Affine Determinant Programs:
A New Approach to Obfuscation

James Bartusek Princeton — UC Berkeley)

(
Yuval Ishai (Technion)
Aayush Jain (UCLA)
Fermi Ma (Princeton)
Amit Sahai (UCLA)

(

Mark Zhandry

Program Obfuscation _x,
[BGIRSVYOT1] 0/ program

« scramble a program to hide

implementation details
1obfuscation

e many possible security notions:

« virtual black box (VBB)
i . i . X
* indistinguishability — | obfuscated
obfuscation (i0)
0/ program

Why did obfuscation ever need multilinear maps?

Why did obfuscation ever need multilinear maps?

A crash course in GGHRSW-style obfuscation

Bootstrapping Theorem [GGHRSW]

(assuming FHE)

0 for NCT .| 10foral

CIrcults

Takeaway: it suffices to consider NC1.

log-depth
circuit €

How do we build iO for NC1?

Barrington's Thm.

>

constant-width
deterministic branching
program BP

How do we build iO for NC1?

constant-width

_ Barrington’'s Thm.
log-depth J » | deterministic branching

circuit C

program BP

MlO MZO M3,O M4O
Mll M21 M3,1 M41
X X4 X X4

matrix branching program

log-depth
circuit €

How do we build iO for NC1?

Barrington's Thm.

01

>

constant-width

deterministic branching

program BP

Ms g M, g
M3,1 M4,1
X0 X1

log-depth
circuit €

How do we build iO for NC1?

Barrington's Thm.

01

>

constant-width

deterministic branching

Evaluation: C(x) = 1if |Myo|X|M34

program BP

M3, M0

M3 1 My

X0 X1
XMz X|Myq|=| F

What does the matrix branching
program representation buy us?

‘one-time” security by Kilian
randomization

Ml,O MZ,O M3,0
x =01
Ml,l M2,1 M3,1
X0 X1 X0
Evaluation: C(x) = 1 if [Myo|X|Mg1|X|M3¢|X|My4

What does the matrix branching
program representation buy us?

‘one-time” security by Kilian

Sample random matrices

Rl RZ) R3
randomization
Mj ol Rq R {My 0l Ry R -{M3|- Rs R3* [\ My
Myil Ry | |R{'Myq|{ Ry | |RZ'|M31]| R3 | |R3'|{My;
X0 X1 X0 X1

What does the matrix branching

program representation buy us? |
Sample random matrices

‘one-time” security by Kilian R, || Ry ||| Rs
randomization
Ml,O MZ,O MS,O M4,0
Ml,l MZ,l MS,O M4,1
X0 X1 X0 X1

(M denotes M after applying Kilian randomization)

Kilian's Statistical Simulation Lemma;

Can statistically simulate [Myg|,|Ma1|,| M3/, |M,4| given their product.

MlO MZO M3,O M40

x =01
Mll M21 M3,O M41
X0 X1 X0 X1

‘grey matrices leak nothing beyond whether BP(x) = 0 or 1”

Kilian's Statistical Simulation Lemma;

Can statistically simulate [Myg|, (M1,

given their product.

Takeaway: Kilian-randomization yields “one-time” security.

Kilian's Statistical Simulation Lemma;

Can statistically simulate

M0

) M2,1) M3,0) M4_’1

given their product.

Takeaway: Kilian-randomization yields “one-time” security.

Kilian-randomized
matrix branching
program

encode each matrix in

multilinear map

‘one-time” secure

| 0bf(C)

‘many-time” secure

Multilinear maps enforce input consistency; without them,
‘mixed-input” attacks can break security!

Mz,

M3,O

M3 o

X0

IS a mixed-input evaluation.

NCT circuit C

Barrington's Thm.

[GGHRSW] approach to
10 for NCT

>

constant-width
deterministic branching
program BP

l

Kilian-randomized
matrix branching
program

encode in
multilinear map

0bf (C)

NCT circuit C

Barrington's Thm.

Our goal: Avoid multilinear maps
by using an alternative
representation of C.

>

constant-width
deterministic branching
program BP

l

Kilian-randomized
matrix branching
program

encode in
multilinear map

0bf (C)

NCT circuit C

Barrington's Thm.

