝑓⟩F . (6.5)

Recall that a relation 𝑅 is bijective if and only if |Im(𝑅)| = |Dom(𝑅)| = |𝑅|. Equivalently,
writing 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)}, 𝑅 is bijective if 𝑥1, . . . , 𝑥𝑡 are all distinct, and 𝑦1, . . . , 𝑦𝑡 are also
all distinct.

Definition 20. Let ℛ2,dist be the set of all ordered pairs of relations (𝐿,𝑅) ∈ ℛ2 where 𝐿 ∪ 𝑅 is a
bijective relation.

6.1 Orthonormality of the pf-relation states

Claim 7 (Orthonormality of pf-relation states). { |pf𝐿,𝑅⟩}(𝐿,𝑅)∈ℛ2,dist is an orthonormal set of vectors.

Proof of Claim 7. For 𝑥 ∈ [𝑁 ], let 𝑒𝑥 ∈ {0, 1, 2}𝑁 denote the 𝑁 -dimensional vector that has a 1 in
the 𝑥-th position, and is 0 everywhere else. Then by writing 𝑓(𝑥) as 𝑓(𝑥) = 𝑓 · 𝑒𝑥, we get

1√
3𝑁

∑︁
𝑓∈{0,1,2}𝑁

𝜔
𝑓(𝑥1)+···+𝑓(𝑥ℓ)−(𝑓(𝑥′1)+···𝑓(𝑥′𝑟))
3 |𝑓⟩F (6.6)

=
1√
3𝑁

∑︁
𝑓∈{0,1,2}𝑁

𝜔
𝑓 ·(𝑒𝑥1+···+𝑒𝑥ℓ )−𝑓 ·(𝑒𝑥′1

+···+𝑒𝑥′𝑟 )
3 |𝑓⟩F (6.7)

= QFT⊗𝑁3 |(𝑒𝑥1 + · · ·+ 𝑒𝑥ℓ)− (𝑒𝑥′1 + · · ·+ 𝑒𝑥′𝑟) (mod 3)⟩F , (6.8)

where QFT3 denotes the 3-ary quantum Fourier transform. When {𝑥1, . . . , 𝑥ℓ, 𝑥′1, . . . , 𝑥′𝑟} are all dis-
tinct, there is a bijection between (𝑒𝑥1+· · ·+𝑒𝑥ℓ)−(𝑒𝑥′1+· · ·+𝑒𝑥′𝑟) and the sets {𝑥1, . . . , 𝑥ℓ}, {𝑥′1, . . . , 𝑥′𝑟}:
the first set corresponds to the indices where the vector is 1, and the second set is the indices where
the vector is −1 ≡ 2 (mod 3). Thus, there is an isometry that maps

1√
3𝑁

∑︁
𝑓∈{0,1,2}𝑁

𝜔
𝑓(𝑥1)+···+𝑓(𝑥ℓ)−(𝑓(𝑥′1)+···𝑓(𝑥′𝑟))
3 |𝑓⟩F ↦→ |{𝑥1, . . . , 𝑥ℓ}⟩ |{𝑥

′
1, . . . , 𝑥

′
𝑟}⟩ , (6.9)

whenever {𝑥1, . . . , 𝑥ℓ, 𝑥′1, . . . , 𝑥′𝑟} are all distinct. Thus, for any 𝐿 = {(𝑥1, 𝑦1), . . . , (𝑥ℓ, 𝑦ℓ)}, 𝑅 =
{(𝑥′1, 𝑦′1), . . . , (𝑥′𝑟, 𝑦′𝑟)} where 𝐿 ∪ 𝑅 is a bijective relation, applying this isometry to the F register of
|pf𝐿,𝑅⟩ yields

|pf𝐿,𝑅⟩ ↦→
1√︀

(𝑁 − ℓ− 𝑟)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝐿∪𝑅 |𝜋⟩P ⊗ |{𝑥1, . . . , 𝑥ℓ}⟩ |{𝑥
′
1, . . . , 𝑥

′
𝑟}⟩ . (6.10)
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Next, we can apply an isometry that, controlled on |𝜋⟩, sends each 𝑥𝑖 to the tuple (𝑥𝑖, 𝜋(𝑥𝑖)) = (𝑥𝑖, 𝑦𝑖).
The result is

1√︀
(𝑁 − ℓ− 𝑟)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝐿∪𝑅 |𝜋⟩P ⊗ |{(𝑥1, 𝑦1), . . . , (𝑥ℓ, 𝑦ℓ)}⟩ |{(𝑥
′
1, 𝑦
′
1), . . . , (𝑥

′
𝑟, 𝑦
′
𝑟)}⟩ . (6.11)

Finally, controlled on the last two registers, we can uncompute the superposition on the P register.
The result is

|{(𝑥1, 𝑦1), . . . , (𝑥ℓ, 𝑦ℓ)}⟩ |{(𝑥′1, 𝑦′1), . . . , (𝑥′𝑟, 𝑦′𝑟)}⟩ = |𝐿⟩ |𝑅⟩ . (6.12)

This completes the proof.

Definition 21. Define the partial isometry Comp : ℋP ⊗ℋF → ℋL ⊗ℋR to be

Comp :=
∑︁

(𝐿,𝑅)∈ℛ2,dist

|𝐿⟩L ⊗ |𝑅⟩R · ⟨pf𝑅|PF (6.13)

Here, L and R are variable-length registers as defined in Section 2.1. Note that Comp is a partial
isometry by Claim 7.

6.2 How pfO acts on the pf-relation states

Claim 8 (Action of pfO). For any (𝐿,𝑅) ∈ ℛ2,dist and 𝑥 ∈ [𝑁 ] such that 𝑥 ̸∈ Dom(𝐿 ∪𝑅), we have

pfO |𝑥⟩A |pf𝐿,𝑅⟩PF =
1√︀

𝑁 − |𝐿 ∪𝑅|

∑︁
𝑦∈[𝑁 ]:

𝑦 ̸∈Im(𝐿∪𝑅)

|𝑦⟩A |pf𝐿∪{(𝑥,𝑦)},𝑅⟩PF . (6.14)

Similarly, for any (𝐿,𝑅) ∈ ℛ2,dist and 𝑦 ∈ [𝑁 ] such that 𝑦 ̸∈ Im(𝐿 ∪𝑅), we have

pfO† |𝑦⟩A |pf𝐿,𝑅⟩PF =
1√︀

𝑁 − |𝐿 ∪𝑅|

∑︁
𝑥∈[𝑁 ]:

�̸�∈Dom(𝐿∪𝑅)

|𝑥⟩A |pf𝐿,𝑅∪{(𝑥,𝑦)}⟩PF . (6.15)

Proof of Claim 8. Recall that

pfOAPF |𝑥⟩A |𝜋⟩P |𝑓⟩F =
∑︁
𝑦∈[𝑁 ]

|𝑦⟩A 𝛿𝜋(𝑥)=𝑦 |𝜋⟩𝜔
𝑓(𝑥)
3 |𝑓⟩ . (6.16)

Let us write 𝐿 = {(𝑥1, 𝑦1), . . . , (𝑥ℓ, 𝑦ℓ)} and 𝑅 = {(𝑥′1, 𝑦′1), . . . , (𝑥′𝑟, 𝑦′𝑟)}. Then

|pf𝐿,𝑅⟩PF =
1√︀

(𝑁 − ℓ− 𝑟)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝐿∪𝑅 |𝜋⟩P
1√
3𝑁

∑︁
𝑓∈{0,1,2}𝑁

𝜔
𝑓(𝑥1)+···+𝑓(𝑥ℓ)−𝑓(𝑥′1)−···−𝑓(𝑥′𝑟))
3 |𝑓⟩F ,

(6.17)

Thus, we have

pfOAPF |𝑥⟩A |pf𝐿,𝑅⟩PF (6.18)

=
∑︁
𝑦∈[𝑁 ]

|𝑦⟩A
1√︀

(𝑁 − ℓ− 𝑟)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋(𝑥)=𝑦 · 𝛿𝜋,𝐿∪𝑅 |𝜋⟩P
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1√
3𝑁

∑︁
𝑓∈{0,1,2}𝑁

𝜔
𝑓(𝑥1)+···+𝑓(𝑥ℓ)+𝑓(𝑥)−𝑓(𝑥′1)−···−𝑓(𝑥′𝑟))
3 |𝑓⟩F . (6.19)

In this sum, |𝑦⟩ has a coefficient of 0 whenever 𝑦 ∈ Im(𝐿∪𝑅), since in that case the constraints that
𝛿𝜋,𝐿∪𝑅 and 𝛿𝜋(𝑥)=𝑦 are impossible to satisfy since 𝑥 ̸∈ Dom(𝐿∪𝑅), and thus satisfying both constraints
would require 𝑦 to have two different preimages under the permutation 𝜋. We can therefore rewrite
the above sum as

pfOAPF |𝑥⟩A |pf𝐿,𝑅⟩PF (6.20)

=
1√

𝑁 − ℓ− 𝑟

∑︁
𝑦∈[𝑁 ]:

𝑦 ̸∈Im(𝐿∪𝑅)

|𝑦⟩A
1√︀

(𝑁 − ℓ− 1− 𝑟)!

∑︁
𝜋∈Sym𝑁

𝛿𝜋,𝐿∪{(𝑥,𝑦)}∪𝑅 |𝜋⟩P

1√
3𝑁

∑︁
𝑓∈{0,1,2}𝑁

𝜔
𝑓(𝑥1)+···+𝑓(𝑥ℓ)+𝑓(𝑥)−𝑓(𝑥′1)−···−𝑓(𝑥′𝑟))
3 |𝑓⟩F (6.21)

=
1√

𝑁 − ℓ− 𝑟

∑︁
𝑦∈[𝑁 ]

|𝑦⟩A |pf𝐿∪{(𝑥,𝑦)},𝑅⟩PF . (6.22)

This completes the proof of Eq. (6.14). Since pfO† applies the map

pfO† |𝑦⟩A |𝜋⟩ |𝑓⟩ =
∑︁
𝑥∈[𝑁 ]

|𝑥⟩A 𝛿𝜋(𝑥)=𝑦 |𝜋⟩𝜔
−𝑓(𝑥)
3 |𝑓⟩ , (6.23)

the proof for Eq. (6.15) follows by a symmetric argument.

7 The partial path-recording oracle 𝑊

In the previous section, we proved Claim 8, which partially characterizes how the unitaries pfO and
pfO† act in terms of states |𝑥⟩A |pf𝐿,𝑅⟩PF. We also proved that there exists an isometry Comp that
maps |pf𝐿,𝑅⟩PF to |𝐿⟩L |𝑅⟩R for all pairs of relations 𝐿,𝑅 such that their union 𝐿 ∪ 𝑅 is a bijective
relation. In this section, we will define a linear operator 𝑊 that we call the partial path recording
oracle. This 𝑊 operator, up to isometry, implements a restricted version of the pfO operator. In
particular, we have the following.

• On states of the form |𝑥⟩A |𝐿⟩L |𝑅⟩R such that 𝐿 ∪ 𝑅 is a bijection and 𝑥 ̸∈ Dom(𝐿 ∪ 𝑅), the
linear map 𝑊 performs exactly the same map as pfO (up to isometry).

• On states of the form |𝑦⟩A |𝐿⟩L |𝑅⟩R such that 𝐿 ∪ 𝑅 is a bijection and 𝑦 ̸∈ Im(𝐿 ∪ 𝑅), the
linear map 𝑊 † performs exactly the same map as pfO† (up to isometry).

In the above, “up to isometry” refers to the isometry Comp that maps |pf𝐿,𝑅⟩PF to |𝐿⟩L |𝑅⟩R. For-
mally, the registers L and R are both variable-length registers that store the two relations 𝐿 and
𝑅. We refer the reader to Sections 2.1 and 2.1.1 in the Preliminaries section for our definitions of
variable-length registers, relations, and relation states.

The role of the 𝑊 operator in our proof. Looking ahead to our main proof, we will show
that if 𝐶,𝐷 are sampled from any 𝑛-qubit 2-design, then an adversary (making both forward and
inverse queries) cannot distinguish between an oracle that implements 𝐷A · pfO · 𝐶A and an oracle
that implements 𝐷A ·𝑊 · 𝐶A, except with negligible advantage. Thus, even though 𝑊 only behaves
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like (a compressed version of) pfO on a restricted subspace, we will show that the twirling of 𝐶,𝐷
prevents the adversary from detecting the difference.

In the next section, we will show that the 𝑊 operator can also be seen as a restricted version of
another linear operator 𝑉 that we call the path-recording oracle. The connection between 𝑊 and 𝑉
plays a crucial role in our proof; see Section 8 for further discussion.

7.1 Defining 𝑊𝐿 and 𝑊𝑅

Before we define 𝑊 , we will first define helper operators 𝑊𝐿 and 𝑊𝑅. The 𝑊𝐿 operator is defined
to capture the (partial) characterization of pfO given in Eq. (6.14), while 𝑊𝑅 is defined to capture
the (partial) characterization of pfO† given in Eq. (6.15).

Definition 22 (𝑊𝐿 and 𝑊𝑅). Define 𝑊𝐿 to be the linear map such that for any (𝐿,𝑅) ∈ ℛ2,dist

and 𝑥 ∈ [𝑁 ] such that 𝑥 ̸∈ Dom(𝐿 ∪𝑅),

𝑊𝐿 · |𝑥⟩A |𝐿⟩L |𝑅⟩R :=
1√︀

𝑁 − |𝐿 ∪𝑅|

∑︁
𝑦∈[𝑁 ]:

𝑦 ̸∈Im(𝐿∪𝑅)

|𝑦⟩A |𝐿 ∪ {(𝑥, 𝑦)}⟩L |𝑅⟩R . (7.1)

Similarly, define 𝑊𝑅 be the linear map such that for any (𝐿,𝑅) ∈ ℛ2,dist and 𝑦 ∈ [𝑁 ] such that
𝑦 ̸∈ Im(𝐿 ∪𝑅),

𝑊𝑅 · |𝑦⟩A |𝐿⟩L |𝑅⟩R :=
1√︀

𝑁 − |𝐿 ∪𝑅|

∑︁
𝑥∈[𝑁 ]:

𝑥 ̸∈Dom(𝐿∪𝑅)

|𝑥⟩A |𝐿⟩L |𝑅 ∪ {(𝑥, 𝑦)}⟩R . (7.2)

It is useful to define the following projectors to describe the actions of 𝑊𝐿,𝑊𝑅.

Definition 23 (Bijective-relation projectors). Define the projectors

Πbij
LR :=

∑︁
(𝐿,𝑅)∈ℛ2,dist

|𝐿⟩⟨𝐿|L ⊗ |𝑅⟩⟨𝑅|R , Πbij
≤𝑡,LR := Πbij

LR ·Π≤𝑡,LR = Π≤𝑡,LR ·Πbij
LR, (7.3)

where the projector Π≤𝑡,LR is the maximum-length projector defined in Notation 8.

By the definition of 𝑊𝐿 and 𝑊𝑅, we have the following fact about the action of 𝑊𝐿 and 𝑊𝑅 on
states with a bounded length.

Fact 5. For any integer 𝑖 ≥ 0, 𝑊𝐿,𝑊𝑅 map states in the subspace associated to the projector
IdA ⊗Πbij

≤𝑖,LR into the subspace associated with the projector IdA ⊗Πbij
≤𝑖+1,LR.

The following property follows from the relation between 𝑊𝐿,𝑊𝑅 and pfO, pfO†.

Claim 9. 𝑊𝐿 and 𝑊𝑅 are both partial isometries.

Proof. Since pfO is a unitary operator, the operator obtained by restricting the domain of pfO to the
span of the states |𝑥⟩ |pf𝐿,𝑅⟩ is a partial isometry. Up to relabeling |pf𝐿,𝑅⟩ as |𝐿,𝑅⟩ (i.e., applying
the partial isometry Comp), this is 𝑊𝐿. Similarly, pfO† is a unitary, and the operator obtained by
restricting pfO† to the span of states |𝑦⟩ |pf𝐿,𝑅⟩ is a partial isometry. Up to relabeling |pf𝐿,𝑅⟩ as
|𝐿,𝑅⟩, this is 𝑊𝑅.

Notation 12. For a partial isometry 𝐺, let 𝒟(𝐺) and ℐ(𝐺) denote its domain and image. Let
Π𝒟(𝐺) = 𝐺† ·𝐺 and Πℐ(𝐺) = 𝐺 ·𝐺† denote the orthogonal projectors onto 𝒟(𝐺) and ℐ(𝐺).
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Claim 10. For all integers 𝑡 ≥ 0, Π≤𝑡 commutes with Π𝒟(𝑊
𝐿), Πℐ(𝑊𝐿), Π𝒟(𝑊𝑅), and Πℐ(𝑊

𝑅).

Proof. By Fact 5, Π𝒟(𝑊𝐿) =𝑊𝐿,† ·𝑊𝐿 maps states from IdA⊗Πbij
≤𝑡,LR to IdA⊗Πbij

≤𝑡,LR for 𝑡 ≥ 0. This
implies that Π𝒟(𝑊

𝐿) commutes with Π≤𝑡 for all 𝑡 ≥ 0. By Fact 5, Πℐ(𝑊𝐿) = 𝑊𝐿 ·𝑊𝐿,† maps states
from IdA ⊗ Πbij

≤𝑡+1,LR to IdA ⊗ Πbij
≤𝑡+1,LR for 𝑡 + 1 ≥ 0. This implies that Π𝒟(𝑊

𝐿) commutes with Π≤𝑡

for all 𝑡 ≥ 1. Additionally, Πℐ(𝑊𝐿) = 𝑊𝐿 ·𝑊𝐿,† has no support on Π≤0, and thus it commutes with
Π≤0. By symmetric arguments, we obtain the analogous statements for 𝑊𝑅.

It will be useful to state the connection between the 𝑊𝐿,𝑊𝑅, and pfO more formally.

Fact 6. We have

𝑊𝐿 = Comp · pfO · Comp† ·Π𝒟(𝑊𝐿) = Πℐ(𝑊
𝐿) · Comp · pfO · Comp†, (7.4)

𝑊𝑅 = Comp · pfO† · Comp† ·Π𝒟(𝑊𝑅) = Πℐ(𝑊
𝑅) · Comp · pfO† · Comp†. (7.5)

7.2 Defining 𝑊

We now use 𝑊𝐿 and 𝑊𝑅 to define the partial path-recording oracle 𝑊 .

Definition 24. The partial path-recording oracle is the operator 𝑊 defined as

𝑊 :=𝑊𝐿 +𝑊𝑅,†. (7.6)

From Fact 5, we immediately obtain the following fact.

Fact 7. 𝒟(𝑊 ), ℐ(𝑊 ) are subspaces of the image of IdA ⊗ Πbij
LR. Moreover, for any integer 𝑖 ≥ 0, 𝑊

and 𝑊 † map states in the subspace associated to the projector IdA⊗Πbij
≤𝑖,LR into the subspace associated

with the projector IdA ⊗Πbij
≤𝑖+1,LR.

Claim 11. 𝑊 is a partial isometry.

Proof of Claim 11. Since 𝑊𝐿 and 𝑊𝑅 (and hence 𝑊𝑅,†) are partial isometries, the operator 𝑊 =
𝑊𝐿 +𝑊𝑅,† is a partial isometry as long as both of the following are true:

• The subspaces 𝒟(𝑊𝐿) and 𝒟(𝑊𝑅,†) = ℐ(𝑊𝑅) are orthogonal, i.e., 𝑊 is a sum of two partial
isometries with orthogonal domains.

• The subspaces ℐ(𝑊𝐿) and ℐ(𝑊𝑅,†) = 𝒟(𝑊𝑅) are orthogonal, i.e., 𝑊 is a sum of two partial
isometries with orthogonal images.

𝒟(𝑊𝐿) and ℐ(𝑊𝑅) are orthogonal because 𝒟(𝑊𝐿) is only supported on states |𝑥⟩ |𝐿⟩ |𝑅⟩ where
𝑥 ̸∈ Dom(𝐿 ∪𝑅), while ℐ(𝑊𝑅) is only supported on states |𝑥⟩ |𝐿⟩ |𝑅⟩ where 𝑥 ∈ Dom(𝐿 ∪𝑅) (this
can be seen by inspecting the right-hand-side of Eq. (7.2)). A symmetric argument shows that 𝒟(𝑊𝑅)
and ℐ(𝑊𝐿) are also orthogonal, which completes the proof.

In fact, our proof of Claim 11 establishes the following relationship between the domain and image
of 𝑊 and the domain and image of 𝑊𝐿 and 𝑊𝑅.

Fact 8. The domain and image of 𝑊 are given by

Π𝒟(𝑊 ) = Π𝒟(𝑊
𝐿) +Πℐ(𝑊

𝑅), (7.7)

Πℐ(𝑊 ) = Π𝒟(𝑊
𝑅) +Πℐ(𝑊

𝐿). (7.8)
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Claim 12. For all integers 𝑡 ≥ 0, Π≤𝑡 commutes with Π𝒟(𝑊 ) and Πℐ(𝑊 ).

Proof. This follows immediately from Claim 10, which states that the projector Π≤𝑡 commutes with
the projectors Π𝒟(𝑊

𝐿), Πℐ(𝑊𝐿), Π𝒟(𝑊𝑅), Πℐ(𝑊𝑅).

Corollary 7.1. For all integers 𝑡 ≥ 0, the image of Π𝒟(𝑊 )
≤𝑡,ALR is a subspace of the image of IdA⊗Πbij

≤𝑡,LR.

Similarly, the image of Πℐ(𝑊 )
≤𝑡,ALR is a subspace of the image of IdA ⊗Πbij

≤𝑡,LR.

Using Fact 8, we can now establish the following relationship between 𝑊 and pfO.

Claim 13 (𝑊 is a restriction of pfO up to isometry). We have

𝑊 = Comp · pfO · Comp† ·Π𝒟(𝑊 ), (7.9)

𝑊 † = Comp · pfO† · Comp† ·Πℐ(𝑊 ). (7.10)

In words, Claim 13 says that for any state in 𝒟(𝑊 ), the domain of 𝑊 , the action of 𝑊 is the
same as pfO up to isometry. Additionally, it says that for any state in the image in ℐ(𝑊 ), the image
of 𝑊 , the action of 𝑊 † is the same as pfO† up to isometry.

Proof of Claim 13. We will prove the first equality, Eq. (7.9); the second equality, Eq. (7.10), follows
from a symmetric argument. From Eq. (7.4) and Eq. (7.5), we have

Comp · pfO · Comp† ·Π𝒟(𝑊𝐿) =𝑊𝐿, (7.11)

Comp · pfO · Comp† ·Πℐ(𝑊𝑅) =𝑊𝑅,†. (7.12)

Summing Eqs. (7.11) and (7.12) yields

Comp · pfO · Comp† · (Π𝒟(𝑊𝐿) +Πℐ(𝑊
𝑅)) =𝑊𝐿 +𝑊𝑅,†, (7.13)

and plugging in Π𝒟(𝑊 ) = Π𝒟(𝑊
𝐿)+Πℐ(𝑊

𝑅) from Eq. (7.7) and 𝑊 =𝑊𝐿+𝑊𝑅,† yields Eq. (7.9).

8 The path-recording oracle 𝑉

In the previous section, we defined a linear operator 𝑊 and showed that 𝑊 acts as a restricted version
of pfO, up to an application of the Comp isometry. In this section, we will introduce a second linear
operator 𝑉 , which will satisfy a number of key properties that will be crucial for our proof. We will
show that 𝑉 satisfies the following properties:

• 𝑉 is indistinguishable from 𝑊 under twirling, i.e., for 𝐶,𝐷 sampled from any 𝑛-qubit
unitary 2-design D, an adversary making forward and inverse queries cannot distinguish between
queries to 𝐷A · 𝑉 · 𝐶A and queries to 𝐷A ·𝑊 · 𝐶A.

• 𝑉 satisfies approximate unitary invariance, which we will use to conclude the following: an
adversary making forward and inverse queries cannot distinguish between queries to 𝐷A ·𝑉 ·𝐶A

for 𝐶,𝐷 sampled from any 𝑛-qubit unitary 2-design D, and plain queries to 𝑉 .6

We will refer to 𝑉 as the path-recording oracle. We remark that this definition of 𝑉 is different
from the one given in Part I, as this 𝑉 will need to be designed to handle forward and inverse queries.
In Appendix A.3 we describe how to implement 𝑉 efficiently.

6For technical reasons, our main proof will handle both of these bullets in one argument.
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8.1 Defining 𝑉 𝐿 and 𝑉 𝑅

To define 𝑉 , we first introduce helper operators 𝑉 𝐿 and 𝑉 𝑅.

Definition 25 (left and right partial isometries). Let 𝑉 𝐿 be the linear operator that acts as follows.
For 𝑥 ∈ [𝑁 ] and (𝐿,𝑅) ∈ ℛ2,≤𝑁−1,

𝑉 𝐿 · |𝑥⟩A |𝐿⟩L |𝑅⟩R :=
∑︁
𝑦∈[𝑁 ]:

𝑦 ̸∈Im(𝐿∪𝑅)

1√︀
𝑁 − |Im(𝐿 ∪𝑅)|

|𝑦⟩A |𝐿 ∪ {(𝑥, 𝑦)}⟩L |𝑅⟩R . (8.1)

Define 𝑉 𝑅 to be the linear operator such that for all 𝑦 ∈ [𝑁 ] and (𝐿,𝑅) ∈ ℛ2,≤𝑁−1,

𝑉 𝑅 · |𝑦⟩A |𝐿⟩L |𝑅⟩R :=
∑︁
𝑥∈[𝑁 ]:

𝑥 ̸∈Dom(𝐿∪𝑅)

1√︀
𝑁 − |Dom(𝐿 ∪𝑅)|

|𝑥⟩A |𝐿⟩L |𝑅 ∪ {(𝑥, 𝑦)}⟩R . (8.2)

By construction, 𝑉 𝐿 and 𝑉 𝑅 take states in IdA ⊗Πℛ
2

≤𝑖,LR to IdA ⊗Πℛ
2

≤𝑖+1,LR.

Why these definitions of 𝑉 𝐿 and 𝑉 𝑅? On states of the form |𝑥⟩ |𝐿⟩ |𝑅⟩ within the domain
of 𝑊𝐿, the operators 𝑊𝐿 and 𝑉 𝐿 act in the same way. However, the domain of 𝑊𝐿 is limited
to states |𝑥⟩ |𝐿⟩ |𝑅⟩ where 𝐿 ∪ 𝑅 forms a bijection and 𝑥 /∈ Dom(𝐿 ∪ 𝑅) (which also implies that
|𝐿 ∪𝑅| ≤ 𝑁−1). On the other hand, the definition of 𝑉 𝐿 extends𝑊𝐿 so that it acts on all |𝑥⟩ |𝐿⟩ |𝑅⟩
satisfying |𝐿 ∪𝑅| ≤ 𝑁 − 1. In particular, we have dropped the requirement that 𝐿 ∪𝑅 is a bijection
and that 𝑥 ̸∈ Dom(𝐿 ∪ 𝑅). An analogous relationship holds between 𝑉 𝑅 and 𝑊𝑅. We define these
extended operators, 𝑉 𝐿 and 𝑉 𝑅, to establish a property known as (approximate) unitary invariance
(see Claim 23). Importantly, this property holds only for the extended operators 𝑉 𝐿 and 𝑉 𝑅, and
not for the original 𝑊𝐿 and 𝑊𝑅 operators.

Claim 14. 𝑉 𝐿 and 𝑉 𝑅 are partial isometries.

Proof. We will give the proof for 𝑉 𝐿; the proof for 𝑉 𝑅 follows by a symmetric argument. 𝑉 𝐿 is a
partial isometry if and only if 𝑉 𝐿 · 𝑉 𝐿,† is the orthogonal projector onto 𝒟(𝑉 𝐿). From the definition
of 𝑉 𝐿, we can see that its domain is

𝒟(𝑉 𝐿) = span{ |𝑥⟩A |𝐿⟩L |𝑅⟩R : 𝑥 ∈ [𝑁 ], (𝐿,𝑅) ∈ ℛ2,≤𝑁−1}. (8.3)

It suffices to show that for all 𝑥, 𝑥′ ∈ [𝑁 ], and (𝐿,𝑅) ∈ ℛ2,≤𝑁−1 and (𝐿′, 𝑅′) ∈ ℛ2,≤𝑁−1 that

⟨𝑥′|A ⟨𝐿
′|L ⟨𝑅

′|R · 𝑉
𝐿,† · 𝑉 𝐿 · |𝑥⟩A |𝐿⟩L |𝑅⟩R = ⟨𝑥′|𝑥⟩A ⟨𝐿

′|𝐿⟩L ⟨𝑅
′|𝑅⟩R . (8.4)

We can expand out the LHS as(︁ ∑︁
𝑦′ ̸∈Im(𝐿′∪𝑅′)

⟨𝑦′|A ⟨𝐿′ ∪ 𝑥′𝑦′|L ⟨𝑅′|R√︀
𝑁 − |Im(𝐿′ ∪𝑅′)|

)︁
·
(︁ ∑︁
𝑦 ̸∈Im(𝐿∪𝑅)

|𝑦⟩A |𝐿 ∪ {(𝑥, 𝑦)}⟩L |𝑅⟩R√︀
𝑁 − |Im(𝐿 ∪𝑅)|

)︁
(8.5)

The summand is zero unless 𝑦′ = 𝑦, 𝐿′ ∪ 𝑥′𝑦′ = 𝐿 ∪ {(𝑥, 𝑦)}, and 𝑅′ = 𝑅. Combining the first two
constraints, we have 𝐿′ ∪ 𝑥′𝑦 = 𝐿 ∪ {(𝑥, 𝑦)}. Since 𝑦 does not appear in either Im(𝐿′) or Im(𝐿),
this implies 𝑥′ = 𝑥 and 𝐿′ = 𝐿. This means that the sum is 0 unless 𝑥 = 𝑥′, 𝐿 = 𝐿′ and 𝑅 = 𝑅′.
When these constraints are satisfied, the sum becomes

∑︀
𝑦 ̸∈Im(𝐿∪𝑅) 1/(𝑁 − |Im(𝐿 ∪𝑅)|) = 1. This

completes the proof that 𝑉 𝐿 is a partial isometry.
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8.2 Defining 𝑉

Definition 26. The path-recording oracle is the operator 𝑉 defined as

𝑉 = 𝑉 𝐿 · (Id− 𝑉 𝑅 · 𝑉 𝑅,†) + (Id− 𝑉 𝐿 · 𝑉 𝐿,†) · 𝑉 𝑅,†. (8.6)

By construction, 𝑉 and 𝑉 † take states in IdA ⊗Πℛ
2

≤𝑖,LR to IdA ⊗Πℛ
2

≤𝑖+1,LR for any integer 𝑖 ≥ 0.

Why this definition of 𝑉 ? Recall that since we defined 𝑊 :=𝑊𝐿+𝑊𝑅,†, it might seem natural
to define 𝑉 := 𝑉 𝐿 + 𝑉 𝑅,†. However, if we defined 𝑉 this way, it would not be a partial isometry. As
we showed in the proof of Claim 11, 𝑊𝐿 +𝑊𝑅,† is a partial isometry because 𝑊𝐿 and 𝑊𝑅,† do not
“overlap”, i.e., they are partial isometries with orthogonal domains and orthogonal images . On the
other hand, this is not true for 𝑉 𝐿 and 𝑉 𝑅,†. Thus, in order to ensure that 𝑉 is a partial isometry,
we need to “project out” the overlap between 𝑉 𝐿 and 𝑉 𝑅,†.

Claim 15. 𝑉 is a partial isometry.

Proof. We will first show that 𝑉 𝐿 · (Id − 𝑉 𝑅 · 𝑉 𝑅,†) is a partial isometry. This is true if and only if
(Id− 𝑉 𝑅 · 𝑉 𝑅,†) · 𝑉 𝐿,† · 𝑉 𝐿 · (Id− 𝑉 𝑅 · 𝑉 𝑅,†) is a projector. To show that this operator is a projector,
it suffices to show that Π𝒟(𝑉

𝐿) = 𝑉 𝐿,† · 𝑉 𝐿 and Πℐ(𝑉
𝑅) = 𝑉 𝑅 · 𝑉 𝑅,† commute. From the definition

of 𝑉 𝐿, its domain is the image of the projector IdA ⊗ Πℛ
2

≤𝑁−1,LR. Since 𝑉 𝑅 takes states in Πℛ
2

≤𝑖,LR
to Πℛ

2

≤𝑖+1,LR (for 0 ≤ 𝑖 ≤ 𝑁 − 1), it follows that 𝑉 𝑅 · 𝑉 𝑅,† takes states in Πℛ
2

≤𝑖+1,LR to Πℛ
2

≤𝑖+1,LR (for
0 ≤ 𝑖 ≤ 𝑁 − 1). In particular, this means it commutes with IdA ⊗ Πℛ

2

≤𝑁−1. Using a symmetric
argument, we can conclude that (Id− 𝑉 𝐿 · 𝑉 𝐿,†) · 𝑉 𝑅,† is also a partial isometry.

Now, we just need to show that the sum of these two partial isometries is a partial isometry. It
suffices to show that their domains are orthogonal and their images are orthogonal. To see that their
domains are orthogonal, note that the domain of 𝑉 𝐿 · (Id− 𝑉 𝑅 · 𝑉 𝑅,†) is a subspace of Id− Πℐ(𝑉

𝑅),
while the domain of (Id−𝑉 𝐿 ·𝑉 𝐿,†) ·𝑉 𝑅,† is a subspace of Πℐ(𝑉 𝑅), and hence they are orthogonal. A
symmetric argument shows their images are orthogonal. This completes the proof.

𝑉 being a partial isometry implies that any state generated by an adversary that queries 𝑉 and
𝑉 † will have a norm at most 1. This is an important property that will be central to our strong PRU
proof. Recall that in the standard PRU proof of Part I, the path-recording oracle acts as an isometry
on all states that can be generated by querying the path-recording oracle. This first property of
𝑉 being a partial isometry is a relaxation of the isometric property of the standard path-recording
oracle. While 𝑉 is a partial isometry, we will later show that the state generated by an adversary
that queries 𝑉 and 𝑉 † will have a norm close to one for subexponential number of queries.

8.3 Two-sided unitary invariance

The path-recording oracle 𝑉 satisfies an (approximate) two-sided unitary invariance property, which
we state below.

Definition 27. For any 𝑛-qubit unitary 𝐶,𝐷, define

𝑄[𝐶,𝐷] := (𝐶 ⊗𝐷𝑇 )⊗*L ⊗ (𝐶 ⊗𝐷†)⊗*R . (8.7)

Claim 16 (two-sided unitary invariance). For any integer 0 ≤ 𝑡 ≤ 𝑁 − 1 and any pair of 𝑛-qubit
unitaries 𝐶,𝐷,

‖𝐷A · 𝑉≤𝑡 · 𝐶A ⊗𝑄[𝐶,𝐷]LR −𝑄[𝐶,𝐷]LR · 𝑉≤𝑡‖op ≤ 16

√︂
2𝑡(𝑡+ 1)

𝑁
, (8.8)
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⃦⃦⃦
𝐶†A · (𝑉

†)≤𝑡 ·𝐷†A ⊗𝑄[𝐶,𝐷]LR −𝑄[𝐶,𝐷]LR · (𝑉 †)≤𝑡
⃦⃦⃦
op
≤ 16

√︂
2𝑡(𝑡+ 1)

𝑁
, (8.9)

Claim 16 is proven in Section 10. The two-sided unitary invariance of 𝑉 allows us to move the
random unitaries 𝐶 and 𝐷 acting on system register A to the purifying registers L,R.

8.4 𝑊 is a restriction of 𝑉

We now show that𝑊 is a restriction of 𝑉 . First, we need the following basic facts relating𝑊𝐿,𝑊𝑅, 𝑉 𝐿,
and 𝑉 𝑅 that follow immediately from the definitions of these operators.

Fact 9. We have

• 𝑊𝐿 is a restriction of 𝑉 𝐿 and 𝑊𝑅 is a restriction of 𝑉 𝑅:

𝑊𝐿 = 𝑉 𝐿 ·Π𝒟(𝑊𝐿) = Πℐ(𝑊
𝐿) · 𝑉 𝐿 (8.10)

𝑊𝑅 = 𝑉 𝑅 ·Π𝒟(𝑊𝑅) = Πℐ(𝑊
𝑅) · 𝑉 𝑅 (8.11)

• The image of 𝑉 𝑅 is in the kernel of 𝑊𝐿, and the image of 𝑉 𝐿 is in the kernel of 𝑊𝑅, i.e.,

𝑊𝐿 · 𝑉 𝑅 =𝑊𝑅 · 𝑉 𝐿 = 0, (8.12)

Lemma 8.1. If Π1 and Π2 are projectors, and Π1 = Π1Π2Π1 then Π1 is a subspace of Π2.

Proof. Consider any normalized state |𝜓⟩ ∈ Π1, i.e., Π1 |𝜓⟩ = |𝜓⟩. We have the following identity,

1 = ⟨𝜓|Π1 |𝜓⟩ = ⟨𝜓|Π1Π2Π1 |𝜓⟩ = ⟨𝜓|Π2 |𝜓⟩ . (8.13)

Because Π2 is a projector and ⟨𝜓|Π2 |𝜓⟩ = 1, we have |𝜓⟩ ∈ Π2.

Lemma 8.2. Consider any partial isometries 𝑉1, 𝑉2. If 𝑉2 = 𝑉1 ·Π𝒟(𝑉2), then 𝒟(𝑉2) is a subspace of
𝒟(𝑉1). And if 𝑉2 = Πℐ(𝑉2) · 𝑉1, then ℐ(𝑉2) is a subspace of ℐ(𝑉1).

Proof. From 𝑉2 = 𝑉1 ·Π𝒟(𝑉2), we have

Π𝒟(𝑉2) = 𝑉 †2 · 𝑉2 = Π𝒟(𝑉2) · 𝑉 †1 · 𝑉1 ·Π
𝒟(𝑉2) = Π𝒟(𝑉2) ·Π𝒟(𝑉1) ·Π𝒟(𝑉2). (8.14)

Hence from Lemma 8.1, we have 𝒟(𝑉2) is a subspace of 𝒟(𝑉1).
From 𝑉2 = Πℐ(𝑉2) · 𝑉1, we have

Πℐ(𝑉2) = 𝑉2 · 𝑉 †2 = Πℐ(𝑉2) · 𝑉1 · 𝑉 †1 ·Π
ℐ(𝑉2) = Πℐ(𝑉2) ·Πℐ(𝑉1) ·Πℐ(𝑉2). (8.15)

Hence from Lemma 8.1, we have ℐ(𝑉2) is a subspace of ℐ(𝑉1).

Corollary 8.1. ℐ(𝑊𝐿) is a subspace of ℐ(𝑉 𝐿). And ℐ(𝑊𝑅) is a subspace of ℐ(𝑉 𝑅).

Proof. This follows immediately from Eq. (8.10), Eq. (8.11), and Lemma 8.2.

Claim 17 (𝑊 is a restriction of 𝑉 ). We have

𝑊 = 𝑉 ·Π𝒟(𝑊 ), (8.16)

𝑊 † = 𝑉 † ·Πℐ(𝑊 ). (8.17)
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In words, Claim 17 says that for any state in 𝒟(𝑊 ), the domain of 𝑊 , the action of 𝑊 is the
same as 𝑉 . Additionally, it says that for any state in the image in ℐ(𝑊 ), the image of 𝑊 , the action
of 𝑊 † is the same as 𝑉 †.

Proof of Claim 17. To prove Eq. (8.16), it suffices to show that

𝑉 ·Π𝒟(𝑊𝐿) =𝑊𝐿, (8.18)

𝑉 ·Πℐ(𝑊𝑅) =𝑊𝑅,†. (8.19)

This is because summing these two equations gives

𝑉 · (Π𝒟(𝑊𝐿) +Πℐ(𝑊
𝑅)) =𝑊𝐿 +𝑊𝑅,†, (8.20)

and plugging in Π𝒟(𝑊 ) = Π𝒟(𝑊
𝐿) + Πℐ(𝑊

𝑅) from Eq. (7.7) and 𝑊 = 𝑊𝐿 +𝑊𝑅,† yields Eq. (8.16).
It remains to prove Eqs. (8.18) and (8.19).

• Proof of Eq. (8.18). By the definition of 𝑉 , we have

𝑉 ·Π𝒟(𝑊𝐿) =
(︁
𝑉 𝐿 · (Id− 𝑉 𝑅 · 𝑉 𝑅,†) + (Id− 𝑉 𝐿 · 𝑉 𝐿,†) · 𝑉 𝑅,†

)︁
·Π𝒟(𝑊𝐿). (8.21)

Note that 𝑉 𝑅,† · Π𝐷(𝑊𝐿) = 𝑉 𝑅,† ·𝑊𝐿,† ·𝑊𝐿 = (𝑊𝐿 · 𝑉 𝑅)† ·𝑊𝐿 = 0, where the final equality
uses Eq. (8.12). Thus,

𝑉 ·Π𝒟(𝑊𝐿) = 𝑉 𝐿 ·Π𝒟(𝑊𝐿) =𝑊𝐿, (8.22)

where the second equality follows from Eq. (8.10).

• Proof of Eq. (8.19). By the definition of 𝑉 ,

𝑉 ·Πℐ(𝑊𝑅) =
(︁
𝑉 𝐿 · (Id− 𝑉 𝑅 · 𝑉 𝑅,†) + (Id− 𝑉 𝐿 · 𝑉 𝐿,†) · 𝑉 𝑅,†

)︁
·Πℐ(𝑊𝑅). (8.23)

Since ℐ(𝑊𝑅) is a subspace of ℐ(𝑉 𝑅) by Corollary 8.1, we have 𝑉 𝐿 ·(Id−𝑉 𝑅 ·𝑉 𝑅,†) ·Πℐ(𝑊𝑅) = 0.
Next, we have 𝑉 𝑅,† ·Πℐ(𝑊𝑅) = (Πℐ(𝑊

𝑅) · 𝑉 𝑅)† =𝑊𝑅,† by Eq. (8.11). Thus, we have

𝑉 ·Πℐ(𝑊𝑅) = (Id− 𝑉 𝐿 · 𝑉 𝐿,†) ·𝑊𝑅,† (8.24)

=𝑊𝑅,† − 𝑉 𝐿 · 𝑉 𝐿,† ·𝑊𝑅,† (8.25)

=𝑊𝑅,†, (8.26)

where the last equality uses the fact that 𝑉 𝐿,† ·𝑊𝑅,† = (𝑊𝑅 · 𝑉 𝐿)† = 0 from Eq. (8.12).

This completes the proof of Eq. (8.16). The proof of Eq. (8.17) follows by a symmetric argument.

Corollary 8.2. Π𝒟(𝑊 ) is a subspace of Π𝒟(𝑉 ). And Πℐ(𝑊 ) is a subspace of Πℐ(𝑉 ).

Proof. This follows immediately from Claim 17 and Lemma 8.2.

Corollary 8.3. We have

𝑊 † · 𝑉 = Π𝒟(𝑊 ) (8.27)

𝑊 · 𝑉 † = Πℐ(𝑊 ). (8.28)
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Proof. From 𝑊 = 𝑉 ·Π𝒟(𝑊 ), we can multiply 𝑉 † on the left of both sides to obtain

𝑉 † ·𝑊 = 𝑉 † · 𝑉 ·Π𝒟(𝑊 ). (8.29)

Using 𝑉 † · 𝑉 = Π𝒟(𝑉 ), we have

𝑉 † ·𝑊 = Π𝒟(𝑉 ) ·Π𝒟(𝑊 ) = Π𝒟(𝑊 ), (8.30)

since Π𝒟(𝑊 ) is a subspace of Π𝒟(𝑉 ) from Corollary 8.2. Taking dagger yields 𝑊 † · 𝑉 = Π𝒟(𝑊 ).
From 𝑊 † = 𝑉 † ·Πℐ(𝑊 ), we can multiply 𝑉 on the left of both sides to obtain

𝑉 ·𝑊 † = 𝑉 · 𝑉 † ·Πℐ(𝑊 ). (8.31)

Using 𝑉 · 𝑉 † = Πℐ(𝑉 ), we have

𝑉 ·𝑊 † = Πℐ(𝑉 ) ·Πℐ(𝑊 ) = Πℐ(𝑊 ), (8.32)

since Πℐ(𝑊 ) is a subspace of Πℐ(𝑉 ) from Corollary 8.2. Taking dagger yields 𝑊 · 𝑉 † = Πℐ(𝑊 ).

9 The strong PRU proof

9.1 Setup

We define a distribution over 𝑛-qubit unitaries parameterized by any 𝑛-qubit unitary 2-design D.

Definition 28 (sPRU(D) distribution). For any distribution D supported on 𝒰(𝑁), define the distri-
bution sPRU(D) as follows:

1. Sample a uniformly random permutation 𝜋 ← Sym𝑁 , a uniformly random 𝑓 ← {0, 1, 2}𝑁 , and
two independently sampled 𝑛-qubit unitaries 𝐶,𝐷 ← D. Following the definitions in Section 6,

𝐹𝑓 :=
∑︁
𝑥∈[𝑁 ]

𝑒2𝜋·𝑓(𝑥)·𝑖/3 |𝑥⟩⟨𝑥| and 𝑃𝜋 :=
∑︁
𝑥∈[𝑁 ]

|𝜋(𝑥)⟩⟨𝑥| . (9.1)

2. Output the 𝑛-qubit unitary 𝒪 := 𝐷 · 𝑃𝜋 · 𝐹𝑓 · 𝐶.

The goal of this section is to prove the following theorem.

Theorem 6 (sPRU(D) is a statistical strong PRU). Let 𝒜 be a 𝑡-query oracle adversary that can
perform forward and inverse queries and let D be an exact unitary 2-design. Then

TD

(︂
E

𝒪←sPRU(D)
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |AB , E

𝒪←𝜇Haar
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |AB

)︂
≤ 18𝑡(𝑡+ 1)

𝑁1/8
(9.2)

Since quantum-secure pseudorandom permutations and pseudorandom functions exist assuming
one-way functions by [Zha16, Zha21], the existence of computationally-secure strong PRUs follows
immediately from Theorem 6.

Theorem 7. If quantum-secure one-way functions exist, then strong pseudorandom unitaries exist.

The main technical component of the proof of Theorem 6 is Lemma 9.1, which relates the PRU
adversary to an adversary that queries the path-recording oracle 𝑉 , defined previously in Section 8.
Recall that 𝑉 is a partial isometry that acts on registers (A, L,R), where L and R are variable-length
registers. Initially, L and R are both initialized to the length-0 state |∅⟩. To state Lemma 9.1, we
will need the following definition.
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Definition 29 (the global state after queries to 𝑉 ). For a 𝑡-query oracle adversary 𝒜 that can perform
forward and inverse queries and any 0 ≤ 𝑖 ≤ 𝑡, let

|𝒜𝑉𝑖 ⟩ABLR :=

𝑡∏︁
𝑖=1

(︃(︁
(1− 𝑏𝑖) · 𝑉ALR + 𝑏𝑖 · 𝑉 †ALR

)︁
·𝐴𝑖,AB

)︃
|0𝑛+𝑚⟩AB ⊗ |∅⟩L |∅⟩R (9.3)

denote the global state on registers A,B, L,R after 𝒜 makes 𝑖 queries to 𝑉 .

Lemma 9.1 (sPRU(D) is indistinguishable from 𝑉 ). Let D be any exact unitary 2-design. For any
𝑡-query oracle adversary 𝒜,

TD

(︂
E

𝒪←sPRU(D)
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |AB , TrLR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR

)︀)︂
≤ 9𝑡(𝑡+ 1)

𝑁1/8
(9.4)

Lemma 9.1 implies Theorem 6. Lemma 9.1 implies Theorem 6 by the following argument. We
can instantiate D = 𝜇Haar, i.e., D outputs a Haar-random 𝑛-qubit unitary. Then the output of
sPRU(D) = sPRU(𝜇Haar) is 𝐷 ·𝑃𝜋 ·𝐹𝑓 ·𝐶 for random 𝜋, 𝑓 and Haar-random 𝐷 and 𝐶. By invariance
of the Haar measure, this is exactly the same as outputting a Haar-random unitary. Thus, we have
the following corollary of Lemma 9.1.

Theorem 8 (𝑉 is indistinguishable from a Haar-random unitary). Let 𝒜 be a 𝑡-query oracle adversary
that can perform forward and inverse queries. Then

TD

(︂
E

𝒪←𝜇Haar
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |AB , TrLR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR

)︀)︂
≤ 9𝑡(𝑡+ 1)

𝑁1/8
. (9.5)

Theorem 6 follows from combining Lemma 9.1 and Theorem 8 using the triangle inequality. The
remainder of this section is devoted to proving Lemma 9.1.

9.2 𝑉 is indistinguishable from twirled 𝑊

Our first step towards proving Lemma 9.1 is to prove that an oracle adversary 𝒜 that makes both
forward and inverse queries cannot distinguish whether its query is implemented by the path-recording
oracle 𝑉 (Definition 26), or as 𝐷 ·𝑊 ·𝐶 where 𝐶,𝐷 ← D are sampled from a 2-design, and 𝑊 is the
partial path-recording oracle (Definition 24).

We will require the following definitions. Let C and D be a pair of registers that each contain the
description of an 𝑛-qubit unitary. These registers will be part of the purification and will not be in
the adversary’s view.