‘y

affine determinant
program* (ADP)

*this notion appears
in [IK97, IKOO, IKO2,
AIKO6)].

g

0bf (C)

>

constant-width
deterministic branching
program BP

encode in
multilinear map

0bf (C)

Affine Determinant Programs (ADP)

Encode: width w matrices over Zq

f: {Oll}n - {0’1} - A) Bl) ") BTl

Affine Determinant Programs (ADP)

Encode: width w matrices over Zq

f: {Oll}n - {0’1} - A) Bl) ") BTl

Evaluate:

I
N
|

[

s

M, | :

Affine Determinant Programs (ADP)

gEncode:

fO - 01— 4

Evaluate:

M

f(x) =1 «— det(

f(x) =0 «—— det(

A

width w matrices over Zq

)

B,

4,

[lx;=1

, EEn

)

B, |

M, | rank deficient by 1
when f(x) =1

Affine Determinant Programs (ADP)
Encode: width w matrices over Zq

f:{0,1}" > {01} —| 4 |,| B, |, | B,

A+ZBL-

[lx;=1

f(x) =1 «— det(

Evaluate:

M

f(x) =0 «— det(

Lemma 1 [IKOOJ: Any
deterministic branching
program can be written
as a poly-size ADP.

M, | rank deficient by 1
when f(x) =1

Affine Determinant Programs (ADP)
Encode: width w matrices over Zq

f:{0,1}" > {01} —| 4 |,| B, |, | B,

A+ZBL-

[lx;=1

f(x) =1 «— det(

Evaluate:

M

f(x) =0 «— det(

Lemma 1 [IKOOJ: Any
deterministic branching
program can be written
as a poly-size ADP.

Lemma 2 [IKOO]: By left
and right re-randomizing,
ADPs can be made “one-
time” secure.

M, | rank deficient by 1
when f(x) =1

Affine Determinant Programs (ADPs) Matrix Branching Programs (MBPs)

A) Bl) ey BTl Ml;O MZ,O M3,0 M4,O

Ml,l M2,1 M3,1 M4,1

ADPs are an “additive” analogue of MBPs

« MBPs require multilinear maps to enforce input consistency.

« ADPs only read each input bit once!

Affine Determinant Programs (ADPs) Matrix Branching Programs (MBPs)

Ml,O MZ,O M3,O M4,O

A) Bl) B | Bn

Ml,l M2,1 M3,1 M4,1

ADPs are an “additive” analogue of MBPs

« MBPs require multilinear maps to enforce input consistency.
« ADPs only read each input bit once!

Takeaway: It seems plausible that we could build “many-time” secure
ADPs without multilinear maps.

Affine Determinant Programs (ADPs)

A

B,

Matrix Branching Programs (MBPSs)

By,

My o

M3,

M3,O

M40

Ml,l

M2,1

M3,

M4,1

Until recently, all known ADPs were only “one-time” secure.

» “one-time” security: only release one evaluation of A + ¥; | =1 B;-

« “many-time” security (obfuscation): 4, By, ..., B,, can be public.

The rest of this talk:

« (if time permits) provably secure many-time secure ADP for
conjunctions [BLMZ19]

« candidate many-time secure ADPs for NCT1.

Conjunctions
Program has a hard-coded string s = 11*0*.

Accepts iff input matches on every 0/1 bits.

£.(11000) = 1
£.(11101) =1
£.(00010) = 0
£.(01000) = 0

Example: s = 11*0*

[BL\MZ19] Obfuscation Construction:
On length n string s = 11*0*, output

Al |B,|..|B,

Evaluation: Input x matches s if

det() +z Bi)=o

[|x;=1

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

[J | secret random rank w = 2 matrix

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

[J | secret random rank w = 2 matrix

1 1 0
B, B, B,
random random random

Us vy UV UgVy

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

[J | secret random rank w = 2 matrix

1 1 * 0 *
B, B, B, B, B.

random random random random random
U V] u,v; uzvs With u,w) uswd with

uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

U

random

uq1vq

secret random rank w = 2 matrix

[]si=1
1 * 0 *
B, B B, Bs
random random = random random
T T asi T T \asi
Uy Uy usvs With u,v, Usvs With
uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