Definition 30. For any distribution D over 𝑛-qubit unitaries, define the state

|init(D)⟩CD :=

∫︁
𝐶,𝐷

√︀
𝑑𝜇D(𝐶)𝑑𝜇D(𝐷) |𝐶⟩C ⊗ |𝐷⟩D , (9.6)

where 𝜇D(𝐶) is the probability measure for which 𝐶 is sampled from D.

Recall from Definition 27 that for any pair of 𝑛-qubit unitaries 𝐶,𝐷, the operator 𝑄[𝐶,𝐷]LR is
defined as

𝑄[𝐶,𝐷] := (𝐶 ⊗𝐷𝑇 )⊗*L ⊗ (𝐶 ⊗𝐷†)⊗*R . (9.7)
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Definition 31 (Controlled 𝐶,𝐷 and 𝑄). Define the following operators

cC :=

∫︁
𝐶
𝐶A ⊗ |𝐶⟩⟨𝐶|C , cD :=

∫︁
𝐷
𝐷A ⊗ |𝐷⟩⟨𝐷|D , (9.8)

cQ :=

∫︁
𝐶,𝐷

𝑄[𝐶,𝐷]L,R ⊗ |𝐶⟩⟨𝐶|C ⊗ |𝐷⟩⟨𝐷|D . (9.9)

We now state a key lemma that we will need for our proof.

Lemma 9.2 (Twirling). For any unitary 2-design D, and any integer 0 ≤ 𝑡 ≤ 𝑁 − 1, we have⃦⃦⃦⃦
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·
(︁
Πbij
≤𝑡,LR −Π

𝒟(𝑊 )
≤𝑡,ALR

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

≤ 6𝑡

√︂
𝑡

𝑁
, (9.10)⃦⃦⃦⃦

E
𝐶,𝐷←D

(𝐷†A ⊗𝑄[𝐶,𝐷]LR)
† ·
(︁
Πbij
≤𝑡,LR −Π

ℐ(𝑊 )
≤𝑡,ALR

)︁
· (𝐷†A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

≤ 6𝑡

√︂
𝑡

𝑁
, (9.11)

Note that in the statement of Lemma 9.2, Πbij
≤𝑡,LR is shorthand for IdA ⊗ Πbij

≤𝑡,LR, and thus the
operators inside the ‖·‖op act on A, L,R. We prove Lemma 9.2 in Section 11.

Next, we define the following adversary states.

Definition 32 (Twirled-𝑊 purification). Define the states |𝒜𝑊,D𝑖 ⟩ABLRCD as follows:

|𝒜𝑊,D0 ⟩ := |0𝑛⟩A |0
𝑚⟩B |∅⟩L |∅⟩R |init(D)⟩CD , (9.12)

For 𝑖 = 1, . . . , 𝑡 : |𝒜𝑊,D𝑖 ⟩ :=
(︁
(1− 𝑏𝑖) · (cD ·𝑊 · cC) + 𝑏𝑖 · (cD ·𝑊 · cC)†

)︁
·𝐴𝑖 · |𝒜𝑊,D𝑖−1 ⟩ . (9.13)

For contrast, let us recall the definition of |𝒜𝑉𝑖 ⟩.

Definition 33 (𝑉 purification). Define the states |𝒜𝑉𝑖 ⟩ABLR for 0 ≤ 𝑖 ≤ 𝑡 as follows:

|𝒜𝑉0 ⟩ := |0𝑛⟩A |∅⟩L |∅⟩R , (9.14)

For 𝑖 = 1, . . . , 𝑡 : |𝒜𝑉𝑖 ⟩ :=
(︁
(1− 𝑏𝑖) · 𝑉 + 𝑏𝑖 · 𝑉 †

)︁
·𝐴𝑖 · |𝒜𝑉𝑖−1⟩ . (9.15)

Note that because 𝑏𝑖 ∈ {0, 1}, in the construction of these purified states, one either queries 𝑉 ,
cD · 𝑊 · cC for 𝑏𝑖 = 0 or 𝑉 †, (cD ·𝑊 · cC)† for 𝑏𝑖 = 1. Because 𝑊 and 𝑉 are partial isometries
from Claim 11 and Claim 15, 𝑊,𝑊 †, 𝑉, 𝑉 † are all equal to applying a projector followed by a unitary.
Hence, |𝒜𝑉𝑡 ⟩, |𝒜

𝑊,D
𝑡 ⟩ are both states with norm at most 1.

Fact 10 (Norm of the purified states). For any 𝑡 ≥ 0, |𝒜𝑉𝑡 ⟩, |𝒜
𝑊,D
𝑡 ⟩ both have norm at most 1.

Furthermore, from Definition 26, 𝑉 and 𝑉 † take states in the subspace associated with the pro-
jector IdA ⊗ Πℛ

2

≤𝑖,LR to the the subspace associated with the projector IdA ⊗ Πℛ
2

≤𝑖+1,LR. Hence, after 𝑡
queries in total to 𝑉 and 𝑉 †, we have |𝒜𝑉𝑡 ⟩ is in the image of Πℛ2

≤𝑡 . Similarly, from Fact 7, 𝑊 and 𝑊 †

map states in IdA ⊗ Πbij
≤𝑖,LR to IdA ⊗ Πbij

≤𝑖+1,LR. Hence, after 𝑡 queries to 𝑊 and 𝑊 †, we have |𝒜𝑊,D𝑡 ⟩
is in the image of Πbij

≤𝑡. We collect these two basic properties in Fact 11.

Fact 11 (Spaces that the purified states are in). For any 𝑡 ≥ 0, we have the following guarantees:

• |𝒜𝑉𝑡 ⟩ is in the image of Πℛ2

≤𝑡 .

• |𝒜𝑊,D𝑡 ⟩ is in the image of Πbij
≤𝑡.
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The main technical claim of this subsection is the following.

Claim 18. For any integer 𝑡 ≥ 0,

Re
[︁
⟨𝒜𝑊,D𝑡 |ABLRCD · cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩ABLR |init(D)⟩CD

)︁]︁
≥ 1− 35𝑡2

𝑁1/4
(9.16)

Proof of Claim 18. We prove this claim by induction. When 𝑡 = 0, we have

cQLRCD ·
(︁
|𝒜𝑉0 ⟩ABLR |init(D)⟩CD

)︁
= cQLRCD ·

(︁
|0𝑛⟩A |∅⟩L |∅⟩R |init(D)⟩CD

)︁
(9.17)

= |0𝑛⟩A |∅⟩L |∅⟩R |init(D)⟩CD (9.18)

= |𝐴𝑊,D0 ⟩ABLRCD , (9.19)

where the first equality is by the definition of |𝒜𝑉0 ⟩ (Definition 33), the second is because cQ acts as
identity on |∅⟩L |∅⟩R |init(D)⟩LR, and the third equality is the definition of |𝒜𝑊,D0 ⟩ (Definition 32).
This implies that

Re
[︁
⟨𝒜𝑊,D0 |ABLRCD · cQLRCD ·

(︁
|𝒜𝑉0 ⟩ABLR |init(D)⟩CD

)︁]︁
= 1, (9.20)

so the base case holds.
For the inductive step, assume that

Re
[︁
⟨𝒜𝑊,D𝑡 |ABLRCD · cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩ABLR |init(D)⟩CD

)︁]︁
≥ 1− 35𝑡2

𝑁1/4
(9.21)

for some integer 𝑡 ≥ 0. We will prove that the claim holds for 𝑡 + 1. To simplify notation, let us
assume that the adversary makes a forward query at step 𝑡+ 1, i.e., 𝑏𝑡+1 = 0; this is without loss of
generality because the argument is symmetric if the adversary makes an inverse query at step 𝑡+ 1.
We have

|𝒜𝑊,D𝑡+1 ⟩ = cD ·𝑊 · cC ·𝐴𝑡+1 · |𝒜𝑊,D𝑡 ⟩ , (9.22)

cQ ·
(︁
|𝒜𝑉𝑡+1⟩ |init(D)⟩

)︁
= cQ · 𝑉 ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩ (9.23)

and thus

Re
[︁
⟨𝒜𝑊,D𝑡+1 | · cQ ·

(︁
|𝒜𝑉𝑡+1⟩ |init(D)⟩

)︁]︁
(9.24)

= Re
[︁
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·𝑊 † · cD† · cQ · 𝑉 ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩
]︁

(9.25)

By Fact 11, the states |𝒜𝑊,D𝑡 ⟩ and |𝒜𝑉𝑡 ⟩ are both in the image of Π≤𝑡. Following Notation 9, we
write 𝑊≤𝑡 =𝑊 ·Π≤𝑡 and 𝑉≤𝑡 = 𝑉 ·Π≤𝑡. We can then rewrite (9.25) as

(9.25) = Re
[︁
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·𝑊 †≤𝑡 · cD
† · cQ · 𝑉≤𝑡 ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩

]︁
(9.26)

Next, we will write cQ · 𝑉≤𝑡 as

cQ · 𝑉≤𝑡 = cD · 𝑉≤𝑡 · cC · cQ.+
(︁
cQ · 𝑉≤𝑡 − cD · 𝑉≤𝑡 · cC · cQ

)︁
(9.27)

This allows us to rewrite (9.26) as

Re
[︁
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·𝑊 †≤𝑡 · 𝑉≤𝑡 · cC · cQ ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩
]︁
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+Re
[︁
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·𝑊 †≤𝑡 · cD
† ·
(︁
cQ · 𝑉≤𝑡 − cD · 𝑉≤𝑡 · cC · cQ

)︁
·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩

]︁
.

(9.28)

We can lower bound the second term in the sum as follows. We know that 𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩ and
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·𝑊 †≤𝑡 · cD
† have at most unit norm by Fact 10 and the fact that 𝐴𝑡+1, cC, cD,𝑊

†
≤𝑡

all have operator norm at most 1 (since 𝑊 †≤𝑡 = (𝑊 ·Π≤𝑡)† and 𝑊 is a partial isometry by Claim 11).
Then by Claim 16, the second term can be lower bounded by

−
⃦⃦⃦(︁

cD · 𝑉≤𝑡 · cC · cQ− cQ · 𝑉≤𝑡
)︁⃦⃦⃦

op
(9.29)

−

⃦⃦⃦⃦
⃦⃦∑︁
𝐶,𝐷

(︁
𝐷A · 𝑉≤𝑡 · 𝐶A ⊗𝑄[𝐶,𝐷]LR −𝑄[𝐶,𝐷]LR · 𝑉≤𝑡

)︁
⊗ |𝐶,𝐷⟩⟨𝐶,𝐷|

⃦⃦⃦⃦
⃦⃦
op

(9.30)

−max
𝐶,𝐷
‖𝐷A · 𝑉≤𝑡 · 𝐶A ⊗𝑄[𝐶,𝐷]LR −𝑄[𝐶,𝐷]LR · 𝑉≤𝑡‖op (9.31)

≥ −16
√︂

2𝑡(𝑡+ 1)

𝑁
. (by Claim 16)

Combining this bound with the sequence of equalities (9.24) = (9.25) = (9.26) = (9.28), we get

Re
[︁
⟨𝒜𝑊,D𝑡+1 | · cQ ·

(︁
|𝒜𝑉𝑡+1⟩ |init(D)⟩

)︁]︁
(9.32)

≥ Re
[︁
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·𝑊 †≤𝑡 · 𝑉≤𝑡 · cC · cQ ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩
]︁

⏟  ⏞  
:=𝛾𝑡

−16
√︂

2𝑡(𝑡+ 1)

𝑁
. (9.33)

Next we can use properties of the 𝑊 and 𝑉 operators to rewrite

𝑊 †≤𝑡 · 𝑉≤𝑡 =
(︁
𝑊 ·Π≤𝑡

)︁†
· 𝑉 ·Π≤𝑡 (9.34)

= Π≤𝑡 ·𝑊 † · 𝑉 ·Π≤𝑡 (9.35)

= Π≤𝑡 ·Π𝒟(𝑊 ) ·Π≤𝑡 (by Corollary 8.3)

= Π≤𝑡 ·
(︁
Πbij − (Πbij −Π𝒟(𝑊 ))

)︁
·Π≤𝑡 (9.36)

= Πbij
≤𝑡 −

(︁
Πbij
≤𝑡 −Π

𝒟(𝑊 )
≤𝑡

)︁
(Definition 23 and Claim 12)

Plugging this into 𝛾𝑡, we get

𝛾𝑡 = Re
[︁
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·Πbij
≤𝑡 · cC · cQ ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩

]︁
⏟  ⏞  

:=𝛼𝑡

(9.37)

− Re
[︁
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·
(︁
Πbij
≤𝑡 −Π

𝒟(𝑊 )
≤𝑡

)︁
· cC · cQ ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩

]︁
⏟  ⏞  

:=𝛽𝑡

(9.38)

Bounding 𝛼𝑡. Observe that

⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC
† ·Πbij

≤𝑡 (9.39)

= ⟨𝒜𝑊,D𝑡 | ·Πbij
≤𝑡 ·𝐴

†
𝑡+1 · cC

† ( Πbij
≤𝑡,LR commutes with (𝐴†𝑡+1 · cC

†)A)
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= ⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC
†. (by Fact 11)

Thus,

𝛼𝑡 = Re
[︁
⟨𝒜𝑊,D𝑡 | · cQ · |𝒜𝑉𝑡 ⟩ |init(D)⟩

]︁
≥ 1− 35𝑡2

𝑁1/4
, (9.40)

by the inductive hypothesis.

Bounding 𝛽𝑡. We will lower bound −𝛽𝑡 by upper bounding 𝛽𝑡:

𝛽𝑡 ≤
⃒⃒⃒
⟨𝒜𝑊,D𝑡 | ·𝐴†𝑡+1 · cC

† ·
(︁
Πbij
≤𝑡 −Π

𝒟(𝑊 )
≤𝑡

)︁
· cC · cQ ·𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ |init(D)⟩

⃒⃒⃒
(9.41)

≤ max
|𝑢⟩∈ℋABLRCD:‖|𝑢⟩‖2≤1
|𝑣⟩∈ℋABLR:‖|𝑣⟩‖2≤1

⃒⃒⃒
⟨𝑢| ·

(︁
Πbij
≤𝑡 −Π

𝒟(𝑊 )
≤𝑡

)︁
· cC · cQ · |𝑣⟩ |init(D)⟩

⃒⃒⃒
, (9.42)

=

(︃
max

|𝑣⟩∈ℋABLR:
‖|𝑣⟩‖2≤1

⟨𝑣| ⟨init(D)| · cQ† · cC† ·
(︁
Πbij
≤𝑡 −Π

𝒟(𝑊 )
≤𝑡

)︁
· cC · cQ · |𝑣⟩ |init(D)⟩

)︃1/2

(9.43)

=

⃦⃦⃦⃦
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·
(︁
Πbij
≤𝑡 −Π

𝒟(𝑊 )
≤𝑡

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦1/2
op

(9.44)

≤
(︁
6𝑡

√︂
𝑡

𝑁

)︁1/2
≤ 3𝑡3/4

𝑁1/4
(9.45)

where:

• the first inequality uses the fact that Re(𝑧) ≤ |𝑧|,

• the second inequality holds because cC · 𝐴𝑡+1 · |𝒜𝑊,D𝑡 ⟩ ∈ ℋABLRCD and 𝐴𝑡+1 · |𝒜𝑉𝑡 ⟩ ∈ ℋABLR

both have at most unit norm,

• the third line uses the fact that

max
|𝑢⟩:‖|𝑢⟩‖2≤1,
|𝑣⟩:‖|𝑣⟩‖2≤1

| ⟨𝑢| ·𝑀 · |𝑣⟩| =
(︁

max
|𝑣⟩:‖|𝑣⟩‖2≤1

⟨𝑣| ·𝑀 † ·𝑀 · |𝑣⟩
)︁1/2

, (9.46)

and the fact that
(︁
Πbij
≤𝑡 − Π

𝒟(𝑊 )
≤𝑡

)︁†
·
(︁
Πbij
≤𝑡 − Π

𝒟(𝑊 )
≤𝑡

)︁
= Πbij

≤𝑡 − Π
𝒟(𝑊 )
≤𝑡 , since Πbij

≤𝑡 − Π
𝒟(𝑊 )
≤𝑡 is a

projector.7

• the fourth line follows from the definitions of |init(D)⟩ , cC, cQ (Definitions 30 and 31),

• and the last line follows from Lemma 9.2.

Note that in the fourth line, we can drop the B register since the operator inside the ‖·‖op acts as
identity on B. Putting everything together, we have

Re
[︁
⟨𝒜𝑊,D𝑡+1 | · cQ ·

(︁
|𝒜𝑉𝑡+1⟩ |init(D)⟩

)︁]︁
≥ 𝛼𝑡 − 𝛽𝑡 − 16

√︂
2𝑡(𝑡+ 1)

𝑁
(9.47)

7By Fact 7, Πbij −Π𝒟(𝑊 ) is a projector. By Claim 12, Π𝒟(𝑊 ) commutes with Π≤𝑡 and by Claim 12, Πbij commutes
with Π≤𝑡 by Definition 23. Recall the fact that if Π1 and Π2 are projectors such that [Π1,Π2] = 0, then Π1 · Π2 is a
projector. Thus, since Πbij

≤𝑡 −Π
𝒟(𝑊 )
≤𝑡 = (Πbij −Π𝒟(𝑊 )) ·Π≤𝑡, we have that Πbij

≤𝑡 −Π
𝒟(𝑊 )
≤𝑡 is a projector.
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≥ 1− 35𝑡2

𝑁1/4
− 3𝑡3/4

𝑁1/4
− 16

√︂
2𝑡(𝑡+ 1)

𝑁
(9.48)

≥ 1− 1

𝑁1/4
·
(︁
35𝑡2 + 3𝑡3/4 + 16 · 2𝑡

𝑁1/4

)︁
(9.49)

≥ 1− 1

𝑁1/4
·
(︁
35𝑡2 + 35𝑡

)︁
(9.50)

≥ 1− 35(𝑡+ 1)2

𝑁1/4
, (9.51)

which establishes the claim for 𝑡+ 1. This concludes the proof.

Lemma 9.3. For any 0 ≤ 𝑡 < 𝑁 and any unitary 2-design D, we have

TD(Tr−AB |𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD ,Tr−AB |𝒜
𝑉
𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR) ≤

9𝑡

𝑁1/8
. (9.52)

Proof. Using the fact that |𝒜𝑊,D𝑡 ⟩ABLRCD and |𝒜𝑉𝑡 ⟩ABLR are subnormalized states from Fact 10 and
that TD( |𝑢⟩⟨𝑢| , |𝑣⟩⟨𝑣|) ≤ ‖ |𝑢⟩ − |𝑣⟩‖2 for subnormalized states |𝑢⟩ , |𝑣⟩, we have

TD
(︁
|𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD , cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR ⊗ |init(D)⟩⟨init(D)|CD

)︁
· cQ†LRCD

)︁2
(9.53)

≤
⃦⃦⃦
|𝒜𝑊,D𝑡 ⟩ABLR − cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩ABLR ⊗ |init(D)⟩CD

)︁⃦⃦⃦2
2

(9.54)

= ⟨𝒜𝑊,D𝑡 |𝒜𝑊,D𝑡 ⟩+ ⟨𝒜𝑉𝑡 |𝒜𝑉𝑡 ⟩ − 2Re
[︁
⟨𝒜𝑊,D𝑡 |ABLRCD · cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩ABLR ⊗ |init(D)⟩CD

)︁]︁
(9.55)

≤ 2− 2 · (1− 35𝑡2

𝑁1/4
) =

70𝑡2

𝑁1/4
. (Using Claim 18)

Therefore, using the fact that cQLRCD acts only on L,R,C,D and cQLRCD is a unitary, we obtain

TD(Tr−AB |𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD ,Tr−AB |𝒜
𝑉
𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR) (9.56)

= TD
(︁
Tr−AB |𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD ,

Tr−AB

[︁
cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR ⊗ |init(D)⟩⟨init(D)|CD

)︁
· cQ†LRCD

]︁ )︁
(9.57)

≤ TD
(︁
|𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD , cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR ⊗ |init(D)⟩⟨init(D)|CD

)︁
· cQ†LRCD

)︁
(9.58)

≤
√︂

70𝑡2

𝑁1/4
≤ 9𝑡

𝑁1/8
. (9.59)

This completes the proof.

9.3 Twirled 𝑊 and twirled pfO are indistinguishable

Let |+𝑁 !⟩P and |+3𝑁 ⟩F denote the uniform superposition over all permutations and functions, re-
spectively. We define the follow state obtained by querying twirled pfO.

Definition 34 (Twirled pfO purification). Let

|𝒜pfO,D
0 ⟩ABPFCD := |0𝑛⟩A |0

𝑚⟩B |+𝑁 !⟩P |+3𝑁 ⟩F |init(D)⟩CD , (9.60)

For 1 ≤ 𝑖 ≤ 𝑡, define

|𝒜pfO,D
𝑖 ⟩ :=

(︁
(1− 𝑏𝑖) · (cD · pfO · cC) + 𝑏𝑖 · (cD · pfO · cC)†

)︁
·𝐴𝑖 · |𝒜pfO,D

𝑖−1 ⟩ . (9.61)
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To connect twirled 𝑊 and twirled pfO, we need to define the following projections.

Definition 35. Define the projectors

̃︀Π𝒟(𝑊 ) := Comp† ·Π𝒟(𝑊 ) · Comp, (9.62)̃︀Πℐ(𝑊 ) := Comp† ·Πℐ(𝑊 ) · Comp. (9.63)

We define the following state obtained by querying twirled pfO, but depending on whether forward
or inverse query (determined by 𝑏𝑖) is made, we will add a projector.

Definition 36 (Twirled projected pfO purification). Let |𝒜̃︂pfO,D
0 ⟩ := |𝒜pfO,D

0 ⟩. For 1 ≤ 𝑖 ≤ 𝑡, define

|𝒜̃︂pfO,D
𝑖 ⟩ :=

(︁
(1− 𝑏𝑖) · (cD · pfO · ̃︀Π𝒟(𝑊 ) · cC) + 𝑏𝑖 · (cC† · pfO† · ̃︀Πℐ(𝑊 ) · cD†)

)︁
·𝐴𝑖 · |𝒜

̃︂pfO,D
𝑖−1 ⟩ . (9.64)

Claim 19. For all integers 0 ≤ 𝑡 ≤ 𝑁 ,

|𝒜𝑊,D𝑡 ⟩ABLRCD = Comp · |𝒜̃︂pfO,D
𝑡 ⟩ABPFCD . (9.65)

Proof. We prove this using induction. The base case 𝑡 = 0 follows from the fact that

Comp · |+𝑁 !⟩P |+3𝑁 ⟩F = |∅⟩L |∅⟩R . (9.66)

If |𝒜𝑊,D𝑡 ⟩ABLRCD = Comp · |𝒜̃︂pfO,D
𝑡 ⟩ABPFCD for 𝑡 > 0, then we have

|𝒜𝑊,D𝑡+1 ⟩ABLRCD (9.67)

=
(︁
(1− 𝑏𝑖) · (cD ·𝑊 · cC) + 𝑏𝑖 · (cD ·𝑊 · cC)†

)︁
·𝐴𝑖 · |𝒜𝑊,D𝑡 ⟩ABLRCD (9.68)

=
(︁
(1− 𝑏𝑖) · (cD · Comp · pfO · Comp† ·Π𝒟(𝑊 ) · cC)

+ 𝑏𝑖 · (cC† · Comp · pfO† · Comp† ·Πℐ(𝑊 ) · cD†)
)︁
·𝐴𝑖 · |𝒜𝑊,D𝑡 ⟩ABLRCD (Using Claim 13)

= Comp ·
(︁
(1− 𝑏𝑖) · (cD · pfO · ̃︀Π𝒟(𝑊 ) · cC)

+ 𝑏𝑖 · cC† · pfO† · ̃︀Πℐ(𝑊 ) · cD†
)︁
·𝐴𝑖 · Comp† · |𝒜𝑊,D𝑡 ⟩ABLRCD (9.69)

= Comp ·
(︁
(1− 𝑏𝑖) · (cD · pfO · ̃︀Π𝒟(𝑊 ) · cC)

+ 𝑏𝑖 · cC† · pfO† · ̃︀Πℐ(𝑊 ) · cD†
)︁
·𝐴𝑖 · |𝒜

̃︂pfO,D
𝑡 ⟩ABPFCD (inductive hypothesis)

= Comp · |𝒜̃︂pfO,D
𝑡+1 ⟩ABPFCD . (9.70)

This concludes the proof.

Lemma 9.4 (Norm bound). For any 0 ≤ 𝑡 < 𝑁 and any unitary 2-design D, we have

1 ≥ ⟨𝒜𝑊,D𝑡 |𝒜𝑊,D𝑡 ⟩ABLRCD ≥ 1− 70𝑡2

𝑁1/4
. (9.71)

Proof. We can utilize the following bounds,

⟨𝒜𝑊,D𝑡 |𝒜𝑊,D𝑡 ⟩ABLRCD (9.72)

≥ ⟨𝒜𝑊,D𝑡 |𝒜𝑊,D𝑡 ⟩ABLRCD · ⟨𝒜
𝑉
𝑡 |𝒜𝑉𝑡 ⟩ABLR ( ⟨𝒜𝑉𝑡 |𝒜𝑉𝑡 ⟩ABLR ≤ 1 from Fact 10)
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= ⟨𝒜𝑊,D𝑡 |𝒜𝑊,D𝑡 ⟩ABLRCD ·
(︁
⟨𝒜𝑉𝑡 |ABLR ⟨init(D)|CD

)︁
· cQ† · cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩ABLR |init(D)⟩CD

)︁
(9.73)

≥
⃒⃒⃒
⟨𝒜𝑊,D𝑡 |ABLRCD · cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩ABLR |init(D)⟩CD

)︁⃒⃒⃒2
(Cauchy-Schwarz inequality)

≥ Re
[︁
⟨𝒜𝑊,D𝑡 |ABLRCD · cQLRCD ·

(︁
|𝒜𝑉𝑡 ⟩ABLR |init(D)⟩CD

)︁]︁2
(9.74)

≥ (1− 35𝑡2

𝑁1/4
)2 ≥ 1− 70𝑡2

𝑁1/4
, (Using Claim 18)

which completes the proof.

Lemma 9.5. For all integers 0 ≤ 𝑡 ≤ 𝑁 ,

TD
(︁
Tr−AB |𝒜pfO,D

𝑡 ⟩⟨𝒜pfO,D
𝑡 |ABPFCD ,Tr−AB |𝒜

𝑊,D
𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD

)︁
≤ 9𝑡2

𝑁1/8
. (9.75)

Proof. Because Comp acts on registers P,F and maps to L,R, we have

Tr−AB |𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD = Tr−AB |𝒜
̃︂pfO,D
𝑡 ⟩⟨𝒜̃︂pfO,D

𝑡 |ABPFCD . (9.76)

Because pfO is an isometry, |𝒜pfO,D
𝑡 ⟩ABPFCD has norm 1. Furthermore, from Claim 19, because Comp

is an isometry, we have

⟨𝒜̃︂pfO,D
𝑡 |𝒜̃︂pfO,D

𝑡 ⟩ABPFCD =
⟨
𝒜𝑊,D𝑡

⃒⃒⃒
𝒜𝑊,D𝑡

⟩
ABLRCD

≤ 1. (9.77)

Together, we can obtain the following,

TD
(︁
Tr−AB |𝒜pfO,D

𝑡 ⟩⟨𝒜pfO,D
𝑡 |ABPFCD ,Tr−AB |𝒜

𝑊,D
𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD

)︁
(9.78)

= TD
(︁
Tr−AB |𝒜pfO,D

𝑡 ⟩⟨𝒜pfO,D
𝑡 |ABPFCD ,Tr−AB |𝒜

̃︂pfO,D
𝑡 ⟩⟨𝒜̃︂pfO,D

𝑡 |ABPFCD
)︁

(9.79)

≤ TD
(︁
|𝒜pfO,D

𝑡 ⟩⟨𝒜pfO,D
𝑡 |ABPFCD , |𝒜

̃︂pfO,D
𝑡 ⟩⟨𝒜̃︂pfO,D

𝑡 |ABPFCD
)︁

(9.80)

≤
⃦⃦⃦
|𝒜pfO,D

𝑡 ⟩ABPFCD − |𝒜
̃︂pfO,D
𝑡 ⟩ABPFCD

⃦⃦⃦
2

(12
⃦⃦
𝑢𝑢† − 𝑣𝑣†

⃦⃦
tr
≤ ‖𝑢− 𝑣‖2 if ‖𝑢‖2, ‖𝑣‖2 ≤ 1)

≤ 𝑡 ·
√︂

1−
⟨
𝒜̃︂pfO,D
𝑡

⃒⃒⃒
𝒜̃︂pfO,D
𝑡

⟩
ABPFCD

(Lemma 2.3 on sequential gentle measurement)

= 𝑡 ·
√︂
1−

⟨
𝒜𝑊,D𝑡

⃒⃒⃒
𝒜𝑊,D𝑡

⟩
ABLRCD

(Claim 19)

≤ 𝑡 ·
√︂

70𝑡2

𝑁1/4
≤ 9𝑡2

𝑁1/8
. (Lemma 9.4)

This concludes the proof.

9.4 Proof of Lemma 9.1

From Claim 6, we have

TrPFCD |𝒜pfO,D
𝑡 ⟩⟨𝒜pfO,D

𝑡 |ABPFCD = E
𝒪←sPRU(D)

|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |AB . (9.81)

From Lemma 9.3, we have

TD
(︁
TrLRCD |𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD ,TrLR |𝒜

𝑉
𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR

)︁
≤ 9𝑡

𝑁1/8
. (9.82)
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From Lemma 9.5, we have

TD
(︁
TrPFCD |𝒜pfO,D

𝑡 ⟩⟨𝒜pfO,D
𝑡 |ABPFCD ,TrLRCD |𝒜

𝑊,D
𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD

)︁
≤ 9𝑡2

𝑁1/8
. (9.83)

By triangle inequality, we have

TD

(︂
E

𝒪←sPRU(D)
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |AB ,TrLR |𝒜

𝑉
𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR

)︂
(9.84)

= TD
(︁
TrPFCD |𝒜pfO,D

𝑡 ⟩⟨𝒜pfO,D
𝑡 |ABPFCD ,TrLR |𝒜

𝑉
𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR

)︁
(9.85)

≤ TD
(︁
TrPFCD |𝒜pfO,D

𝑡 ⟩⟨𝒜pfO,D
𝑡 |ABPFCD ,TrLRCD |𝒜

𝑊,D
𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD

)︁
+ TD

(︁
TrLRCD |𝒜𝑊,D𝑡 ⟩⟨𝒜𝑊,D𝑡 |ABLRCD ,TrLR |𝒜

𝑉
𝑡 ⟩⟨𝒜𝑉𝑡 |ABLR

)︁
(9.86)

≤ 9𝑡(𝑡+ 1)

𝑁1/8
. (9.87)

This completes the proof of Lemma 9.1.

10 Proof of Claim 16

In this section, we prove Claim 16, which states that the symmetric path recording oracle 𝑉 is
approximately unitary invariant. For convenience, we restate the lemma below:

Lemma 10.1 (Claim 16, restated). For any 0 ≤ 𝑡 < 𝑁 , and any pair of 𝑛-qubit unitaries 𝐶,𝐷, we
have

‖𝐷A · 𝑉≤𝑡 · 𝐶A ⊗𝑄[𝐶,𝐷]LR −𝑄[𝐶,𝐷]LR · 𝑉≤𝑡‖op ≤ 16

√︂
2𝑡(𝑡+ 1)

𝑁
, (10.1)⃦⃦⃦

𝐶†A · (𝑉
†)≤𝑡 ·𝐷†A ⊗𝑄[𝐶,𝐷]LR −𝑄[𝐶,𝐷]LR · (𝑉 †)≤𝑡

⃦⃦⃦
op
≤ 16

√︂
2𝑡(𝑡+ 1)

𝑁
, (10.2)

To prove this lemma, we will define a pair of operators 𝐸𝐿 and 𝐸𝑅 that satisfy exact unitary
invariance. We will then prove that 𝐸𝐿 is close in operator norm to 𝑉 𝐿, and that 𝐸𝑅 is close
in operator norm to 𝐸𝑅. By combining these guarantees, we will show that 𝑉 𝐿 and 𝑉 𝑅 satisfy
approximate unitary invariance, which we will use to prove that 𝑉 satisfies approximate unitary
invariance.

10.1 Defining 𝐸𝐿 and 𝐸𝑅

Definition 37. Define the operator 𝐸𝐿 and 𝐸𝑅 that act on registers A, L,R as follows:

𝐸𝐿 :=
1√
𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑦⟩⟨𝑥|A ⊗
∑︁
𝐿∈ℛ

√︀
num(𝐿, (𝑥, 𝑦)) + 1 · |𝐿 ∪ {(𝑥, 𝑦)}⟩⟨𝐿|L ⊗

∑︁
𝑅∈ℛ

|𝑅⟩⟨𝑅|R . (10.3)

𝐸𝑅 :=
1√
𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑥⟩⟨𝑦|A ⊗
∑︁
𝐿∈ℛ

|𝐿⟩⟨𝐿|L ⊗
∑︁
𝑅∈ℛ

√︀
num(𝑅, (𝑥, 𝑦)) + 1 · |𝑅 ∪ {(𝑥, 𝑦)}⟩⟨𝑅|R . (10.4)

We will show that 𝐸𝐿 and 𝐸𝑅 satisfies the following unitary invariance property. To state the
property, recall that we define the operator 𝑄[𝐶,𝐷] as follows:

44



Definition 38 (Definition 27, restated). For any pair of 𝑛-qubit unitaries 𝐶,𝐷, define

𝑄[𝐶,𝐷] := (𝐶 ⊗𝐷𝑇 )⊗*L ⊗ (𝐶 ⊗𝐷†)⊗*R . (10.5)

Claim 20 (Exact unitary invariance of 𝐸𝐿 and 𝐸𝑅). For any pair of 𝑛 qubit unitaries 𝐶,𝐷, we have

𝐷A · 𝐸𝐿ALR · 𝐶A = 𝑄[𝐶,𝐷]LR · 𝐸𝐿ALR ·𝑄[𝐶,𝐷]†LR, (10.6)

𝐶†A · 𝐸
𝑅
ALR ·𝐷

†
A = 𝑄[𝐶,𝐷]LR · 𝐸𝑅ALR ·𝑄[𝐶,𝐷]†LR, (10.7)

To prove Claim 20, it will be useful to have the following alternative expressions for 𝐸𝐿 and 𝐸𝑅.

Claim 21 (Alternative form of 𝐸𝐿 and 𝐸𝑅). The 𝐸𝐿 operator can also be written as

𝐸𝐿 =
1√
𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑦⟩⟨𝑥|A ⊗
∑︁
ℓ≥0

Πℛℓ+1,L ·
(︁√

ℓ+ 1 · |𝑥, 𝑦⟩ ⊗Πℓ

)︁
L
⊗ΠℛR . (10.8)

𝐸𝑅 =
1√
𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑥⟩⟨𝑦|A ⊗ΠℛL ⊗
∑︁
𝑟≥0

Πℛ𝑟+1,R ·
(︁√

𝑟 + 1 · |𝑥, 𝑦⟩ ⊗Π𝑟

)︁
R
. (10.9)

Here Πℓ denotes the projector onto the span of length-ℓ states |𝑥1, 𝑦1, . . . , 𝑥ℓ, 𝑦ℓ⟩, and ( |𝑥, 𝑦⟩ ⊗ Πℓ)L
is the linear operator that maps

( |𝑥, 𝑦⟩ ⊗Πℓ)L · |𝑥1, 𝑦1, . . . , 𝑥ℓ, 𝑦ℓ⟩ = |𝑥, 𝑦, 𝑥1, 𝑦1, . . . , 𝑥ℓ, 𝑦ℓ⟩ . (10.10)

Proof. We will prove the statement for 𝐸𝐿, and the proof for 𝐸𝑅 will be symmetric. To establish
(10.3) = (10.8), we need to prove that for all (𝑥, 𝑦) ∈ [𝑁 ]2 and ℓ ≥ 0,∑︁

𝐿∈ℛℓ

√︀
num(𝐿, (𝑥, 𝑦)) + 1 · |𝐿 ∪ {(𝑥, 𝑦)}⟩⟨𝐿|L = Πℛℓ+1,L ·

(︁√
ℓ+ 1 · |𝑥, 𝑦⟩ ⊗Πℓ

)︁
L
. (10.11)

Since Πℛℓ+1 =
∑︀

𝑅∈ℛℓ+1
|𝑅⟩⟨𝑅| (Notation 5), we can write the right-hand side of Eq. (10.11) as∑︁

𝐿∈ℛℓ+1

|𝐿⟩⟨𝐿| ·
(︁√

ℓ+ 1 · |𝑥, 𝑦⟩ ⊗Πℓ

)︁
R

(10.12)

=
∑︁
𝐿∈ℛℓ

|𝐿 ∪ {(𝑥, 𝑦)}⟩⟨𝐿 ∪ {(𝑥, 𝑦)}| ·
(︁√

ℓ+ 1 · |𝑥, 𝑦⟩ ⊗Πℓ

)︁
R
. (10.13)

Therefore, we need to prove that for all ℓ ≥ 0 and 𝐿 ∈ ℛℓ that

⟨𝐿 ∪ {(𝑥, 𝑦)}| ·
(︁√

ℓ+ 1 · |𝑥, 𝑦⟩ ⊗Πℓ

)︁
=
√︀

num(𝐿, (𝑥, 𝑦)) · ⟨𝐿| . (10.14)

To see this, note that ⟨𝐿 ∪ {(𝑥, 𝑦)}| is a superposition over all permutations of the elements of 𝐿 ∪
{(𝑥, 𝑦)}, and thus when we right multiply by

(︁√
ℓ+ 1 · |𝑥, 𝑦⟩⊗Πℓ

)︁
, the resulting state is proportional

to ⟨𝐿|. To compute the proportionality constant, note that a(︀
ℓ−1

num(𝐿,(𝑥,𝑦))−1
)︀(︀

ℓ
num(𝐿,(𝑥,𝑦))

)︀ =
num(𝐿, (𝑥, 𝑦))

ℓ
(10.15)

fraction of the permutations of the elements of 𝐿∪{(𝑥, 𝑦)} will have (𝑥, 𝑦) in the left-most slot. Thus,

⟨𝐿 ∪ {(𝑥, 𝑦)}| ·
(︁
|𝑥, 𝑦⟩ ⊗Πℓ

)︁
=

√︀
num(𝐿, (𝑥, 𝑦))√

ℓ+ 1
· ⟨𝐿| , (10.16)

which gives Eq. (10.14) when we multiply by
√
ℓ+ 1.
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We can use Claim 21 to prove exact unitary invariance of 𝐸𝐿 and 𝐸𝑅 (Claim 20).

Proof of Claim 20. To prove Eq. (10.6), it suffices to prove that

𝐷A · 𝐸𝐿ALR · 𝐶A ⊗𝑄[𝐶,𝐷]LR = 𝑄[𝐶,𝐷]LR · 𝐸𝐿ALR. (10.17)

Recall that

𝑄[𝐶,𝐷]LR = (𝐶 ⊗𝐷𝑇 )⊗*L ⊗ (𝐶 ⊗𝐷†)⊗*R . (10.18)

Expanding the left-hand-side using the definition of𝑄[𝐶,𝐷] and the expression for𝐸 given by Claim 21,
we have

𝐷A · 𝐸𝐿ALR · 𝐶A ⊗𝑄[𝐶,𝐷]LR (10.19)

=
1√
𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

𝐷A · |𝑦⟩⟨𝑥|A · 𝐶A ⊗
∑︁
ℓ≥0

Πℛℓ+1,L · (
√
ℓ+ 1 · |𝑥, 𝑦⟩ ⊗Πℛℓ,L) · (𝐶 ⊗𝐷𝑇 )⊗ℓL (10.20)

⊗ΠℛR · (𝐶 ⊗𝐷†)⊗*R (10.21)

=
1√
𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑦⟩⟨𝑥|A ⊗
∑︁
ℓ≥0

Πℛℓ+1,L · (𝐶 ⊗𝐷𝑇 )⊗ℓ+1
L · (

√
ℓ+ 1 · |𝑥, 𝑦⟩ ⊗Πℛℓ,L) (10.22)

⊗ (𝐶 ⊗𝐷†)⊗*R ·Π
ℛ
R (10.23)

= 𝑄[𝐶,𝐷]LR · 𝐸𝐿ALR (10.24)

A similar argument works for 𝐸𝑅ALR to establish Eq. (10.7).

10.2 Approximate unitary invariance of 𝑉 𝐿 and 𝑉 𝑅

We now prove approximate unitary invariance of the operators 𝑉 𝐿 and 𝑉 𝑅. The key step is the
following lemma, which relates these operators to 𝐸𝐿 and 𝐸𝑅.

Recall that for an operator 𝑀 acting on registers L,R, the notation 𝑀≤𝑡 = 𝑀 · Π≤𝑡,LR refers to
the restriction of the operator 𝑀 to states where the combined length of the L and R components is
at most 𝑡.

Claim 22. For any positive integer 𝑡,

⃦⃦
𝑉 𝐿
≤𝑡 − 𝐸𝐿≤𝑡

⃦⃦
op
≤
√︂

2𝑡(𝑡+ 1)

𝑁
and

⃦⃦
𝑉 𝑅
≤𝑡 − 𝐸𝑅≤𝑡

⃦⃦
op
≤
√︂

2𝑡(𝑡+ 1)

𝑁
. (10.25)

Proof. We will only prove this for 𝑉 𝐿
≤𝑡, as the proof for 𝑉 𝑅

≤𝑡 is analogous. Let |𝜓⟩ALR be an arbitrary
unit-norm state in the image of IdA ⊗Π≤𝑡,LR. In particular,

|𝜓⟩ALR =
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

𝛼𝑥,𝐿,𝑅 |𝑥⟩A |𝐿⟩L |𝑅⟩R . (10.26)

where 𝛼𝑥,𝐿,𝑅 is zero whenever |𝐿 ∪𝑅| > 𝑡. It suffices to show that for any such |𝜓⟩,

⃦⃦
𝑉 𝐿 |𝜓⟩ − 𝐸𝐿ALR |𝜓⟩

⃦⃦
op
≤
√︂

2𝑡(𝑡+ 1)

𝑁
. (10.27)
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Expanding out 𝑉 𝐿 |𝜓⟩, we get

𝑉 𝐿 |𝜓⟩ =
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

𝛼𝑥,𝐿,𝑅√︀
𝑁 − |Im(𝐿 ∪𝑅)|

∑︁
𝑦∈[𝑁 ]:

𝑦 ̸∈Im(𝐿∪𝑅)

|𝑦⟩ |𝐿 ∪ {(𝑥, 𝑦)}⟩ |𝑅⟩ . (10.28)

Expanding out 𝐸𝐿ALR |𝜓⟩ALR, we get

𝐸𝐿ALR |𝜓⟩ =
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

𝛼𝑥,𝐿,𝑅√
𝑁

∑︁
𝑦∈[𝑁 ]

|𝑦⟩
√︀
num(𝐿, (𝑥, 𝑦)) + 1 · |𝐿 ∪ {(𝑥, 𝑦)}⟩ |𝑅⟩ (10.29)

Then we have

𝑉 𝐿
ALR |𝜓⟩ − 𝐸𝐿ALR |𝜓⟩ (10.30)

=
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

𝛼𝑥,𝐿,𝑅
∑︁
𝑦∈[𝑁 ]

|𝑦⟩ |𝐿 ∪ {(𝑥, 𝑦)}⟩ |𝑅⟩

(︃
𝛿𝑦 ̸∈Im(𝐿∪𝑅)√︀
𝑁 − |𝐿 ∪𝑅|

−
√︀
num(𝐿, (𝑥, 𝑦)) + 1√

𝑁

)︃
(10.31)

=
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

𝛼𝑥,𝐿,𝑅
∑︁
𝑦∈[𝑁 ]:

𝑦 ̸∈Im(𝐿∪𝑅)

|𝑦⟩ |𝐿 ∪ {(𝑥, 𝑦)}⟩ |𝑅⟩

(︃
1√︀

𝑁 − |Im(𝐿 ∪𝑅)|
− 1√

𝑁

)︃
⏟  ⏞  

:=|𝑣⟩

+
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

𝛼𝑥,𝐿,𝑅
∑︁

𝑦∈Im(𝐿∪𝑅)

|𝑦⟩ |𝐿 ∪ {(𝑥, 𝑦)}⟩ |𝑅⟩

(︃
−
√︀
num(𝐿, (𝑥, 𝑦)) + 1√

𝑁

)︃
⏟  ⏞  

:=|𝑤⟩

. (10.32)

Note that |𝑣⟩ and |𝑤⟩ are orthogonal, since |𝑣⟩ is a superposition of states |𝑦⟩ |𝐿′⟩ |𝑅⟩ where 𝑦 is in
Im(𝐿′ ∪𝑅) exactly once, while |𝑤⟩ is a superposition of states |𝑦⟩ |𝐿′⟩ |𝑅⟩ where 𝑦 is in Im(𝐿′ ∪𝑅)
at least twice. Thus, ⃦⃦

𝑉 𝐿
ALR |𝜓⟩ − 𝐸𝐿ALR |𝜓⟩

⃦⃦2
= ⟨𝑣|𝑣⟩+ ⟨𝑤|𝑤⟩ (10.33)

Bounding ⟨𝑣|𝑣⟩. By changing the order of summation, we can rewrite |𝑣⟩ as

|𝑣⟩ =
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

|𝑦⟩ |𝐿′⟩ |𝑅⟩

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

𝛼𝑥,𝐿,𝑅

(︁ 1√︀
𝑁 − |Im(𝐿 ∪𝑅)|

− 1√
𝑁

)︁)︃
, (10.34)

and thus

⟨𝑣|𝑣⟩ =
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

𝛼𝑥,𝐿,𝑅

(︁ 1√︀
𝑁 − |Im(𝐿 ∪𝑅)|

− 1√
𝑁

)︁)︃2

(10.35)

≤
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

|𝛼𝑥,𝐿,𝑅|2
)︃
·

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

(︁ 1√︀
𝑁 − |Im(𝐿 ∪𝑅)|

− 1√
𝑁

)︁2)︃
, (10.36)
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where the last inequality is by Cauchy-Schwarz. We can bound the summand by writing∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

(︁ 1√︀
𝑁 − |Im(𝐿 ∪𝑅)|

− 1√
𝑁

)︁2
=

∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

(︁√𝑁 −√︀𝑁 − |Im(𝐿 ∪𝑅)|√︀
𝑁(𝑁 − |Im(𝐿 ∪𝑅)|)

)︁2
(10.37)

≤
∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

(︁ √︀
|Im(𝐿 ∪𝑅)|√︀

𝑁(𝑁 − |Im(𝐿 ∪𝑅)|)

)︁2

(since
√
𝑎−
√
𝑏 ≤
√
𝑎− 𝑏 when 𝑎 ≥ 𝑏 ≥ 0)

=
∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

|Im(𝐿 ∪𝑅)|
𝑁(𝑁 − |Im(𝐿 ∪𝑅)|)

(10.38)

≤ (|𝐿|+ 1) · |Im(𝐿 ∪𝑅)|
𝑁(𝑁 − |Im(𝐿 ∪𝑅)|)

(10.39)

where the last inequality uses the fact that for any fixed 𝐿′, there are at most |𝐿|+1 choices of (𝑥, 𝐿)
that can satisfy 𝐿′ = 𝐿 ∪ {(𝑥, 𝑦)}. Thus,

⟨𝑣|𝑣⟩ ≤ (|𝐿|+ 1) · |Im(𝐿 ∪𝑅)|
𝑁(𝑁 − |Im(𝐿 ∪𝑅)|)

·
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦 ̸∈Im(𝐿∪𝑅)

|𝛼𝑥,𝐿,𝑅|2
)︃

(10.40)

=
(|𝐿|+ 1) · |Im(𝐿 ∪𝑅)|
𝑁(𝑁 − |Im(𝐿 ∪𝑅)|)

·
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

|𝛼𝑥,𝐿,𝑅|2 ·
(︁ ∑︁
𝑦∈[𝑁 ]

𝛿𝑦 ̸∈Im(𝐿∪𝑅)

)︁
(10.41)

≤ (|𝐿|+ 1) · |Im(𝐿 ∪𝑅)|
𝑁

·
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

|𝛼𝑥,𝐿,𝑅|2 =
(|𝐿|+ 1) · |Im(𝐿 ∪𝑅)|

𝑁
. (10.42)

Bounding ⟨𝑤|𝑤⟩. By changing the order of summation, we can rewrite |𝑤⟩ as

|𝑤⟩ =
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

|𝑦⟩ |𝐿′⟩ |𝑅⟩

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦∈Im(𝐿∪𝑅)

𝛼𝑥,𝐿,𝑅

(︁
−
√︀

num(𝐿, (𝑥, 𝑦)) + 1√
𝑁

)︁)︃
. (10.43)

Thus,

⟨𝑤|𝑤⟩ =
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

⃒⃒⃒⃒
⃒ ∑︁

(𝑥,𝐿):
𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦∈Im(𝐿∪𝑅)

𝛼𝑥,𝐿,𝑅

(︁
−
√︀
num(𝐿, (𝑥, 𝑦)) + 1√

𝑁

)︁⃒⃒⃒⃒⃒
2

(10.44)

≤
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦∈Im(𝐿∪𝑅)

|𝛼𝑥,𝐿,𝑅|2
)︃
·

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦∈Im(𝐿∪𝑅)

num(𝐿, (𝑥, 𝑦)) + 1

𝑁

)︃

(by Cauchy-Schwarz)
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≤
∑︁
𝑦∈[𝑁 ],

(𝐿′,𝑅)∈ℛ2

(︃ ∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦∈Im(𝐿∪𝑅)

|𝛼𝑥,𝐿,𝑅|2
)︃
· (|𝐿|+ 1)

𝑁
, (10.45)

where we have used the fact that for any 𝑦, 𝐿′, we have the upper bound∑︁
(𝑥,𝐿):

𝐿′=𝐿∪{(𝑥,𝑦)},
𝑦∈Im(𝐿∪𝑅)

num(𝐿, (𝑥, 𝑦)) + 1 ≤ |𝐿|+ 1, (10.46)

since each tuple in 𝐿′ increases the value of num(𝐿, (𝑥, 𝑦)) by 1 for at most one 𝑥. Thus,

⟨𝑤|𝑤⟩ = |𝐿|+ 1

𝑁
·
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

|𝛼𝑥,𝐿,𝑅|2 ·
(︁ ∑︁
𝑦∈[𝑁 ]

𝛿𝑦∈Im(𝐿∪𝑅)

)︁
(10.47)

≤ (|𝐿|+ 1) · | Im(𝐿 ∪𝑅)|
𝑁

·
∑︁
𝑥∈[𝑁 ],

(𝐿,𝑅)∈ℛ2

|𝛼𝑥,𝐿,𝑅|2 =
(|𝐿|+ 1) · | Im(𝐿 ∪𝑅)|

𝑁
. (10.48)

Putting everything together, we have that for all |𝜓⟩ALR in the image of IdAΠ≤𝑡,LR,

⃦⃦
𝑉 𝐿
ALR |𝜓⟩ − 𝐸𝐿ALR |𝜓⟩

⃦⃦
≤
√︂

2(|𝐿|+ 1) · |Im(𝐿 ∪𝑅)|
𝑁

≤
√︂

2𝑡(𝑡+ 1)

𝑁
, (10.49)

since |Im(𝐿 ∪𝑅)| ≤ 𝑡 and |𝐿|+ 1 ≤ 𝑡+ 1. This completes the claim.