[J | secret random rank w = 2 matrix
A U Bl - BZ
1 1 * 0 *
B, B, B B, Bs
random random random random random
U V] u,v; uzvs With u,w) uswd with
uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

lJ | secret random rank w = 2 matrix Evaluation:
Oninputx = 11010
A U Bl - BZ A + Bl + Bz
* *
1 1 0 =|U |+|B,
B, B, B; B, Bs
(rank 3w.h.p.)
random random random random random
U V] u,v; uzvs With u,w) uswd with
uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

Evaluation:
Oninputx = 01000

[J | secret random rank w = 2 matrix

A|l=|U|-|B,|-|B, A |+|B,
* *
1 1 0 =| U |—|B,
B, B, B B, Bs
(rank 3w.h.p.)
random random random random = random
U V] u,v; uzvs With u,w) uswd with
uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

Evaluation:
Oninputx = 11000

[J | secret random rank w = 2 matrix

A — U — Bl — BZ A Bl + Bz
1 1 * 0 * —
B, B, B B, Bs
(rank 2)
random random random random random
U V] u,v; uzvs With u,w) uswd with
uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

Evaluation:
Oninputx = 11100

[J | secret random rank w = 2 matrix

A —_ U — Bl — BZ A + Bl + Bz Bg
% %
1 1 0 = | U |+|Bs
B, B, B; B, Bs |
rank 2 since
random random random random random
U V] u,v; uzvs With u,w) uswd with col(| B3 |) < col()
uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

[J | secret random rank w = 2 matrix
A U Bl - BZ
1 1 * 0 *
B, B, B B, Bs
random random random random random
U V] u,v; uzvs With u,w) uswd with
uz < col(| [J |) us < col(| [J

Claim [BL\Z19]: 4, B4, ..., B,
statistically hides s if s has
sufficient entropy on 0/1 bits.

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

[J | secret random rank w = 2 matrix

Claim [BL\Z19]: 4, B4, ..., B,
statistically hides s if s has
sufficient entropy on 0/1 bits.

— =g uniformly random matrix

I I
A — U - : Bl - BZ :
| |
1 1 * 0 *
B, B, B, B, B.

random random random random random
U V] u,v; uzvs With u,w) uswd with

uz < col(| [J |) us < col(| [J

s = 11*0* of length n = 5, w = 2 wildcards,
width w + 1 = 3 square matrices over Z,.

U

A

1

B,

random
u1V1T

secret random rank w = 2 matrix

Claim [BL\Z19]: 4, B4, ..., B,
statistically hides s if s has
sufficient entropy on 0/1 bits.

— =g uniformly random matrix

I I
I I
U | Bl - B2 l
I I
;_'_____*______Tr,__" | .
1 N U
I I
BZ | B3 : B4_ | B5
| — | |
random random random random
u,v; uzvs With u,w) uswd with
uz < col(| [J |) us < col(| [J

us, us from (hidden) random

= _,Z 2-dimensional subspace

B; =5 uniformly random rank 1
matrix for all i

WORK IN
PROGRESS

Candidate Many-Time Secure ADPs for NCT

é ~N

‘one-time secure”
branching program [IKOO] - - :
BP(x) > || A" || Bf || By
+ add determinant-
preserving noise
Approach 1 }
(not today) ‘many-time secure’

AL|B | B,

N Y,

Obfuscated program

Candidate Many-Time Secure ADPs for NCT

encode f(x)
gate-by-gate
log-depth as ADP
boolean formula
f(x)

Approach 2

-

.

‘many-time secure’

A

)

B,

, L

)

By,

N

J

Obfuscated program

Candidate Many-Time Secure ADPs for NCT

encode f(x)
gate-by-gate . " —
log-depth 25 ADP many-time secure
boolean formula > A |,|By || B,
f(x)

\\ J

Obfuscated program

« Positive/Negative Input-wire ADPs
 AND Gates
 OR Gates

Affine Determinant Programs (ADP)

gEncode:

fO - 01— 4

Evaluate:

M

f(x) =1 «— det(

f(x) =0 «—— det(

A

width w matrices over Zq

)

B,

4,

[lx;=1

, EEn

)

B, |

M, | rank deficient by 1
when f(x) =1

f(xll ...,Xn) = X

Positive Input Wire

1) Draw random u « Z,

2) Construct width-1 ADP:

A

=u’

B;

_u,

(Vj # 1)

Positive Input Wire

f(xq, e, X)) = X;
1) Draw random u « Z,
2) Construct width-1 ADP:

Correctness e Ifx; =1 then|M] =0

My = A|+) |B
. i%:‘l : » Ifx; =0,then | M, =u

(determinant of a scalar is itself)

1) Draw random u « Z,
2) Construct width-1 ADP:

A

= (),

Negative Input Wire

f(xq, e, x) = X5

B;

=u’

(Vj # 1)

Negative Input Wire

f(xq, e, x) = X5
1) Draw random u « Z,
2) Construct width-1 ADP:

Correctness e Ifx; =1 then|[m]=u

My = A|+) |B
- i%:'l : e |Ifx; =0,then My =0

(determinant of a scalar is itself)

width k

AU)

BY| ...

Can

width k

g

A9)

B9 ...

B 7gg)

didate AND Gates

Evaluation on x is

Evaluation on x is

M

width k

AU)

BY| ...

width k

A9)

B ..

(2k — 1) x (2k — 1)

MJ(cf Ag)

Candidate AND Gates
Béf) Evaluation on x is M}Ef)
Bég) Evaluation on x is MD(CQ)
(2k — 1) x 2k 2k x 2k 2k X (2k — 1)
(f)
M 0
- | R | ™ 4 g
random 0 M}(Cg) o

. If f(x) and g(x) are both 1, then MY? and M\?
are both rank k — 1, so MY"9 is rank 2k — 2

AND Gate (rank deficient)
Correctness
Qk—1)x2k—1) (2k—-1) x 2k 2k X 2k 2k X (2k — 1)
| o
(fA9) M
Mx — R X * X S
random (g)

0 Mx random

AND Gate
Correctness

2k — 1) X (2k — 1)

MJ(Cf Ag)

If £(x) and g(x) are both 1, then MY and M9’

are both rank k — 1, so MY"9 is rank 2k — 2
(rank deficient)

If at least one of f(x) and g(x) is 0, then at

least one of MY? and M9 is rank k, so MY"9
s rank 2k — 1 (full rank)

(2k — 1) X 2k 2k X 2k 2k X (2k — 1)
(f)
M 0
R X — x| S
random (g)
0 Mx random

Claim: For appropriately-designed “input wire ADPS”,
applying these AND gates recovers the [BLMZ19]
conjunction obfuscator.

2k — 1) X (2k — 1)

MJ(Cf Ag)

(2k —1) x 2k

R

random

2k X 2k

0

Mp(cg)

2k x (2k — 1)

S

random

width k

AU)

BY| ...

Candidate OR Gates

width k

g

A(9)

B9 ...

B 7gg)

Evaluation on x is

Evaluation on x is

M

width k

AU)

width k

A(9)

2k X 2k

Candidate OR Gates

BY| ...

g

B9 ...

B 7gg)

Mp(cf vVg)

Evaluation on x is

Evaluation on x is

2k X 2k

R

random

M
M:)E'g)
random ADP
2k x 2k 2k x 2k
7
xS
O M9(Cg) random

OR Gate
Correctness

2k X 2k

Mp(cf vVg)

If at least one of f(x) and g(x) is 1, then

MY is rank 2k — 1 (rank deficient)

2k X 2k

R

random

random ADP
2k x2k 2k x 2k
7
M| Uy
xS
O Még) random

OR Gate
Correctness

2k X 2k

Mp(cf vVg)

If at least one of f(x) and g(x) is 1, then

MY is rank 2k — 1 (rank deficient)

If neither f(x) and g(x) are 1, then M,(Cf’\g) IS
rank 2k (full rank)

2k X 2k

R

random

random ADP
2k x2k 2k x 2k
7
M| Uy
xS
O Mﬁg) random

Attacks and Defenses

All attacks so far are “kernel attacks”, which exploit linear
relationships between kernels of M, , M, , ..., M, from

accepting INnputs xq, Xy, ..., X.

Attacks and Defenses

All attacks so far are “kernel attacks”, which exploit linear
relationships between kernels of M, , M, , ..., M, from

accepting INnputs xq, Xy, ..., X.

Future Directions:

1. Design new input wires to resist kernel attacks.
2. Security for null/evasive circuits?

3. Post-processing strategies, e.g., compute the AND of k
independent ADP obfuscations of f.

Thank you!
Questions?

slides available at cs.princeton.edu/~fermim/