Claim 23. For any positive integer 𝑡, and any pair of 𝑛-qubit unitaries 𝐶,𝐷, we have⃦⃦⃦
𝐷A · 𝑉 𝐿

≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉 𝐿
≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op
≤ 2 ·

√︂
2𝑡(𝑡+ 1)

𝑁
(10.50)⃦⃦⃦

𝐷A · 𝑉 𝑅,†
≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉 𝑅,†

≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op
≤ 2 ·

√︂
2𝑡(𝑡+ 1)

𝑁
. (10.51)

Proof. We first prove Eq. (10.50). Using Claim 20 together and the triangle inequality, we have⃦⃦⃦
𝐷A · 𝑉 𝐿

≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉 𝐿
≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op

(10.52)

≤
⃦⃦
𝐷A · 𝑉 𝐿

≤𝑡 · 𝐶A −𝐷A · 𝐸𝐿≤𝑡 · 𝐶A

⃦⃦
op

+
⃦⃦⃦
𝑄[𝐶,𝐷]LR · 𝐸𝐿≤𝑡 ·𝑄[𝐶,𝐷]†LR −𝑄[𝐶,𝐷]LR · 𝑉 𝐿

≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op

(10.53)

≤ 2 ·
⃦⃦
𝑉 𝐿
≤𝑡 − 𝐸𝐿≤𝑡

⃦⃦
op

(by unitary invariance of ‖·‖op)

≤ 2 ·
√︂

2𝑡(𝑡+ 1)

𝑁
. (by Claim 22)

Eq. (10.51) follows from a symmetric argument.

Note that with our convention that 𝑀≤𝑡 = 𝑀 · Π≤𝑡, the operator 𝑀 †≤𝑡 = (𝑀 · Π≤𝑡)† = Π≤𝑡 ·𝑀 †

is not the same as (𝑀 †)≤𝑡 =𝑀 † ·Π≤𝑡. However, since our 𝑉 𝐿 and 𝑉 𝑅 operators map Π≤𝑡 to Π≤𝑡+1,
we have the following identities,

(𝑉 𝐿,†)≤𝑡 = 𝑉 𝐿,† ·Π≤𝑡 = Π≤𝑡−1 · 𝑉 𝐿,† = 𝑉 𝐿,†
≤𝑡−1 (10.54)
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(𝑉 𝑅,†)≤𝑡 = 𝑉 𝑅,† ·Π≤𝑡 = Π≤𝑡−1 · 𝑉 𝑅,† = 𝑉 𝑅,†
≤𝑡−1. (10.55)

As a consequence, Eq. (10.51) also holds for the “mis-parenthesized” version. In particular, for any
positive integer 𝑡 and any 𝐶,𝐷, we have⃦⃦⃦

𝐷A · (𝑉 𝑅,†)≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · (𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op
≤ 2 ·

√︂
2𝑡(𝑡+ 1)

𝑁
. (10.56)

To prove the approximate unitary invariance of 𝑉 , we need to utilize the following basic lemma.

Lemma 10.2. Given any operators 𝐴,𝐵,𝐴′, 𝐵′ with operator norm bounded above by one, we have⃦⃦
𝐴 ·𝐵 −𝐴′ ·𝐵′

⃦⃦
op
≤
⃦⃦
𝐴−𝐴′

⃦⃦
op

+
⃦⃦
𝐵 −𝐵′

⃦⃦
op
. (10.57)

Proof. We can prove this lemma via triangle inequality,⃦⃦
𝐴 ·𝐵 −𝐴′ ·𝐵′

⃦⃦
op
≤
⃦⃦
𝐴 ·𝐵 −𝐴′ ·𝐵

⃦⃦
op

+
⃦⃦
𝐴′ ·𝐵 −𝐴′ ·𝐵′

⃦⃦
op

(10.58)

≤
⃦⃦
𝐴−𝐴′

⃦⃦
op
· ‖𝐵‖op +

⃦⃦
𝐴′
⃦⃦
op
·
⃦⃦
𝐵 −𝐵′

⃦⃦
op

(10.59)

≤
⃦⃦
𝐴−𝐴′

⃦⃦
op

+
⃦⃦
𝐵 −𝐵′

⃦⃦
op
. (10.60)

This completes the proof.

We start by proving the approximate unitary invariance for the projectors 𝑉 𝐿 ·𝑉 𝐿,† and 𝑉 𝑅 ·𝑉 𝑅,†.

Claim 24. For any positive integer 𝑡, and any pair of 𝑛-qubit unitaries 𝐶,𝐷, we have⃦⃦⃦⃦
𝐷A ·

(︁
𝑉 𝐿 · 𝑉 𝐿,†

)︁
≤𝑡
·𝐷†A −𝑄[𝐶,𝐷]LR ·

(︁
𝑉 𝐿 · 𝑉 𝐿,†

)︁
≤𝑡
·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
op

≤ 4 ·
√︂

2𝑡(𝑡+ 1)

𝑁
(10.61)⃦⃦⃦⃦

𝐶†A ·
(︁
𝑉 𝑅 · 𝑉 𝑅,†

)︁
≤𝑡
· 𝐶A −𝑄[𝐶,𝐷]LR ·

(︁
𝑉 𝑅 · 𝑉 𝑅,†

)︁
≤𝑡
·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
op

≤ 4 ·
√︂

2𝑡(𝑡+ 1)

𝑁
. (10.62)

Proof. By the definition of 𝑉 𝐿, we have (𝑉 𝐿 · 𝑉 𝐿,†)≤𝑡 = 𝑉 𝐿
≤𝑡−1 · 𝑉

𝐿,†
≤𝑡−1. We have⃦⃦⃦

𝐷A · 𝑉 𝐿
≤𝑡−1 · 𝑉

𝐿,†
≤𝑡−1 ·𝐷

†
A −𝑄[𝐶,𝐷]LR · 𝑉 𝐿

≤𝑡−1 · 𝑉
𝐿,†
≤𝑡−1 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op

(10.63)

=

⃦⃦⃦⃦
⃦(︁𝐷A · 𝑉 𝐿

≤𝑡−1 · 𝐶A

)︁
·
(︁
𝐶†A · 𝑉

𝐿,†
≤𝑡−1 ·𝐷

†
A

)︁
−
(︁
𝑄[𝐶,𝐷]LR · 𝑉 𝐿

≤𝑡−1 ·𝑄[𝐶,𝐷]†LR

)︁
·
(︁
𝑄[𝐶,𝐷]LR · 𝑉 𝐿,†

≤𝑡−1 ·𝑄[𝐶,𝐷]†LR

)︁⃦⃦⃦⃦⃦
op

(10.64)

≤

⃦⃦⃦⃦
⃦(︁𝐷A · 𝑉 𝐿

≤𝑡−1 · 𝐶A

)︁
−
(︁
𝑄[𝐶,𝐷]LR · 𝑉 𝐿

≤𝑡−1 ·𝑄[𝐶,𝐷]†LR

)︁⃦⃦⃦⃦⃦
op

+

⃦⃦⃦⃦
⃦(︁𝐶†A · 𝑉 𝐿,†

≤𝑡−1 ·𝐷
†
A

)︁
−
(︁
𝑄[𝐶,𝐷]LR · 𝑉 𝐿,†

≤𝑡−1 ·𝑄[𝐶,𝐷]†LR

)︁⃦⃦⃦⃦⃦
op

(by Lemma 10.2)

≤ 4 ·
√︂

2𝑡(𝑡+ 1)

𝑁
(by Claim 23)

The statement for 𝑉 𝑅 can be proven similarly. This concludes the proof of this claim.
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We can now prove approximate invariance of 𝑉 (Claim 16). By unitary invariance of ‖·‖op we can
restate lemma Claim 16 as follows.

Lemma 10.3 (Claim 16, restated). For any positive integer 𝑡, and any pair of 𝑛-qubit unitaries 𝐶,𝐷,
we have ⃦⃦⃦

𝐷A · 𝑉≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op
≤ 16

√︂
2𝑡(𝑡+ 1)

𝑁
, (10.65)⃦⃦⃦

𝐶†A · (𝑉
†)≤𝑡 ·𝐷†A −𝑄[𝐶,𝐷]LR · (𝑉 †)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op
≤ 16

√︂
2𝑡(𝑡+ 1)

𝑁
, (10.66)

Proof. We will prove the first inequality, as the second follows from a symmetric argument. From the
definition of 𝑉 , we have

𝑉 = 𝑉 𝐿 · (Id− 𝑉 𝑅 · 𝑉 𝑅,†) + (Id− 𝑉 𝐿 · 𝑉 𝐿,†) · 𝑉 𝑅,†. (10.67)

From the definitions of Π≤𝑡, 𝑉 𝐿, and 𝑉 𝑅, we note that

(𝑉 𝐿 · 𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 = 𝑉 𝐿
≤𝑡 · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡, (10.68)

(𝑉 𝐿 · 𝑉 𝐿,† · 𝑉 𝑅,†)≤𝑡 = (𝑉 𝐿 · 𝑉 𝐿,†)≤𝑡 · (𝑉 𝑅,†)≤𝑡. (10.69)

Using this fact and the definition of 𝑉 , we can apply the triangle inequality to obtain,⃦⃦⃦
𝐷A · 𝑉≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op

(10.70)

≤

⃦⃦⃦⃦
⃦𝐷A · 𝑉 𝐿

≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉 𝐿
≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

(10.71)

+

⃦⃦⃦⃦
⃦𝐷A · 𝑉 𝐿

≤𝑡 · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉 𝐿
≤𝑡 · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

(10.72)

+

⃦⃦⃦⃦
⃦𝐷A · (𝑉 𝑅,†)≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · (𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

(10.73)

+

⃦⃦⃦⃦
⃦𝐷A · (𝑉 𝐿 · 𝑉 𝐿,†)≤𝑡 · (𝑉 𝑅,†)≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · (𝑉 𝐿 · 𝑉 𝐿,†)≤𝑡 · (𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

. (10.74)

We now bound each of the four terms. The first term Eq. (10.71) is bounded above by 2 ·
√︁

2𝑡(𝑡+1)
𝑁

from Eq. (10.50). The third term Eq. (10.73) is also bounded above by 2 ·
√︁

2𝑡(𝑡+1)
𝑁 from Eq. (10.56).

The second and fourth terms Eq. (10.72), Eq. (10.74) require the use of Lemma 10.2. Hence, we can
bound the second term Eq. (10.72) as follows,⃦⃦⃦⃦

⃦𝐷A · 𝑉 𝐿
≤𝑡 · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉 𝐿

≤𝑡 · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

(10.75)

=

⃦⃦⃦⃦
⃦𝐷A · 𝑉 𝐿

≤𝑡 · 𝐶A · 𝐶†A · (𝑉
𝑅 · 𝑉 𝑅,†)≤𝑡 · 𝐶A

−𝑄[𝐶,𝐷]LR · 𝑉 𝐿
≤𝑡 ·𝑄[𝐶,𝐷]†LR ·𝑄[𝐶,𝐷]LR · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

(10.76)
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≤

⃦⃦⃦⃦
⃦𝐷A · 𝑉 𝐿

≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉 𝐿
≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

(10.77)

+

⃦⃦⃦⃦
⃦𝐶†A · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · (𝑉 𝑅 · 𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

, (10.78)

≤ 6 ·
√︂

2𝑡(𝑡+ 1)

𝑁
. (10.79)

where we used the fact that Eq. (10.77) is bounded above by 2 ·
√︁

2𝑡(𝑡+1)
𝑁 from Eq. (10.50) and

Eq. (10.78) is bounded above by 4 ·
√︁

2𝑡(𝑡+1)
𝑁 from Eq. (10.62). Similarly, we can bound the fourth

term given Eq. (10.74) using the same argument to obtain⃦⃦⃦⃦
⃦𝐷A ·𝑉 𝐿

≤𝑡 · (𝑉 𝑅 ·𝑉 𝑅,†)≤𝑡 ·𝐶A−𝑄[𝐶,𝐷]LR ·𝑉 𝐿
≤𝑡 · (𝑉 𝑅 ·𝑉 𝑅,†)≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦⃦
⃦
op

≤ 6 ·
√︂

2𝑡(𝑡+ 1)

𝑁
. (10.80)

Combining the bounds on the four terms, we obtain⃦⃦⃦
𝐷A · 𝑉≤𝑡 · 𝐶A −𝑄[𝐶,𝐷]LR · 𝑉≤𝑡 ·𝑄[𝐶,𝐷]†LR

⃦⃦⃦
op
≤ 16 ·

√︂
2𝑡(𝑡+ 1)

𝑁
. (10.81)

This completes the proof of the approximate unitary invariance of 𝑉 .

11 Proof of Lemma 9.2

In this section, we prove Lemma 9.2. For convenience, we restate the lemma below.

Lemma 11.1 (Lemma 9.2, restated). For any unitary 2-design D and integer 0 ≤ 𝑡 ≤ 𝑁 − 1, we
have ⃦⃦⃦⃦

E
𝐶,𝐷←D

(𝐶A ⊗𝑄[𝐶,𝐷]LR)
† ·
(︁
Πbij
≤𝑡,LR −Π

𝒟(𝑊 )
≤𝑡,ALR

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

≤ 6𝑡

√︂
𝑡

𝑁
, (11.1)⃦⃦⃦⃦

E
𝐶,𝐷←D

(𝐷†A ⊗𝑄[𝐶,𝐷]LR)
† ·
(︁
Πbij
≤𝑡,LR −Π

ℐ(𝑊 )
≤𝑡,ALR

)︁
· (𝐷†A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

≤ 6𝑡

√︂
𝑡

𝑁
, (11.2)

In the above expressions, Πbij
≤𝑡,LR is shorthand for IdA ⊗ Πbij

≤𝑡,LR, and thus the operators inside the
‖·‖op act on A, L,R.

11.1 The domain and image of 𝑊

In order to prove Lemma 11.1, we will first need to give an explicit characterization of the projectors
Π𝒟(𝑊 ) and Πℐ(𝑊 ).

Definition 39. Let

Π ̸∈Dom :=
∑︁

(𝐿,𝑅)∈ℛ2,
𝑥 ̸∈Dom(𝐿∪𝑅)

|𝑥⟩⟨𝑥|A ⊗ |𝐿⟩⟨𝐿|L ⊗ |𝑅⟩⟨𝑅|R (11.3)

Π ̸∈Im :=
∑︁

(𝐿,𝑅)∈ℛ2,
𝑦 ̸∈Im(𝐿∪𝑅)

|𝑦⟩⟨𝑦|A ⊗ |𝐿⟩⟨𝐿|L ⊗ |𝑅⟩⟨𝑅|R . (11.4)
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Definition 40. Let

ΠEPR := |EPR𝑁 ⟩⟨EPR𝑁 | =
(︁ 1√

𝑁

∑︁
𝑥∈[𝑁 ]

|𝑥⟩ |𝑥⟩
)︁
·
(︁ 1√

𝑁

∑︁
𝑦∈[𝑁 ]

⟨𝑦| ⟨𝑦|
)︁
. (11.5)

Notation 13. We use the notation ΠEPR

A,R
(𝑟)
X,𝑖

for the projector on registers A,R(𝑟) that applies ΠEPR

to the registers A, R
(𝑟)
X,𝑖 (where 𝑖 ∈ [𝑟]), and acts as identity on the rest of R(𝑟). The same notation

applies for ΠEPR

A,L
(ℓ)
Y,𝑖

.

Fact 12. The projectors Πℛ
2

LR and Π
dist𝑋,𝑌

LR commute, and moreover

Πbij
LR = Πℛ

2

LR ·Π
dist𝑋,𝑌

LR (11.6)

Claim 25.

Π𝒟(𝑊 ) = Πbij
LR ·

(︃
Π ̸∈Dom

ALR +
∑︁
ℓ,𝑟≥0:
ℓ+𝑟<𝑁

𝑁

𝑁 − ℓ− 𝑟
Πℓ,L ⊗

∑︁
𝑖∈[𝑟+1]

ΠEPR

A,R
(𝑟+1)
X,𝑖

)︃
·Πbij

LR (11.7)

Πℐ(𝑊 ) = Πbij
LR ·

(︃
Π ̸∈ImALR +

∑︁
ℓ,𝑟≥0:
ℓ+𝑟<𝑁

𝑁

𝑁 − ℓ− 𝑟
Π𝑟,R ⊗

∑︁
𝑖∈[ℓ+1]

ΠEPR

A,L
(ℓ+1)
Y,𝑖

)︃
·Πbij

LR (11.8)

Proof. By Fact 8,

Π𝒟(𝑊 ) = Π𝒟(𝑊
𝐿) +Πℐ(𝑊

𝑅). (11.9)

To prove Eq. (11.7), it suffices to prove

Π𝒟(𝑊
𝐿) = Πbij

LR ·Π
̸∈Dom
ALR ·Πbij

LR (11.10)

Πℐ(𝑊
𝑅) = Πbij

LR ·

(︃ ∑︁
ℓ,𝑟≥0:
ℓ+𝑟<𝑁

𝑁

𝑁 − ℓ− 𝑟
Πℓ,L ⊗

∑︁
𝑖∈[𝑟+1]

ΠEPR

A,R
(𝑟+1)
X,𝑖

)︃
·Πbij

LR (11.11)

Proof of Eq. (11.10). From the definition of 𝑊𝐿, its domain is the image of the projector

Π𝒟(𝑊
𝐿) =

∑︁
(𝐿,𝑅)∈ℛ2,dist,
�̸�∈Dom(𝐿,𝑅)

|𝑥⟩⟨𝑥|A ⊗ |𝐿⟩⟨𝐿|L ⊗ |𝑅⟩⟨𝑅|R (11.12)

=

(︃ ∑︁
(𝐿,𝑅)∈ℛ2,dist

|𝐿⟩⟨𝐿|L ⊗ |𝑅⟩⟨𝑅|R

)︃
·

(︃ ∑︁
(𝐿,𝑅)∈ℛ2,

𝑥 ̸∈Dom(𝐿∪𝑅)

|𝑥⟩⟨𝑥|A ⊗ |𝐿⟩⟨𝐿|L ⊗ |𝑅⟩⟨𝑅|R

)︃

·

(︃ ∑︁
(𝐿,𝑅)∈ℛ2,dist

|𝐿⟩⟨𝐿|L ⊗ |𝑅⟩⟨𝑅|R

)︃
(11.13)

= Πbij
LR · Π̸

∈Dom
ALR ·Πbij

LR. (11.14)
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Proof of Eq. (11.11). We can expand out

Πℐ(𝑊
𝑅) =𝑊𝑅 ·𝑊𝑅,† =𝑊𝑅 ·

∑︁
ℓ,𝑟≥0,
ℓ+𝑟<𝑁

Πℓ,𝑟,LR ·𝑊𝑅,† (11.15)

=
∑︁
ℓ,𝑟≥0,
ℓ+𝑟<𝑁

𝑊𝑅
ℓ,𝑟 ·𝑊

𝑅,†
ℓ,𝑟 (11.16)

where the second equality uses the fact that the domain of 𝑊𝑅 is contained in the image of the
projector

∑︀
ℓ,𝑟≥0,ℓ+𝑟<𝑁 Πℓ,𝑟,LR, i.e., 𝑊𝑅 is only defined on states where the L and R registers have

sizes ℓ, 𝑟 ≥ 0 where ℓ+ 𝑟 < 𝑁 . Thus, it suffices to prove that for all ℓ, 𝑟 ≥ 0 such that ℓ+ 𝑟 < 𝑁 that

𝑊𝑅
ℓ,𝑟 ·𝑊

𝑅,†
ℓ,𝑟 =

𝑁

𝑁 − ℓ− 𝑟
Πbij
ℓ,𝑟+1,LR ·

(︃
Πℓ,L ⊗

∑︁
𝑖∈[𝑟+1]

ΠEPR

A,R
(𝑟+1)
X,𝑖

)︃
·Πbij

ℓ,𝑟+1,LR, (11.17)

where we use our notational convention that for an operator 𝐵 acting on a variable-length registers
L,R, the operator 𝐵ℓ,𝑟 = 𝐵 · Πℓ,𝑟,LR is the restriction of 𝐵 to states where the L register is length ℓ
and the R register is length 𝑟.

We will do this by relating 𝑊𝑅 to the 𝐸𝑅 operator defined in Definition 37. From the definition
of 𝑊𝑅 in Definition 22, we immediately have:

𝑊𝑅
ℓ,𝑟 :=

1√
𝑁 − ℓ− 𝑟

∑︁
(𝐿,𝑅)∈ℛ2,dist,
|𝐿|=ℓ,|𝑅|=𝑟,
�̸�∈Dom(𝐿∪𝑅),
𝑦 ̸∈Im(𝐿∪𝑅)

|𝑥⟩⟨𝑦|A ⊗ |𝐿⟩⟨𝐿|L ⊗ |𝑅 ∪ {(𝑥, 𝑦)}⟩⟨𝑅|R (11.18)

Using Eq. (10.4) for 𝐸𝑅, we have

𝐸𝑅ℓ,𝑟 =
1√
𝑁

∑︁
(𝐿,𝑅)∈ℛ2,
|𝐿|=ℓ,|𝑅|=𝑟,
𝑥,𝑦∈[𝑁 ]

√︀
num(𝑅, (𝑥, 𝑦)) + 1 · |𝑥⟩⟨𝑦|A ⊗ |𝐿⟩⟨𝐿|L ⊗ |𝑅 ∪ {(𝑥, 𝑦)}⟩⟨𝑅|R (11.19)

By inspection, we can see that

𝑊𝑅
ℓ,𝑟 =

√
𝑁√

𝑁 − ℓ− 𝑟
·Πbij

ℓ,𝑟+1,LR · 𝐸
𝑅
ℓ,𝑟, (11.20)

since multiplying by Πbij restricts the sum in Eq. (11.19) to 𝑥, 𝑦, 𝐿,𝑅 such that (𝐿,𝑅) ∈ ℛ2,dist,
𝑦 ̸∈ Im(𝐿∪𝑅), and and 𝑥 ̸∈ Dom(𝐿∪𝑅), and for all such 𝑥, 𝑦, 𝐿,𝑅, we have

√︀
num(𝑅, (𝑥, 𝑦)) + 1 = 1.

Now, recall from Eq. (10.9) in Claim 21 that 𝐸𝑅ℓ,𝑟 can be also be written as

𝐸𝑅ℓ,𝑟 =
1√
𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑥⟩⟨𝑦|A ⊗Πℛℓ,L ⊗Πℛ𝑟+1,R ·
(︁√

𝑟 + 1 · |𝑥, 𝑦⟩ ⊗Π𝑟

)︁
R
. (11.21)

And thus, we have the following expression for 𝐸𝑅ℓ,𝑟

𝐸𝑅ℓ,𝑟 · 𝐸
𝑅,†
ℓ,𝑟 (11.22)

=
(︁ 1√

𝑁

∑︁
𝑥,𝑦∈[𝑁 ]

|𝑥⟩⟨𝑦|A ⊗Πℛℓ,L ⊗Πℛ𝑟+1,R ·
(︁√

𝑟 + 1 · |𝑥, 𝑦⟩ ⊗Π𝑟

)︁
R

)︁
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·
(︁ 1√

𝑁

∑︁
𝑥′,𝑦′∈[𝑁 ]

|𝑦′⟩⟨𝑥′|A ⊗Πℛℓ,L ⊗
(︁√

𝑟 + 1 · ⟨𝑥′, 𝑦′| ⊗Π𝑟

)︁
R
·Πℛ𝑟+1,R

)︁
(11.23)

=
1

𝑁

∑︁
𝑥,𝑥′∈[𝑁 ]

|𝑥⟩⟨𝑥′|A ⊗Πℛℓ,L ⊗Πℛ𝑟+1,R ·
(︁
(𝑟 + 1) · |𝑥⟩⟨𝑥′|

R
(𝑟+1)
X,1

⊗
∑︁
𝑦

|𝑦⟩⟨𝑦|
R
(𝑟+1)
Y,1

⊗Π𝑟

)︁
R
·Πℛ𝑟+1,R

(11.24)

=
1

𝑁

∑︁
𝑥,𝑥′∈[𝑁 ]

|𝑥⟩⟨𝑥′|A ⊗Πℛℓ,L ⊗Πℛ𝑟+1,R ·
(︁ ∑︁
𝑖∈[𝑟+1]

|𝑥⟩⟨𝑥′|
R
(𝑟+1)
X,𝑖

⊗
∑︁
𝑦

|𝑦⟩⟨𝑦|
R
(𝑟+1)
Y,𝑖

⊗Π𝑟

)︁
R
·Πℛ𝑟+1,R

(11.25)

= Πℛ
2

ℓ,𝑟+1,LR ·
(︁
Πℓ,L ⊗

∑︁
𝑖∈[𝑟+1]

ΠEPR

A,R
(𝑟+1)
X,𝑖

)︁
·Πℛ2

ℓ,𝑟+1,LR. (11.26)

And thus, combining this with Eq. (11.20), we obtain

𝑊𝑅
ℓ,𝑟 ·𝑊

𝑅,†
ℓ,𝑟 (11.27)

=
𝑁

𝑁 − ℓ− 𝑟
Πbij
ℓ,𝑟+1,LR ·

(︃
Πℛ

2

ℓ,𝑟+1,LR ·
(︁
Πℓ,L ⊗

∑︁
𝑖∈[𝑟+1]

ΠEPR

A,R
(𝑟+1)
X,𝑖

)︁
·Πℛ2

ℓ,𝑟+1,LR

)︃
·Πbij

ℓ,𝑟+1,LR (11.28)

=
𝑁

𝑁 − ℓ− 𝑟
Πbij
ℓ,𝑟+1,LR ·

(︃
Πℓ,L ⊗

∑︁
𝑖∈[𝑟+1]

ΠEPR

A,R
(𝑟+1)
X,𝑖

)︃
·Πbij

ℓ,𝑟+1,LR. (11.29)

This concludes the proof.

Definition 41. Define

𝑃
𝒟(𝑊 )
ALR = Π

dist𝑋,𝑌

LR ·

(︃
Π ̸∈Dom

ALR +
∑︁
ℓ,𝑟≥0:
ℓ+𝑟<𝑁

𝑁

𝑁 − ℓ− 𝑟
Πℓ,L ⊗

∑︁
𝑖∈[𝑟+1]

ΠEPR

A,R
(𝑟+1)
X,𝑖

)︃
·Πdist𝑋,𝑌

LR (11.30)

𝑃
ℐ(𝑊 )
ALR = Π

dist𝑋,𝑌

LR ·

(︃
Π ̸∈Dom

ALR +
∑︁
ℓ,𝑟≥0:
ℓ+𝑟<𝑁

𝑁

𝑁 − ℓ− 𝑟
Π𝑟,R ⊗

∑︁
𝑖∈[ℓ+1]

ΠEPR

A,L
(ℓ+1)
Y,𝑖

)︃
·Πdist𝑋,𝑌

LR (11.31)

Combining Claim 25, Definition 41, and Fact 12, we have the following corollary.

Corollary 11.1.

Π𝒟(𝑊 ) = Πℛ
2 · 𝑃𝒟(𝑊 ) ·Πℛ2

(11.32)

Πℐ(𝑊 ) = Πℛ
2 · 𝑃 ℐ(𝑊 ) ·Πℛ2

(11.33)

11.2 An operator upper bound

Claim 26. For any non-negative integers ℓ, 𝑟,

Π
dist𝑋,𝑌

ℓ,𝑟,LR − 𝑃𝒟(𝑊 )
ℓ,𝑟,ALR ⪯

𝑁

𝑁 − ℓ− 𝑟 + 1

(︃∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

+
∑︁
𝑖∈[𝑟]

(︂
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︂
+ 2𝑟

√︂
ℓ+ 𝑟

𝑁
IdALR

)︃
(11.34)

Π
dist𝑋,𝑌

ℓ,𝑟,LR − 𝑃 ℐ(𝑊 )
ℓ,𝑟,ALR ⪯

𝑁

𝑁 − ℓ− 𝑟 + 1

(︃∑︁
𝑖∈[𝑟]

Πeq

A,R
(𝑟)
Y,𝑖

+
∑︁
𝑖∈[ℓ]

(︂
Πeq

A,L
(ℓ)
Y,𝑖

−ΠEPR

A,L
(ℓ)
Y,𝑖

)︂
+ 2ℓ

√︂
ℓ+ 𝑟

𝑁
IdALR

)︃
(11.35)
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Proof. We will prove the first inequality, and the second will follow from a symmetric argument. We
begin by writing out 𝑃𝒟(𝑊 )

ℓ,𝑟,ALR as

𝑃
𝒟(𝑊 )
ℓ,𝑟,ALR = Π

dist𝑋,𝑌

LR ·

(︃
Π ̸∈Dom

ALR +
∑︁

ℓ′,𝑟′≥0:
ℓ′+𝑟′<𝑁

𝑁

𝑁 − ℓ′ − 𝑟′
Πℓ′,L ⊗

∑︁
𝑖∈[𝑟′+1]

ΠEPR

A,R
(𝑟′+1)
X,𝑖

)︃
·Πdist𝑋,𝑌

LR ·Πℓ,𝑟,LR

(11.36)

= Π
dist𝑋,𝑌

ℓ,𝑟,LR ·

(︃
Π ̸∈Dom
ℓ,𝑟,ALR +

𝑁

𝑁 − ℓ− 𝑟 + 1
Πℓ,L ⊗

∑︁
𝑖∈[𝑟]

ΠEPR

A,R
(𝑟)
X,𝑖

)︃
·Πdist𝑋,𝑌

ℓ,𝑟,LR , (11.37)

where the second equality uses the fact that Πℓ,𝑟,LR commutes with every other projector in the above
expression. Note that in the special case where 𝑟 = 0, the above expression simplifies to

Π
dist𝑋,𝑌

ℓ,𝑟,LR ·Π ̸∈Dom
ℓ,𝑟,ALR ·Π

dist𝑋,𝑌

ℓ,𝑟,LR . (11.38)

Next, we use our expression for 𝑃𝒟(𝑊 )
ℓ,𝑟,ALR to expand out

Π
dist𝑋,𝑌

ℓ,𝑟,LR − 𝑃𝒟(𝑊 )
ℓ,𝑟,ALR = Π

dist𝑋,𝑌

ℓ,𝑟,LR ·

(︃
Πℓ,𝑟,LR −Π ̸∈Dom

ℓ,𝑟,ALR −
𝑁

𝑁 − ℓ− 𝑟 + 1

∑︁
𝑖∈[𝑟]

ΠEPR

A,R
(𝑟)
X,𝑖

)︃
·Πdist𝑋,𝑌

ℓ,𝑟,LR . (11.39)

Using the definition of Π ̸∈Dom
ℓ,𝑟 , we have

Πℓ,𝑟,LR −Π ̸∈Dom
ℓ,𝑟,ALR ⪯

∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

+
∑︁
𝑖∈[𝑟]

Πeq

A,R
(𝑟)
X,𝑖

. (11.40)

This inequality holds because any state in the image of Πℓ,𝑟,LR− Π̸∈Dom must have a collision between
the A register and at least one of the registers {L(ℓ)X,𝑖}𝑖∈[ℓ]∪{R

(𝑟)
X,𝑖}𝑖∈[𝑟], and will therefore be in the image

of at least one of the projectors on the right-hand-side. Plugging this inequality into Eq. (11.39), we
have

Π
dist𝑋,𝑌

ℓ,𝑟,LR − 𝑃𝒟(𝑊 )
ℓ,𝑟,ALR (11.41)

⪯ Π
dist𝑋,𝑌

ℓ,𝑟,LR ·

(︃∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

+
∑︁
𝑖∈[𝑟]

Πeq

A,R
(𝑟)
X,𝑖

− 𝑁

𝑁 − ℓ− 𝑟 + 1

∑︁
𝑖∈[𝑟]

ΠEPR

A,R
(𝑟)
X,𝑖

)︃
·Πdist𝑋,𝑌

ℓ,𝑟,LR (11.42)

⪯ 𝑁

𝑁 − ℓ− 𝑟 + 1

(︃
Π

dist𝑋,𝑌

ℓ,𝑟,LR ·
(︁∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

)︁
·Πdist𝑋,𝑌

ℓ,𝑟,LR

)︃
⏟  ⏞  

Term1

+
𝑁

𝑁 − ℓ− 𝑟 + 1

(︃
Π

dist𝑋,𝑌

ℓ,𝑟,LR ·
(︁∑︁
𝑖∈[𝑟]

(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁)︁
·Πdist𝑋,𝑌

ℓ,𝑟,LR

)︃
⏟  ⏞  

Term2

. (11.43)

Comparing (11.43) to the right-hand side of Eq. (11.34), it suffices to prove that:

Term1 ⪯
∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

, (11.44)

Term2 ⪯
∑︁
𝑖∈[𝑟]

(︂
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︂
+ 2𝑟

√︂
ℓ+ 𝑟

𝑁
IdALR. (11.45)
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Bounding the first term. To prove Eq. (11.44), it suffices to prove for each 𝑖 ∈ [ℓ],

Π
dist𝑋,𝑌

ℓ,𝑟,LR ·Πeq

A,L
(ℓ)
X,𝑖

·Πdist𝑋,𝑌

ℓ,𝑟,LR ⪯ Πeq

A,L
(ℓ)
X,𝑖

. (11.46)

This holds because Πeq

A,L
(ℓ)
X,𝑖

commutes with Π
dist𝑋,𝑌

ℓ,𝑟,LR (since both are diagonal in the standard basis)

and thus:

Π
dist𝑋,𝑌

ℓ,𝑟,LR ·Πeq

A,L
(ℓ)
X,𝑖

·Πdist𝑋,𝑌

ℓ,𝑟,LR = Πeq

A,L
(ℓ)
X,𝑖

·Πdist𝑋,𝑌

ℓ,𝑟,LR ·Πeq

A,L
(ℓ)
X,𝑖

⪯ Πeq

A,L
(ℓ)
X,𝑖

·Πℓ,𝑟,LR ·Πeq

A,L
(ℓ)
X,𝑖

= Πeq

A,L
(ℓ)
X,𝑖

. (11.47)

Bounding the second term. To prove Eq. (11.45), it suffices to prove for each 𝑖 ∈ [𝑟],

Π
dist𝑋,𝑌

ℓ,𝑟,LR ·
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
·Πdist𝑋,𝑌

ℓ,𝑟,LR ⪯
(︂
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︂
+ 2

√︂
ℓ+ 𝑟

𝑁
IdALR (11.48)

Note that Πdist𝑋,𝑌

ℓ,𝑟,LR and
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
do not commute, so we cannot simply apply the argument

we used to bound the first term. However, these two operators almost commute. In particular,⃦⃦⃦⃦
Π

dist𝑋,𝑌

ℓ,𝑟,LR ·
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
−
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
·Πdist𝑋,𝑌

ℓ,𝑟,LR

⃦⃦⃦⃦
op

≤
√︂
ℓ+ 𝑟

𝑁
. (11.49)

We prove Eq. (11.49) in Claim 27, which follows this proof. To simplify notation for the following
steps, let us write 𝐴 := Π

dist𝑋,𝑌

ℓ,𝑟,LR and 𝐵 := Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

. Note that 𝐵 is a projector because ΠEPR

A,R
(𝑟)
X,𝑖

projects onto a subspace of the image of Πeq

A,R
(𝑟)
X,𝑖

.

Using the definition of operator norm, we have

𝐴 ·𝐵 ·𝐴−𝐵 ·𝐴 ·𝐵 ⪯ ‖𝐴 ·𝐵 ·𝐴−𝐵 ·𝐴 ·𝐵‖op · Id. (11.50)

Adding 𝐵 ·𝐴 ·𝐵 to both sides, we get

𝐴 ·𝐵 ·𝐴 ⪯ 𝐵 ·𝐴 ·𝐵 + ‖𝐴 ·𝐵 ·𝐴−𝐵 ·𝐴 ·𝐵‖op · Id (11.51)

⪯ 𝐵 + ‖𝐴 ·𝐵 ·𝐴−𝐵 ·𝐴 ·𝐵‖op · Id, (11.52)

where the second inequality uses the fact that 𝐵 ·𝐴 ·𝐵 ⪯ 𝐵 · Id ·𝐵 = 𝐵 for projectors 𝐴 and 𝐵. Now,

‖𝐴 ·𝐵 ·𝐴−𝐵 ·𝐴 ·𝐵‖op ≤ ‖𝐴 ·𝐵 ·𝐴−𝐴 ·𝐵 ·𝐴 ·𝐵‖op + ‖𝐴 ·𝐵 ·𝐴 ·𝐵 −𝐵 ·𝐴 ·𝐵‖op
(triangle inequality)

= ‖𝐴 ·𝐵 · (𝐵 ·𝐴−𝐴 ·𝐵)‖op + ‖(𝐴 ·𝐵 −𝐵 ·𝐴) ·𝐴 ·𝐵‖op
(since 𝐴2 = 𝐴 and 𝐵2 = 𝐵)

≤ ‖𝐴 ·𝐵‖op · ‖𝐵 ·𝐴−𝐴 ·𝐵‖op + ‖𝐴 ·𝐵 −𝐵 ·𝐴‖op · ‖𝐴 ·𝐵‖op (11.53)

≤ ‖𝐵 ·𝐴−𝐴 ·𝐵‖op + ‖𝐴 ·𝐵 −𝐵 ·𝐴‖op (11.54)

≤ 2

√︂
ℓ+ 𝑟

𝑁
(by Claim 27)

Plugging this inequality into Eq. (11.52), and plugging in 𝐴 = Π
dist𝑋,𝑌

ℓ,𝑟,LR and 𝐵 = Πeq

A,R
(𝑟)
X,𝑖

− ΠEPR

A,R
(𝑟)
X,𝑖

yields Eq. (11.48). This completes the proof.
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We now prove Claim 27, which we used in the previous proof.

Claim 27. For any integers ℓ, 𝑟 ≥ 0 such that ℓ+ 𝑟 ≤ 𝑁 and any index 𝑖 ∈ [𝑟] (if such an 𝑖 exists8),
we have ⃦⃦⃦⃦

Π
dist𝑋,𝑌

ℓ,𝑟,LR ·
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
−
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
·Πdist𝑋,𝑌

ℓ,𝑟,LR

⃦⃦⃦⃦
op

≤
√︂
ℓ+ 𝑟

𝑁
. (11.55)

Similarly, for any integers ℓ, 𝑟 ≥ 0 such that ℓ+ 𝑟 ≤ 𝑁 , and any index 𝑖 ∈ [ℓ] (if such an 𝑖 exists), we
have ⃦⃦⃦⃦

Π
dist𝑋,𝑌

ℓ,𝑟,LR ·
(︁
Πeq

A,L
(ℓ)
Y,𝑖

−ΠEPR

A,L
(ℓ)
Y,𝑖

)︁
−
(︁
Πeq

A,L
(ℓ)
Y,𝑖

−ΠEPR

A,L
(ℓ)
Y,𝑖

)︁
·Πdist𝑋,𝑌

ℓ,𝑟,LR

⃦⃦⃦⃦
op

≤
√︂
ℓ+ 𝑟

𝑁
. (11.56)

Proof. We will prove the first inequality, and the second will follow from a symmetric argument.
Assume without loss of generality that 𝑖 = 1. Since Π

dist𝑋,𝑌

ℓ,𝑟,LR and Πeq

A,R
(𝑟)
X,1

commute,

Π
dist𝑋,𝑌

ℓ,𝑟,LR ·
(︁
Πeq

A,R
(𝑟)
X,1

−ΠEPR

A,R
(𝑟)
X,1

)︁
−
(︁
Πeq

A,R
(𝑟)
X,1

−ΠEPR

A,R
(𝑟)
X,1

)︁
·Πdist𝑋,𝑌

ℓ,𝑟,LR (11.57)

= ΠEPR

A,R
(𝑟)
X,1

·Πdist𝑋,𝑌

ℓ,𝑟,LR −Π
dist𝑋,𝑌

ℓ,𝑟,LR ·ΠEPR

A,R
(𝑟)
X,1

. (11.58)

We will write down an explicit expression for the operator ΠEPR

A,R
(𝑟)
X,1

·Πdist𝑋,𝑌

ℓ,𝑟,LR −Π
dist𝑋,𝑌

ℓ,𝑟,LR ·Π
EPR

A,R
(𝑟)
X,1

, which

we will then use to bound the operator norm.
We can expand out Π

dist𝑋,𝑌

ℓ,𝑟,LR as

Π
dist𝑋,𝑌

ℓ,𝑟,LR =
∑︁

(𝑥,𝑥′)∈[𝑁 ]ℓ+𝑟
dist ,

(𝑦,𝑦′)∈[𝑁 ]ℓ+𝑟
dist

|𝑥, 𝑦⟩⟨𝑥, 𝑦|L(ℓ) ⊗ |𝑥
′, 𝑦′⟩⟨𝑥′, 𝑦′|R(𝑟) , (11.59)

where in the above sum, 𝑥, 𝑦 ∈ [𝑁 ]ℓ, 𝑥′, 𝑦′ ∈ [𝑁 ]𝑟, and |𝑥, 𝑦⟩L(ℓ) = |𝑥1, 𝑦1, . . . , 𝑥ℓ, 𝑦ℓ⟩L(ℓ) .
We can then expand out

(IdA ⊗Π
dist𝑋,𝑌

ℓ,𝑟,LR ) ·ΠEPR

A,R
(𝑟)
X,1

(11.60)

=

(︃ ∑︁
(𝑥,𝑥′)∈[𝑁 ]ℓ+𝑟

dist ,

(𝑦,𝑦′)∈[𝑁 ]ℓ+𝑟
dist

|𝑥, 𝑦⟩⟨𝑥, 𝑦|L(ℓ) ⊗ |𝑥
′, 𝑦′⟩⟨𝑥′, 𝑦′|R(𝑟)

)︃
·

(︃
1

𝑁

∑︁
𝑢,𝑣∈[𝑁 ]

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

)︃
(11.61)

=
∑︁

(𝑥,𝑥′
[2,𝑟]

)∈[𝑁 ]ℓ+𝑟−1
dist ,

(𝑦,𝑦′)∈[𝑁 ]ℓ+𝑟
dist

|𝑥, 𝑦⟩⟨𝑥, 𝑦|L(ℓ) ⊗ |𝑥
′
[2:𝑟], 𝑦

′⟩⟨𝑥′[2:𝑟], 𝑦
′|
R∖R(𝑟)

X,1

⊗ 1

𝑁

∑︁
𝑣∈[𝑁 ],

�̸�∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

,

(11.62)

where 𝑥′[2,𝑟] ∈ [𝑁 ]𝑟−1, the notation 𝑢 ̸∈ {𝑥, 𝑥′[2,𝑟]} means 𝑢 must be distinct from each element of 𝑥

and 𝑥′[2,𝑟], and R ∖ R(𝑟)
X,1 refers to all of the registers R = (R

(𝑟)
X,1,R

(𝑟)
Y1
, . . . ,R

(𝑟)
X,𝑟,R

(𝑟)
Y𝑟

) except for R
(𝑟)
X,1.

8Note that [𝑟] := {1, 2, . . . , 𝑟}, so no 𝑖 exists when 𝑟 = 0. But in this case, the bound is trivially satisfied.
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Next, to get an explicit expression for ΠEPR

A,R
(𝑟)
X,1

·Πdist𝑋,𝑌

ℓ,𝑟,LR , we can just take the conjugate transpose

of Eq. (11.62). By exploiting symmetry, we can write the result in such a way that it looks nearly
identical to (11.62), except for the part highlighted in red.

ΠEPR

A,R
(𝑟)
X,1

· (IdA ⊗Π
dist𝑋,𝑌

ℓ,𝑟,LR ) (11.63)

=
∑︁

(𝑥,𝑥′
[2,𝑟]

)∈[𝑁 ]ℓ+𝑟−1
dist ,

(𝑦,𝑦′)∈[𝑁 ]ℓ+𝑟
dist

|𝑥, 𝑦⟩⟨𝑥, 𝑦|L(ℓ) ⊗ |𝑥
′
[2:𝑟], 𝑦

′⟩⟨𝑥′[2:𝑟], 𝑦
′|
R∖R(𝑟)

X,1

⊗ 1

𝑁

∑︁
𝑢∈[𝑁 ],

𝑣 ̸∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

.

(11.64)

Subtracting (11.62) from (11.64), we get

ΠEPR

A,R
(𝑟)
X,1

· (IdA ⊗Π
dist𝑋,𝑌

ℓ,𝑟,LR )− (IdA ⊗Π
dist𝑋,𝑌

ℓ,𝑟,LR ) ·ΠEPR

A,R
(𝑟)
X,1

(11.65)

=
∑︁

(𝑥,𝑥′
[2,𝑟]

)∈[𝑁 ]ℓ+𝑟−1
dist ,

(𝑦,𝑦′)∈[𝑁 ]ℓ+𝑟
dist

|𝑥, 𝑦⟩⟨𝑥, 𝑦|L(ℓ) ⊗ |𝑥
′
[2:𝑟], 𝑦

′⟩⟨𝑥′[2:𝑟], 𝑦
′|
R∖R(𝑟)

X,1

⊗ 1

𝑁

∑︁
𝑢∈[𝑁 ],

𝑣 ̸∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

− 1

𝑁

∑︁
𝑣∈[𝑁 ],

�̸�∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

. (11.66)

Since this is a block diagonal matrix with blocks indexed by 𝑥, 𝑦, 𝑥′[2:𝑟], 𝑦
′, the operator norm is⃦⃦⃦⃦

ΠEPR

A,R
(𝑟)
X,1

· (IdA ⊗Π
dist𝑋,𝑌

ℓ,𝑟,LR )− (IdA ⊗Π
dist𝑋,𝑌

ℓ,𝑟,LR ) ·ΠEPR

A,R
(𝑟)
X,1

⃦⃦⃦⃦
op

(11.67)

= max
(𝑥,𝑥′

[2,𝑟]
)∈[𝑁 ]ℓ+𝑟−1

dist ,

(𝑦,𝑦′)∈[𝑁 ]ℓ+𝑟
dist

⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
𝑢∈[𝑁 ],

𝑣 ̸∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

− 1

𝑁

∑︁
𝑣∈[𝑁 ],

�̸�∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

⃦⃦⃦⃦
⃦
op

. (11.68)

Fix any choice of (𝑥, 𝑥′[2,𝑟]) ∈ [𝑁 ]ℓ+𝑟−1dist , (𝑦, 𝑦′) ∈ [𝑁 ]ℓ+𝑟dist . We can rewrite

1

𝑁

∑︁
𝑢∈[𝑁 ],

𝑣 ̸∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

− 1

𝑁

∑︁
𝑣∈[𝑁 ],

�̸�∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

(11.69)

=
1

𝑁

∑︁
𝑢∈{𝑥,𝑥′

[2,𝑟]
},

𝑣 ̸∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

− 1

𝑁

∑︁
�̸�∈{𝑥,𝑥′

[2,𝑟]
},

𝑣∈{𝑥,𝑥′
[2,𝑟]
}

|𝑢⟩⟨𝑣|A ⊗ |𝑢⟩⟨𝑣|R(𝑟)
X,1

(11.70)

=

√︀
(𝑁 − 𝑟 − ℓ+ 1)(𝑟 + ℓ− 1)

𝑁

(︁
|𝜑⟩⟨𝜓| − |𝜓⟩⟨𝜑|

)︁
, (11.71)

where |𝜓⟩ and |𝜑⟩ are the following vectors

|𝜓⟩ := 1√
𝑁 − 𝑟 − ℓ+ 1

∑︁
�̸�∈{𝑥,𝑥′

[2,𝑟]
}

|𝑢⟩A |𝑢⟩R(𝑟)
X,1

, (11.72)

|𝜑⟩ := 1√
𝑟 + ℓ− 1

∑︁
𝑢∈{𝑥,𝑥′

[2,𝑟]
}

|𝑢⟩A |𝑢⟩R(𝑟)
X,1

, (11.73)
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Note that if 𝑟 = 1 and ℓ = 0, these vectors have norm 0 and we are done. For all other choices of
𝑟 ≥ 1, ℓ ≥ 0 such that 𝑟 + ℓ ≤ 𝑁 , these are orthogonal unit vectors, and thus |𝜓⟩⟨𝜑| − |𝜑⟩⟨𝜓| has
operator norm 1. It follows that the overall operator norm is at most√︀

(𝑁 − 𝑟 − ℓ+ 1)(𝑟 + ℓ− 1)

𝑁
≤
√︂
ℓ+ 𝑟

𝑁
. (11.74)

which completes the proof.

11.3 An intermediate lemma on 2-design twirling

Claim 28 (Twirling). For any unitary 2-design D and any non-negative integers ℓ, 𝑟,⃦⃦⃦⃦
⃦⃦ E
𝐶,𝐷←D

(𝐶A ⊗𝑄[𝐶,𝐷]LR)
† ·

(︃∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

+
∑︁
𝑖∈[𝑟]

(︂
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︂)︃
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
⃦⃦
op

≤ 2ℓ+ 𝑟

𝑁 + 1
, (11.75)⃦⃦⃦⃦

⃦⃦ E
𝐶,𝐷←D

(𝐷†A ⊗𝑄[𝐶,𝐷]LR)
† ·

(︃∑︁
𝑖∈[𝑟]

Πeq

A,R
(𝑟)
X,𝑖

+
∑︁
𝑖∈[ℓ]

(︂
Πeq

A,L
(ℓ)
X,𝑖

−ΠEPR

A,L
(ℓ)
X,𝑖

)︂)︃
· (𝐷†A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
⃦⃦
op

≤ 2𝑟 + ℓ

𝑁 + 1
. (11.76)

Before we prove Claim 28, let us recall the following claims that were proven in the preliminaries.

Claim 29 (Claim 1, restated). For any 𝑛-qubit unitary 2-design D,

E
𝑈←D

[︁
(𝑈 ⊗ 𝑈)† ·Πeq · (𝑈 ⊗ 𝑈)

]︁
=

2

𝑁 + 1
·Π𝑁,2sym. (11.77)

Claim 30 (Claim 2, restated). For any 𝑛-qubit unitary 2-design D,

E
𝑈←D

[︁
(𝑈 ⊗ 𝑈)† ·

(︁
Πeq −ΠEPR

)︁
· (𝑈 ⊗ 𝑈)

]︁
=

1

𝑁 + 1
· (Id−ΠEPR). (11.78)

Proof of Claim 28. We prove the first inequality, and the proof for the second one is symmetric. By
the triangle inequality,⃦⃦⃦⃦

⃦⃦ E
𝐶,𝐷←D

(𝐶A ⊗𝑄[𝐶,𝐷]LR)
† ·

(︃∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

+
∑︁
𝑖∈[𝑟]

(︂
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︂)︃
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
⃦⃦
op

(11.79)

≤
∑︁
𝑖∈[ℓ]

⃦⃦⃦⃦
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·Πeq

A,L
(ℓ)
X,𝑖

· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

+
∑︁
𝑖∈[𝑟]

⃦⃦⃦⃦
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

(11.80)

Plugging in

𝑄[𝐶,𝐷]LR = (𝐶 ⊗𝐷𝑇 )⊗*L ⊗ (𝐶 ⊗𝐷†)⊗*R , (11.81)

60



we can rewrite (11.80) as

(11.80) =
∑︁
𝑖∈[ℓ]

⃦⃦⃦⃦
E

𝐶←D
(𝐶A ⊗ 𝐶L

(ℓ)
X,𝑖

)† ·Πeq

L
(ℓ)
X,𝑖

· (𝐶A ⊗ 𝐶A,L
(ℓ)
X,𝑖

)

⃦⃦⃦⃦
op

+
∑︁
𝑖∈[𝑟]

⃦⃦⃦⃦
E

𝐶←D
(𝐶A ⊗ 𝐶R

(𝑟)
X,𝑖

)† ·
(︁
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︁
· (𝐶A ⊗ 𝐶R

(𝑟)
X,𝑖

)

⃦⃦⃦⃦
op

(11.82)

≤ 2ℓ

𝑁 + 1
+

𝑟

𝑁 + 1
. (by Claims 1 and 2)

This completes the proof.

11.4 Finishing the proof of Lemma 9.2

We now prove Lemma 9.2, which we state again for convenience.

Lemma 11.2 (Lemma 9.2, restated). For any unitary 2-design D and integer 0 ≤ 𝑡 ≤ 𝑁/2, we have⃦⃦⃦⃦
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·
(︁
Πbij
≤𝑡,LR −Π

𝒟(𝑊 )
≤𝑡,ALR

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

≤ 6𝑡

√︂
𝑡

𝑁
, (11.83)⃦⃦⃦⃦

E
𝐶,𝐷←D

(𝐷†A ⊗𝑄[𝐶,𝐷]LR)
† ·
(︁
Πbij
≤𝑡,LR −Π

ℐ(𝑊 )
≤𝑡,ALR

)︁
· (𝐷†A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

≤ 6𝑡

√︂
𝑡

𝑁
, (11.84)

Proof. Using Fact 12 and Corollary 11.1, we have

Πbij
LR = Πℛ

2

LR ·Π
dist𝑋,𝑌

LR ·Πℛ2

LR , (11.85)

Π
𝒟(𝑊 )
ALR = Πℛ

2

LR · 𝑃
𝒟(𝑊 )
ALR ·Πℛ2

LR , (11.86)

Since Πℛ
2 commutes with Π≤𝑡, this implies

Πbij
≤𝑡,LR = Πℛ

2

LR ·Π
dist𝑋,𝑌

≤𝑡,LR ·Πℛ2

LR , (11.87)

Π
𝒟(𝑊 )
≤𝑡,ALR = Πℛ

2

LR · 𝑃
𝒟(𝑊 )
≤𝑡,ALR ·Π

ℛ2

LR . (11.88)

Plugging this into the left-hand side of Eq. (11.83), we get

=

⃦⃦⃦⃦
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·
(︁
Πℛ

2

LR ·Π
dist𝑋,𝑌

≤𝑡,LR ·Πℛ2

LR −Πℛ
2

LR · 𝑃
𝒟(𝑊 )
≤𝑡,ALR ·Π

ℛ2

LR

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

(11.89)

=

⃦⃦⃦⃦
⃦Πℛ2

LR ·

(︃
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·
(︁
Π

dist𝑋,𝑌

≤𝑡,LR − 𝑃𝒟(𝑊 )
≤𝑡,ALR

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

)︃
·Πℛ2

LR

⃦⃦⃦⃦
⃦
op

(11.90)

≤
⃦⃦⃦⃦

E
𝐶,𝐷←D

(𝐶A ⊗𝑄[𝐶,𝐷]LR)
† ·
(︁
Π

dist𝑋,𝑌

≤𝑡,LR − 𝑃𝒟(𝑊 )
≤𝑡,ALR

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

, (11.91)

where the second equality follows from the fact that Πℛ2

LR commutes with 𝑄[𝐶,𝐷]LR, and the inequality
uses the fact that ‖Π ·𝑀 ·Π‖op ≤ ‖𝑀‖op for any projector Π.
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Next, we use the fact that the operators Π
dist𝑋,𝑌

≤𝑡 and 𝑃
𝒟(𝑊 )
≤𝑡,ALR are block diagonal with respect

to {Πℓ,𝑟,LR}ℓ,𝑟≥0 (recall that Πℓ,𝑟 denotes the projector that restricts the registers L and R to have
lengths ℓ and 𝑟, respectively), i.e., they map the image of Πℓ,𝑟 to the image of Πℓ,𝑟. Thus,

(11.91) = max
ℓ,𝑟≥0:
ℓ+𝑟≤𝑡

⃦⃦⃦⃦
E

𝐶,𝐷←D
(𝐶A ⊗𝑄[𝐶,𝐷]LR)

† ·
(︁
Π

dist𝑋,𝑌

ℓ,𝑟,LR − 𝑃𝒟(𝑊 )
ℓ,𝑟,ALR

)︁
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
op

(11.92)

≤ max
ℓ,𝑟≥0:
ℓ+𝑟≤𝑡

⃦⃦⃦⃦
⃦ 𝑁

𝑁 − ℓ− 𝑟 + 1
· E
𝐶,𝐷←D

(𝐶A ⊗𝑄[𝐶,𝐷]LR)
† ·

(︃∑︁
𝑖∈[ℓ]

Πeq

A,L
(ℓ)
X,𝑖

+
∑︁
𝑖∈[𝑟]

(︂
Πeq

A,R
(𝑟)
X,𝑖

−ΠEPR

A,R
(𝑟)
X,𝑖

)︂
+ 2𝑟

√︂
ℓ+ 𝑟

𝑁
IdALR

)︃
· (𝐶A ⊗𝑄[𝐶,𝐷]LR)

⃦⃦⃦⃦
⃦
op

(by Claim 26)

≤ max
ℓ,𝑟≥0:
ℓ+𝑟≤𝑡

𝑁

𝑁 − ℓ− 𝑟 + 1
·

(︃
2ℓ+ 𝑟

𝑁 + 1
+ 2𝑟

√︂
ℓ+ 𝑟

𝑁

)︃
. (by Claim 28 and the triangle inequality)

This expression is maximized by setting 𝑟 = 𝑡 and ℓ = 0, which yields a final upper bound of

𝑁

𝑁 − 𝑡+ 1
·

(︃
𝑡

𝑁 + 1
+ 2𝑡

√︂
𝑡

𝑁

)︃
≤ 𝑁

𝑁 − 𝑡
·

(︃
3𝑡

√︂
𝑡

𝑁

)︃
≤ 6𝑡

√︂
𝑡

𝑁
(11.93)

where the last inequality uses the assumption that 𝑡 ≤ 𝑁/2.
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Part III

Appendices

A Efficient circuit implementation of path-recording oracle

We briefly describe how to efficiently implement the path-recording oracles on a quantum computer
to simulate forward and inverse queries of a Haar-random unitary up to inverse-exponential error.

A.1 Implementing relation states

There are multiple ways to implement the relation state |𝑅⟩ for a relation 𝑅. We describe one simple
approach. We represent |𝑅⟩ using |𝑅| 2𝑛-qubit registers by sorting the tuples (𝑥, 𝑦) ∈ [𝑁 ]2 in the
relation 𝑅. For example, consider 𝑅, we can store |𝑅⟩ on a quantum computer as

|𝑥1⟩ |𝑦1⟩ . . . |𝑥|𝑅|⟩ |𝑦|𝑅|⟩ , (A.1)

where 𝑅 = {(𝑥𝑖, 𝑦𝑖)}|𝑅|𝑖=1 and (𝑥1, 𝑦1) ≤ . . . ≤ (𝑥|𝑅|, 𝑦|𝑅|). Here, (𝑥, 𝑦) ≤ (𝑥′, 𝑦′) denotes the lexico-
graphical ordering, which means either (a) 𝑥 < 𝑥′ or (b) 𝑥 = 𝑥′ and 𝑦 ≤ 𝑦′.

A.2 Implementing forward queries

In Section 4, we defined a (standard) path-recording oracle 𝑉 that simulates forward (but not inverse)
queries to a Haar-random unitary. In this subsection, we describe how to implement this linear map
efficiently.

Definition 42. [Definition 10, repeated] The path-recording oracle 𝑉 is a linear map 𝑉 : ℋA⊗ℋR →
ℋA ⊗ℋR defined as follows. For all 𝑥 ∈ [𝑁 ] and injective relations 𝑅 ∈ ℛinj such that |𝑅| < 𝑁 ,

𝑉 : |𝑥⟩A |𝑅⟩R ↦→
1√︀

𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩A |𝑅 ∪ {(𝑥, 𝑦)}⟩R . (A.2)

We briefly sketch how to implement 𝑉 on an input |𝑥⟩ |𝑅⟩.

Input: a state of the form |𝑥⟩ |𝑅⟩.

1. The first step is to perform the map

|𝑥⟩ |𝑅⟩ ↦→ 1√︀
𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩ |𝑥⟩ |𝑅⟩ . (A.3)

This can be done as follows:

(a) First, prepare a new register containing a uniform superposition over {1, 2, . . . , 𝑁 − |𝑅|}.
(b) Next, observe that given 𝑦1 ≤ · · · ≤ 𝑦|𝑅| (which are stored in subregisters of |𝑅⟩), there is

an efficiently computable bijection 𝑓 from {1, 2, . . . , 𝑁 − |𝑅|} to the set {𝑦 : 𝑦 ∈ [𝑁 ], 𝑦 ̸∈
Im(𝑅)}: on input 𝑥, compute the number 𝑛𝑥 of elements 𝑦𝑖 in the list (𝑦1, . . . , 𝑦|𝑅|) such
that 𝑥 ≥ 𝑦𝑖, and output 𝑥 + 𝑛𝑥. Using a similar algorithm, we can also compute 𝑓−1

efficiently.
This allows us to efficiently compute 𝑓 in place. Applying this to the uniform superposition
over {1, 2, . . . , 𝑁 − |𝑅|} produces the desired superposition.
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2. Next, compute the function that maps (𝑦, 𝑥,𝑅) to 𝑅 ∪ {(𝑥, 𝑦)} (where 𝑅 and 𝑅 ∪ {(𝑥, 𝑦)} are
represented as sorted lists of ordered pairs). This step corresponds to the map

1√︀
𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩ |𝑥⟩ |𝑅⟩ ↦→ 1√︀
𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩ |𝑥⟩ |𝑅⟩ |𝑅 ∪ {(𝑥, 𝑦)}⟩ . (A.4)

3. Finally, use the |𝑦⟩ |𝑅 ∪ {(𝑥, 𝑦)})⟩ register to uncompute the |𝑥⟩ |𝑅⟩ registers; note that 𝑥,𝑅
can be uniquely computed from 𝑦,𝑅∪{(𝑥, 𝑦)}, since 𝑦 is guaranteed to be outside Im(𝑅). This
corresponds to the map

1√︀
𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩ |𝑥⟩ |𝑅⟩ |𝑅 ∪ {(𝑥, 𝑦)}⟩ ↦→ 1√︀
𝑁 − |𝑅|

∑︁
𝑦∈[𝑁 ],
𝑦 ̸∈Im(𝑅)

|𝑦⟩ |𝑅 ∪ {(𝑥, 𝑦)}⟩ , (A.5)

which corresponds to the output of 𝑉 .

A.3 Implementing forward and inverse queries

In Section 8, we defined a (symmetric) path-recording oracle 𝑉 that simulates both forward and
inverse queries to a Haar-random unitary. In this subsection, we describe how to implement this
linear map efficiently. Recall that this linear map 𝑉 is defined in terms of two helper linear maps 𝑉 𝐿

and 𝑉 𝑅.

Definition 43 (left and right partial isometries). [Definition 25, repeated] Let 𝑉 𝐿 be the linear
operator that acts as follows. For 𝑥 ∈ [𝑁 ] and (𝐿,𝑅) ∈ ℛ2,≤𝑁−1,

𝑉 𝐿 · |𝑥⟩A |𝐿⟩L |𝑅⟩R :=
∑︁
𝑦∈[𝑁 ]:

𝑦 ̸∈Im(𝐿∪𝑅)

1√︀
𝑁 − |Im(𝐿 ∪𝑅)|

|𝑦⟩A |𝐿 ∪ {(𝑥, 𝑦)}⟩L |𝑅⟩R . (A.6)

Define 𝑉 𝑅 to be the linear operator such that for all 𝑦 ∈ [𝑁 ] and (𝐿,𝑅) ∈ ℛ2,≤𝑁−1,

𝑉 𝑅 · |𝑦⟩A |𝐿⟩L |𝑅⟩R :=
∑︁
𝑥∈[𝑁 ]:

𝑥 ̸∈Dom(𝐿∪𝑅)

1√︀
𝑁 − |Dom(𝐿 ∪𝑅)|

|𝑥⟩A |𝐿⟩L |𝑅 ∪ {(𝑥, 𝑦)}⟩R . (A.7)

Efficient implementation of forward queries to 𝑉 𝐿 and 𝑉 𝑅 can be done similarly to Appendix A.2.
Now, let 𝑈𝐿 denote the efficient unitary implicit in the procedure described in Appendix A.2, which
satisfies the guarantee that 𝑈𝐿 |𝑥⟩ |𝑅⟩ |0𝑚⟩ = (𝑉 𝐿 |𝑥⟩ |𝑅⟩) ⊗ |0𝑚′⟩, where 𝑚 and 𝑚′ denotes the
number of ancilla qubits in the input and output respectively. Define 𝑈𝑅 similarly. Technically, the
number of ancillas depends on the size of 𝐿 and 𝑅. However, we can always assume that the sizes of
𝐿 and 𝑅 are upper bounded by the number of queries so far, and so we can also use this to bound
the size of the ancillas needed to implement the 𝑡-th query.

Implementing 𝑉 𝐿,†, 𝑉 𝑅,† Since we can efficiently implement 𝑈𝐿, we can also implement its inverse
𝑈𝐿,†. Note that on states of the form |𝜓⟩ |0𝑚′⟩, where |𝜓⟩ is in the image of 𝑉 𝐿, applying 𝑈𝐿,†

produces the output state (𝑉 𝐿,† |𝜓⟩) |0𝑚⟩. Thus, we can use 𝑈𝐿,† to implement 𝑉 𝐿,†.
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Implementing coherent measurements on 𝑉 𝐿 ·𝑉 𝐿,† and 𝑉 𝑅 ·𝑉 𝑅,† Before we describe how we
implement 𝑉 , we will need to describe how to perform measurements corresponding to the projectors
𝑉 𝐿 · 𝑉 𝐿,† and 𝑉 𝑅 · 𝑉 𝑅,†. In fact, we will need to implement these measurements coherently, i.e.,
apply the unitary that computes the binary measurement outcome onto an external qubit. This
can be done as follows (for simplicity, we only describe the procedure for implementing the coherent
𝑉 𝐿 · 𝑉 𝐿,† measurement, as the coherent 𝑉 𝑅 · 𝑉 𝑅,† measurement is symmetric).

Input: a state |𝜓⟩ =
∑︀

𝑥,𝐿,𝑅 𝛼𝑥,𝐿,𝑅 |𝑥⟩ |𝐿⟩ |𝑅⟩.

1. Add 𝑚′ ancillary qubits |0𝑚′⟩ and then apply 𝑈𝐿,†.

2. Initialize a new one-qubit register to |0⟩B. Controlled on the last 𝑚 qubits of the rest of the
state (i.e., all registers except for B) being 0𝑚, apply a Pauli 𝑋 to the B register. By definition of
𝑈𝐿,†, this Pauli 𝑋 is applied if and only if the original input state was in the image of 𝑉 𝐿 ·𝑉 𝐿,†.

3. Apply 𝑈𝐿 to the non-B registers.

Now, recall the definition of 𝑉 .

Definition 44. The symmetric path-recording oracle is the operator 𝑉 defined as

𝑉 = 𝑉 𝐿 · (Id− 𝑉 𝑅 · 𝑉 𝑅,†) + (Id− 𝑉 𝐿 · 𝑉 𝐿,†) · 𝑉 𝑅,†. (A.8)

We sketch an implementation of a forward query to the symmetric path-recording oracle 𝑉 . The
inverse query is symmetric by swapping 𝐿 and 𝑅.

Input: a state |𝜓⟩ =
∑︀

𝑥,𝐿,𝑅 𝛼𝑥,𝐿,𝑅 |𝑥⟩ |𝐿⟩ |𝑅⟩.

1. Add two ancilla qubits initialized at |0⟩ to obtain |0⟩ |0⟩ |𝜓⟩.

2. Implement coherent measurement 𝑉 𝑅 · 𝑉 𝑅,†, writing the outcome onto the first ancilla qubit.

3. Apply the following controlled operation:

• Controlled on the first ancilla qubit being 1, apply 𝑉 𝐿.
• Controlled on the first ancilla qubit being 0, apply 𝑉 𝑅,†. Then, apply the coherent mea-

surement 𝑉 𝐿 · 𝑉 𝐿,†, writing the outcome onto the second ancilla qubit.

4. Measure the second ancilla qubit, and abort if the outcome is 1.

5. Apply the coherent measurement of 𝑉 𝐿 · 𝑉 𝐿,† with the outcome applied onto the first ancilla
qubit.

6. Trace out the remaining ancilla qubit (the first one), which is guaranteed to be |0⟩.

B The path-recording framework

In this section, we develop a mathematical framework by generalizing the path-recording oracle intro-
duced in Section 4. This new framework enables one to develop modified versions of path-recording
oracle in which the set of relations that the oracle uses is restricted to a subset 𝒮 inj ⊆ ℛinj of the
set of all injective relations. This mathematical framework offers flexibility for establishing indistin-
guishability from Haar-random unitary via the path-recording oracle.

To develop the path-recording framework, we define the following notations.
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• 𝑡max is an integer between 1 and 𝑁 sets the maximum size of the relations. This integer also
sets the limit on how many queries we can make to the path-recording oracle. In the canonical
path-recording oracle introduced in Section 4.1, 𝑡max is equal to 𝑁 .

• 𝒮 inj𝑡 is a subset of all the injective relations ℛinj
𝑡 of size 𝑡 for any 0 ≤ 𝑡 ≤ 𝑡max. In particular, we

require the subset for the maximum 𝑡 to be non-empty: |𝒮 inj𝑡max
| ≥ 1.

• 𝒮 inj := ∪𝑡max
𝑡=0 𝒮

inj
𝑡 . The set 𝒮 restricts the relations that the path-recording oracle could use.

We define the following two constraints on the restricted set 𝒮 inj.

Definition 45 (Consistency). We say the set 𝒮 inj of relations is consistent if

∀(𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡, ∃(𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡, (B.1)

such that {(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1 ∈ 𝒮 inj. (B.2)

Furthermore, if {(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1 ∈ 𝒮 inj, then for any 0 ≤ 𝜏 ≤ 𝑡, {(𝑥𝑖, 𝑦𝑖)}𝜏𝑖=1 ∈ 𝒮 inj.

The consistency constraint ensures that all possible (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡 are valid. This is central
for path-recording oracle because the adversary algorithm can choose the inputs 𝑥1, . . . , 𝑥𝑡 arbitrarily.
The constraint also ensures that all relations in 𝒮 inj are “meaningful” because they can all be obtained
by adding in each tuple (𝑥𝑖, 𝑦𝑖) one by one while maintaining in the restricted subset 𝒮 inj.

Definition 46 (Uniform growth). We say the set 𝒮 inj of relations satisfies the uniform growth con-
straint if for all 0 ≤ 𝑡 < 𝑡max, there exists 𝒵𝑡 ≥ 1, such that for all 𝑥 ∈ [𝑁 ] and 𝑅 ∈ 𝒮 inj𝑡 ,

𝒵𝑡 =
∑︁

𝑦∈[𝑁 ], s.t.

𝑅∪{(𝑥,𝑦)}∈𝒮 inj𝑡+1

1. (B.3)

The uniform growth constraint ensures the number of 𝑦 that can be used to grow the relation 𝑅
by by size one is uniform across all 𝑥 ∈ [𝑁 ] and all relations 𝑅 of the same size. We illustrate these
two constraints with the following examples.

• 𝒮 inj contains all relations where the first 𝑘 bits in 𝑦1, . . . , 𝑦𝑡 ∈ [𝑁 ] are distinct. In this case,
𝑡max = 2𝑘. Furthermore, 𝒮 inj is consistent and satisfies the uniform growth constraint.

• 𝒮 inj contains all relations 𝑅 where 𝑅 = {(𝑥𝑖, 𝑥𝑖)}|𝑅|𝑖=1. In this case, 𝑡max = 𝑁 . And 𝒮 inj is
consistent and satisfies the uniform growth constraint.

• 𝒮 inj = {𝑅 ∈ ℛinj | |𝑅| = 𝑁}. In this case, 𝑡max = 𝑁 . However, 𝒮 inj is not consistent and does
not satisfy the uniform growth constraint because it violates 𝒵𝑡 ≥ 1.

For any consistent set 𝒮 inj of relations, we have ∅ ∈ 𝒮 inj because we can take 𝜏 = 0 in Definition 45
for any relation 𝑅 ∈ 𝒮 inj to obtain that ∅ ∈ 𝒮 inj.

B.1 Defining 𝑉 (𝒮 inj) and the 𝑉 (𝒮 inj) state

We now define the behavior of the 𝒮 inj-restricted path-recording oracle.
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Definition 47 (𝒮 inj-restricted path-recording oracle). Given any consistent set 𝒮 inj of relations. The
𝒮 inj-restricted path-recording oracle 𝑉 (𝒮 inj) is a linear map

𝑉 (𝒮 inj) : ℋA ⊗ℋR → ℋA ⊗ℋR (B.4)

defined as follows. For all 0 ≤ 𝑡 < 𝑡max, 𝑅 ∈ 𝒮 inj𝑡 , and 𝑥 ∈ [𝑁 ],

𝑉 (𝒮 inj) : |𝑥⟩A |𝑅⟩R ↦→
1√︀
𝒵𝑥,𝑅

∑︁
𝑦∈[𝑁 ],

𝑅∪{(𝑥,𝑦)}∈𝒮 inj𝑡+1

|𝑦⟩A |𝑅 ∪ {(𝑥, 𝑦)}⟩R , (B.5)

The normalization factor 𝒵𝑥,𝑅 is given by

𝒵𝑥,𝑅 :=
∑︁
𝑦∈[𝑁 ],

𝑅∪{(𝑥,𝑦)}∈𝒮 inj𝑡+1

1 ≥ 1, (B.6)

where the last inequality follows from the consistency constraint that for any (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡, there
exists (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡, such that {(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1 ∈ 𝒮 inj.

Next, we define the 𝐺-rotated 𝑉 (𝒮 inj) state, which represents the global state after an adversary
has queried the 𝒮 inj-restricted path-recording oracle multiple times.

Definition 48 (𝐺-rotated 𝑉 (𝒮 inj) state). Given a consistent set 𝒮 inj, an 𝑛-qubit unitary 𝐺 and a
𝑡-query adversary 𝒜 with forward queries specified by a 𝑡-tuple of unitaries (𝐴1,AB, . . . , 𝐴𝑡,AB), the
𝐺-rotated 𝑉 (𝒮 inj) state is

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR :=

𝑡∏︁
𝑖=1

(︁
𝑉 (𝒮 inj) ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB |∅⟩R . (B.7)

The 𝐺-rotated 𝑉 (𝒮 inj) state |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR is the state of the entire system after the adversary

has made 𝑡 queries to 𝑉 (𝒮 inj) · 𝐺, and includes the adversary’s query register (A), auxiliary register
(B), and the purifying registers (R), after 𝑡 queries to the oracle.

B.2 𝑉 (𝒮 inj) is a partial isometry

A crucial property of the 𝐺-rotated 𝑉 (𝒮 inj) state is that it maintains unit norm up to 𝑡max queries.
We formalize this in the following lemma:

Lemma B.1 (𝐺-rotated 𝑉 (𝒮 inj) state has unit norm). For any consistent set 𝒮 inj of relations, any
adversary 𝒜 making 𝑡 ≤ 𝑡max forward queries to an 𝑛-qubit oracle, and any 𝑛-qubit unitary 𝐺, the
𝐺-rotated 𝑉 (𝒮 inj) state |𝒜𝑉 (𝒮 inj)·𝐺

𝑡 ⟩ABR has unit norm.

To prove this lemma, we first need to establish that the 𝒮 inj-restricted path-recording oracle 𝑉 (𝒮 inj)
acts as a partial isometry on certain states. This is formalized in the following lemma:

Lemma B.2 (Partial Isometry). For any consistent set 𝒮 inj of relations, the 𝒮 inj-restricted path-
recording oracle 𝑉 (𝒮 inj) is an isometry on the subspace of ℋA ⊗ℋR spanned by the states |𝑥⟩ |𝑅⟩ for
𝑥 ∈ [𝑁 ] and 𝑅 ∈ 𝒮 inj such that |𝑅| < 𝑡max.
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Proof of Lemma B.2. To prove that 𝑉 (𝒮 inj) is an isometry on the specified subspace, it suffices to
show that for all 𝑥, 𝑥′ ∈ [𝑁 ] and 𝑅,𝑅′ ∈ 𝒮 inj with |𝑅|, |𝑅′| < 𝑡max,

⟨𝑥′|A ⟨𝑅
′|R 𝑉 (𝒮 inj)† · 𝑉 (𝒮 inj) |𝑥⟩A |𝑅⟩R = ⟨𝑥′|𝑥⟩A · ⟨𝑅

′|𝑅⟩R . (B.8)

The proof proceeds in the same way as the proof of Lemma 4.1 after one notes the fact that the
normalization factor 𝒵𝑥,𝑅 ≥ 1 from the consistency of the set 𝒮 inj.

We can now prove Lemma B.1.

Proof of Lemma B.1. Note that 𝒮 inj is consistent implies ∅ ∈ 𝒮 inj0 . Hence, we can use Lemma B.2 to
establish this lemma via the same mathematical induction as the proof of Lemma 4.2.

B.3 𝑉 (𝒮 inj) is right unitary invariant

So far, we have not used the uniform growth constraint. To show that 𝑉 (𝒮 inj) is (exactly) right
unitary invariant, we need to utilize the uniform growth constraint.

Lemma B.3 (Right unitary invariance). Given a consistent set 𝒮 inj of relations that satisfies the
uniform growth constraint. For any 𝑛-qubit unitary 𝐺, we have

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR = (𝐺

R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) |𝒜𝑉 (𝒮 inj)
𝑡 ⟩ABR . (B.9)

Lemma B.3 implies right unitary invariance since

TrR( |𝒜
𝑉 (𝒮 inj)·𝐺
𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)·𝐺

𝑡 |ABR)

= TrR((𝐺R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) |𝒜𝑉 (𝒮 inj)
𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)

𝑡 |ABR (𝐺R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

)†) (by Lemma B.3)

= TrR( |𝒜
𝑉 (𝒮 inj)
𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)

𝑡 |ABR). (by the cyclic property of TrR)

The first line corresponds to the adversary’s view after making 𝑡 queries to 𝑉 (𝒮 inj) · 𝐺A, while the
last line corresponds to its view after making 𝑡 queries to 𝑉 (𝒮 inj).

Fact 13 (Explicit form of the 𝐺-rotated 𝑉 (𝒮 inj) state). Given a consistent set 𝒮 inj of relations that
satisfies the uniform growth constraint. The definition of 𝑉 (𝒮 inj) and |𝑅⟩R enable us to expand the
𝑉 (𝒮 inj) state after 𝑡 queries to obtain

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR =

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

𝒵𝑖

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist
𝑅={(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1∈𝒮

inj
𝑡

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝑅⟩R (B.10)

=

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

𝒵𝑖

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist
𝑅={(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1∈𝒮

inj
𝑡

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃

⊗ 1√
𝑡!

∑︁
𝜋∈Sym𝑡

(︂
𝑅𝜋 |𝑥1⟩R(𝑡)

X,1

. . . |𝑥𝑡⟩R(𝑡)
X,𝑡

)︂
⊗
(︂
𝑅𝜋 |𝑦1⟩R(𝑡)

Y,1

. . . |𝑦𝑡⟩R(𝑡)
Y,𝑡

)︂
. (B.11)

Proof of Lemma B.3. By utilizing Fact 13 instead of Fact 3, we can prove this lemma in the same
way as the proof of Lemma 4.3.
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B.4 Relation between 𝑉 (𝒮 inj) and 𝑉 state

Using the states |𝑅⟩R, we can define the following restricted subspace projector based on the restricted
subspace Πrestrict,𝑡

R .

Definition 49 (Restricted subspace projector). For 0 ≤ 𝑡 ≤ 𝑡max, we define the size-𝑡 restricted
subspace projector Πrestrict,𝑡

R as follows:

Πrestrict,𝑡
R :=

∑︁
𝑅∈𝒮 inj𝑡

|𝑅⟩⟨𝑅|R . (B.12)

The restricted subspace projector is defined as:

Πrestrict
R :=

𝑡max∑︁
𝑡=0

Πrestrict,𝑡
R . (B.13)

From Fact 13 and the projector defined above, we immediately obtain the following equation
relating the 𝐺-rotated 𝑉 (𝒮 inj) and the |𝒜𝑉 ·𝐺𝑡 ⟩ABRs.

Fact 14 (Relation between 𝑉 (𝒮 inj) and 𝑉 state). Given a consistent set 𝒮 inj of relations that satisfies
the uniform growth constraint. For any 𝑛-qubit unitary 𝐺, we have⎯⎸⎸⎷𝑡−1∏︁

𝑖=0

𝒵𝑖 ·
√︂

(𝑁 − 𝑡)!
𝑁 !

· |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR = Πrestrict

R |𝒜𝑉 ·𝐺𝑡 ⟩ABR , (B.14)

where the prefactor
√︁∏︀𝑡−1

𝑖=0 𝒵𝑖 ·
√︁

(𝑁−𝑡)!
𝑁 ! is between 0 and 1 because the 𝑉 (𝒮 inj) state |𝒜𝑉 (𝒮 inj)·𝐺

𝑡 ⟩ABR
has unit norm and the projected 𝑉 state Πrestrict

R |𝒜𝑉 ·𝐺𝑡 ⟩ABR has norm at most one.

B.5 𝑉 (𝒮 inj) is indistinguishable from Haar random unitaries

When the restricted set 𝒮 inj of relations has a large enough growth, then 𝑉 (𝒮 inj) is indistinguishable
from Haar-random unitaries. This is formally captured by the following theorem.

Theorem 9 (𝑉 (𝒮 inj) is indistinguishable from Haar random). Given a consistent set 𝒮 inj of relations
that satisfies the uniform growth constraint. Let 𝒜 be a 𝑡-query oracle adversary with forward queries.
Then

TD

(︂
E

𝒪←𝜇Haar
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | ,TrR

(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︂
(B.15)

≤ 2𝑡(𝑡− 1)

𝑁 + 1
+ 2

(︃
1−

𝑡−1∏︁
𝑖=0

𝒵𝑖 ·
(𝑁 − 𝑡)!
𝑁 !

)︃
. (B.16)

Proof. Using Theorem 5 and triangle inequality, we have

TD

(︂
E

𝒪←𝜇Haar
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | ,TrR

(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︂
(B.17)

≤ 2𝑡(𝑡− 1)

𝑁 + 1
+ TD

(︁
TrR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR

)︀
,TrR

(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︁
. (B.18)

We can bound the second term as follows,

TD
(︁
TrR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR

)︀
,TrR

(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︁
(B.19)
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≤ TD
(︀
TrR

(︀
|𝒜𝑉𝑡 ⟩⟨𝒜𝑉𝑡 |ABR

)︀
,TrR

(︀
Πrestrict

R |𝒜𝑉 ·𝐺𝑡 ⟩⟨𝒜𝑉 ·𝐺𝑡 |ABRΠ
restrict
R

)︀)︀
(B.20)

+ TD
(︁
TrR

(︀
Πrestrict

R |𝒜𝑉 ·𝐺𝑡 ⟩⟨𝒜𝑉 ·𝐺𝑡 |ABRΠ
restrict
R

)︀
,TrR

(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︁
. (B.21)

Using Lemma 2.2 and Fact 14, Eq. (B.20) is equal to

1− ⟨𝒜𝑉 ·𝐺𝑡 |Πrestrict
R |𝒜𝑉 ·𝐺𝑡 ⟩ABR =

(︃
1−

𝑡−1∏︁
𝑖=0

𝒵𝑖 ·
(𝑁 − 𝑡)!
𝑁 !

)︃
. (B.22)

Again, using Fact 14, Eq. (B.21) is equal to

TD

(︃
𝑡−1∏︁
𝑖=0

𝒵𝑖 ·
(𝑁 − 𝑡)!
𝑁 !

· TrR
(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁
,TrR

(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︃
(B.23)

=

(︃
1−

𝑡−1∏︁
𝑖=0

𝒵𝑖 ·
(𝑁 − 𝑡)!
𝑁 !

)︃
. (B.24)

Together, we obtained the stated result.

C An elementary proof of the gluing lemma

In this section, we show how to use the path-recording framework to establish an elementary proof
of the gluing lemma recently shown in [SHH24]. The proof in [SHH24] makes use of representation
theory and Weingarten calculus. Here, we present an elementary proof using the path-recording
framework for analyzing Haar-random unitaries.

The gluing lemma presented in [SHH24] shows that the composition of two Haar-random unitaries
on system A1A2 and A2A3 that overlap only on a small number of qubits is indistinguishable from a
Haar-random unitary on the entire system A1A2A3.

Theorem 10 (Gluing two Haar-random unitaries). Consider three systems A1,A2,A3 of qubits with
A = A1A2A3. Let |A1|, |A2|, |A3| denote the number of qubits in each system. Let 𝑈A1A2 , 𝑈A2A3 , 𝑈A be
Haar-random unitaries on system A1A2,A2A3,A, respectively. We have

TD

(︂
E

𝑈A1A2
,𝑈A2A3

|𝒜𝑈A1A2
𝑈A2A3

𝑡 ⟩⟨𝒜𝑈A1A2
𝑈A2A3

𝑡 | , E
𝑈A

|𝒜𝑈A
𝑡 ⟩⟨𝒜

𝑈A
𝑡 |
)︂
≤ 9𝑡(𝑡− 1)

2|A2|
. (C.1)

Proof. We approximate the three Haar-random unitaries 𝑈A1A2 , 𝑈A2A3 , 𝑈A1A2A3 by three restricted
sets 𝒮 injA1A2

,𝒮 inj(D)
A2A3

,𝒮 inj(CD)
A1A2A3

of relations. The three subsets of injective relations are given as follows.

• 𝒮 inj(A2)
A1A2

: Injective relations 𝑅 over system A1A2 such that the system A2 part of elements in the
image Im(𝑅) are distinct, i.e., given Im(𝑅) = {𝑦1, . . . , 𝑦|𝑅|}, 𝑦𝑖,A2 ̸= 𝑦𝑗,A2 for all 𝑖 ̸= 𝑗.

• 𝒮 inj(A2)
A2A3

: Injective relations 𝑅 over system A2A3 such that the system A2 part of elements in the
image Im(𝑅) are distinct.

• 𝒮 inj(A2)
A1A2A3

: Injective relations 𝑅 over system A1A2A3 such that the system A1A2 part of elements
in the image Im(𝑅) are distinct.

Here, given a bitstring 𝑦, we denote 𝑦A2 to be the substring corresponding to bits in A2. It is not
hard to see that these restricted sets is consistent and satisfies the uniform growth constraint. We
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consider the path recording oracle 𝑉 (𝒮 inj(A2)
A1A2

) to act on system A1,A2,R1, the oracle 𝑉 (𝒮 inj(A2)
A2A3

) to

act on system A2,A3,R2, and the oracle 𝑉 (𝒮 inj(A2)
A1A2A3

) to act on system A1,A2,A3,R3. Let

𝜌1 := E
𝑈A1A2

,𝑈A2A3

|𝒜𝑈A1A2
𝑈A2A3

𝑡 ⟩⟨𝒜𝑈A1A2
𝑈A2A3

𝑡 | , (C.2)

𝜌2 := E
𝑈A1A2

TrR1 |𝒜
𝑈A1A2

𝑉 (𝒮 inj(A2)A2A3
)

𝑡 ⟩⟨𝒜
𝑈A1A2

𝑉 (𝒮 inj(A2)A2A3
)

𝑡 | , (C.3)

𝜌3 := TrR1 TrR2 |𝒜
𝑉 (𝒮 injA1A2

)𝑉 (𝒮 inj(A2)A2A3
)

𝑡 ⟩⟨𝒜
𝑉 (𝒮 injA1A2

)𝑉 (𝒮 inj(A2)A2A3
)

𝑡 | , (C.4)

𝜌4 := TrR3 |𝒜
𝑉 (𝒮 inj(A2)A1A2A3

)

𝑡 ⟩⟨𝒜
𝑉 (𝒮 inj(A2)A1A2A3

)

𝑡 | , (C.5)

𝜌5 := E
𝑈A1A2A3

|𝒜𝑈A1A2A3
𝑡 ⟩⟨𝒜𝑈A1A2A3

𝑡 | . (C.6)

Using Theorem 9 and properly computing the normalization factor 𝒵𝑡, we have

TD(𝜌1, 𝜌2) ≤
2𝑡(𝑡− 1)

2|A2|+|A3|
+ 2

(︃
1−

𝑡−1∏︁
𝑖=0

(2|A2|+|A3| − 𝑖2|A3|) · (2
|A2|+|A3| − 𝑡)!
(2|A2|+|A3|)!

)︃
, (C.7)

≤ 2𝑡(𝑡− 1)

2|A2|+|A3|
+ 2

(︃
1−

𝑡−1∏︁
𝑖=0

(︁
1− 𝑖2−|A2|

)︁)︃
≤ 2𝑡(𝑡− 1)

2|A2|+|A3|
+
𝑡(𝑡− 1)

2|A2|
≤ 3𝑡(𝑡− 1)

2|A2|
. (C.8)

Similarly, we have

TD(𝜌2, 𝜌3) ≤
2𝑡(𝑡− 1)

2|A1|+|A2|
+ 2

(︃
1−

𝑡−1∏︁
𝑖=0

(2|A1|+|A2| − 𝑖2|𝐴1|) · (2
|A1|+|A2| − 𝑡)!
(2|A1|+|A2|)!

)︃
≤ 3𝑡(𝑡− 1)

2|A2|
, (C.9)

TD(𝜌4, 𝜌5) ≤
2𝑡(𝑡− 1)

2|A|
+ 2

(︃
1−

𝑡−1∏︁
𝑖=0

(2|A| − 𝑖2|A1|+|A3|) · (2
|A| − 𝑡)!
(2|A|)!

)︃
≤ 3𝑡(𝑡− 1)

2|A2|
. (C.10)

Finally, we show that 𝜌3 = 𝜌4. Let 𝑥||𝑦 denote bitstring concatenation. Using the definition of the
restricted subsets of injective relations, the explicit form of the purified state in Fact 13 yields

|𝒜
𝑉 (𝒮 inj(A2)A1A2

)𝑉 (𝒮 inj(A2)A2A3
)

𝑡 ⟩ABR1R2
=

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

2|A2|+|A3| − 𝑖2|A3|
·

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

2|A1|+|A2| − 𝑖2|A1|
· (C.11)

∑︁
(𝑥1,...,𝑥𝑡)∈[2|𝐴|]𝑡

(𝑦1,...,𝑦𝑡)∈[2|𝐴|]𝑡dist
(𝑧1,...,𝑧𝑡)∈[2|𝐴2|]𝑡dist

s.t. (𝑦1,𝐴2
,...,𝑦𝑡,𝐴2

)∈[2|𝐴2|]𝑡dist

𝑅={(𝑥𝑖,𝐴2
||𝑥𝑖,𝐴3

,𝑧𝑖,𝐴2
||𝑦𝑖,𝐴3

)}𝑡𝑖=1∈𝒮
inj(A2)
A2A3

𝑆={(𝑥𝑖,𝐴1
||𝑧𝑖,𝐴2

,𝑦𝑖,𝐴1
||𝑦𝑖,𝐴2

)}𝑡𝑖=1∈𝒮
inj(A2)
A1A2

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝑅⟩R1

⊗ |𝑆⟩R2
, (C.12)

and, similarly, Fact 13 also yields

|𝒜
𝑉 (𝒮 inj(A2)A1A2A3

)

𝑡 ⟩ABR3
=

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

2|A| − 𝑖2|A1|+|A3|
· (C.13)
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∑︁
(𝑥1,...,𝑥𝑡)∈[2|𝐴|]𝑡

(𝑦1,...,𝑦𝑡)∈[2|𝐴|]𝑡dist
s.t. (𝑦1,𝐴2

,...,𝑦𝑡,𝐴2
)∈[2|𝐴2|]𝑡dist

𝑇={(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1∈𝒮
inj(A2)
A1A2A3

[︃
𝑡∏︁
𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝑇 ⟩R3

. (C.14)

We define a linear map Uncompress that maps registers R3 to registers R1,R2. For any 𝑇 = {(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1

such that (𝑥1, . . . , 𝑥𝑡) ∈ [2|𝐴|]𝑡, (𝑦1, . . . , 𝑦𝑡) ∈ [2|𝐴|]𝑡dist, and (𝑦1,𝐴2 , . . . , 𝑦𝑡,𝐴2) ∈ [2|𝐴2|]𝑡dist, the linear
map Uncompress acts as

Uncompress |𝑇 ⟩R3
:=

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

2|A2| − 𝑖
∑︁

(𝑧1,...,𝑧𝑡)∈[2|𝐴2|]𝑡dist
s.t. 𝑅={(𝑥𝑖,𝐴2

||𝑥𝑖,𝐴3
,𝑧𝑖,𝐴2

||𝑦𝑖,𝐴3
)}𝑡𝑖=1

𝑆={(𝑥𝑖,𝐴1
||𝑧𝑖,𝐴2

,𝑦𝑖,𝐴1
||𝑦𝑖,𝐴2

)}𝑡𝑖=1

|𝑅⟩R1
|𝑆⟩R2

. (C.15)

One can directly check that Uncompress is a partial isometry and |𝒜
𝑉 (𝒮 inj(A2)A1A2A3

)

𝑡 ⟩ABR3
is in the domain

of Uncompress by construction. Furthermore, by definition, we have

Uncompress |𝒜
𝑉 (𝒮 inj(A2)A1A2A3

)

𝑡 ⟩ABR3
= |𝒜

𝑉 (𝒮 inj(A2)A1A2
)𝑉 (𝒮 inj(A2)A2A3

)

𝑡 ⟩ABR1R2
. (C.16)

Because Uncompress acts isometric in its domain, we have

𝜌3 = TrR1 TrR2 |𝒜
𝑉 (𝒮 injA1A2

)𝑉 (𝒮 inj(A2)A2A3
)

𝑡 ⟩⟨𝒜
𝑉 (𝒮 injA1A2

)𝑉 (𝒮 inj(A2)A2A3
)

𝑡 | (C.17)

= TrR3 |𝒜
𝑉 (𝒮 inj(A2)A1A2A3

)

𝑡 ⟩⟨𝒜
𝑉 (𝒮 inj(A2)A1A2A3

)

𝑡 | = 𝜌4. (C.18)

Together, by a series of triangle inequality, we have

TD(𝜌1, 𝜌5) ≤ TD(𝜌1, 𝜌2) + TD(𝜌2, 𝜌3) + TD(𝜌4, 𝜌5) ≤
9𝑡(𝑡− 1)

2|A2|
, (C.19)

which concludes the proof of this theorem by noting the definition of 𝜌1 and 𝜌5.

As shown in [SHH24], one can iteratively apply the gluing lemma to glue many small Haar-random
unitaries over small number of qubits into a pseudorandom unitary on the entire system. If we have
an 𝑛-qubit system A that is separated into consecutive subsystems A1, . . . ,A2𝑚, we can glue together
small Haar-random unitaries 𝑈A1A2 , 𝑈A2A3 , . . . as follows,

𝑈glued :=
𝑚−1∏︁
𝑘=0

(𝑈A2+2𝑘A3+2𝑘
)
𝑚−1∏︁
𝑘=0

(𝑈A1+2𝑘A2+2𝑘
). (C.20)

Using triangle inequality, the trace distance between a 𝑡-query adversary output state that queries
𝑈glued versus Haar-random unitary is upper bounded by

2𝑚 · 9𝑡(𝑡− 1)

2min𝑖∈[2𝑚] |A𝑖|
. (C.21)

If each subsystem is of size 𝜔(log 𝑛), then the glued unitary 𝑈glued will be a pseudorandom unitary
secure against poly(𝑛)-time adversary. This can be seen by noting that a poly(𝑛)-time adversary can
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only make 𝑡 = poly(𝑛) queries, so the trace distance between the adversary state querying 𝑈glued and
Haar-random unitary is upper bounded by

2𝑚 · 9𝑡(𝑡− 1)

2min𝑖∈[2𝑚] |A𝑖|
≤ poly(𝑛)

2𝜔(log𝑛)
= negl(𝑛). (C.22)

By replacing the small Haar-random unitaries over 𝜔(log 𝑛) qubits with small pseudorandom uni-
taries secure against subexponential adversary, one can show that the glued unitary 𝑈 is an 𝑛-qubit
pseudorandom unitary secure against poly(𝑛)-time adversary.

Assuming the subexponential hardness of LWE [Reg09], we have proved that a pseudorandom
unitary secure against subexponential adversary can be generated in polynomial-depth on any circuit
geometry using the 𝑃𝐹𝐶 construction, including a 1D geometry. Hence, an 𝑛-qubit pseudorandom
unitary secure against polynomial adversary can be generated in poly log(𝑛) depth on any circuit
geometry. This work fills in the gap in [SHH24] that assumes the 𝑃𝐹𝐶 construction forms a pseudo-
random unitary under LWE hardness to rigorously establish the surprising fact that pseudorandom
unitaries can be generated in extremely low depth under standard cryptographic assumptions.
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