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I also study cryptography.

build protocols that provably 
resist adversarial behavior.
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Quantum computers will revolutionize cryptography

New threats New opportunities

Can we leverage quantum 
mechanics to build better 
cryptographic protocols?

quantum cryptography

Shor’s algorithm 
breaks RSA!

How do we build classical 
cryptography that resists 
quantum attack?
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[HH13] counterargument: this is cryptographically hard!

“decoded” 
radiation

Recently, quantum cryptography has been 
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment 
in which an observer “decodes” black hole radiation.
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Now common practice: model chaotic systems using 
cryptographic pseudorandomness

Recently, quantum cryptography has been 
showing up in fundamental physics.

“We use the common simplification of modeling 
black holes and more generally chaotic systems 
via (pseudo)random dynamics”

“We shall assume that the unitary 𝑈 that 
describes the formation and the evaporation of 
the black hole is pseudorandom”

Kim-Preskill
(2023)

Yang-Engelhardt
(2023)
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1) Develop theoretical foundations 
for quantum cryptography.

2) Apply these insights to the 
broader theory of computation
and fundamental physics.

My research goals



Highlights of my research

quantum 
security



Highlights of my research

• [CMSZ21, LMS22]: proved that textbook crypto protocols are 
quantum secure via “quantum rewinding”
(FOCS 2021 special issue, FOCS 2022)

quantum 
security



Highlights of my research

• [CMSZ21, LMS22]: proved that textbook crypto protocols are 
quantum secure via “quantum rewinding”
(FOCS 2021 special issue, FOCS 2022)

• These techniques have found widespread use
[BBK22,BKLMMVVY23,BQSY24,CDGS24,MNZ24,…]

quantum 
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Highlights of my research

quantum 
security
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• [GJMZ23]: introduced commitments to quantum states
(STOC 2023 special issue)

• [HH13,A16,B23]+[M23]: decoding black hole radiation is 
equivalent to breaking a “maximally entangled” commitment
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quantum 
hardness

How hard is it to break quantum crypto?
• [K21,KQST23]: a magic device that 

solves NP-hard problems isn’t enough!
• [LMW24]: magic device that evaluates 

any function (once) isn’t enough!
(STOC 2024)

Featured in 
Quanta Magazine:
“Cryptographers 
Discover a New 
Foundation for 
Quantum Secrecy”
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Highlights of my research

quantum 
security

quantum 
primitives

|𝜓⟩
Haar

pseudorandom 
unitaries

𝑓 ≈

quantum 
hardness

[MH24]: first proof that 
pseudorandom unitaries exist 
(under crypto assumptions).
(STOC 2025, QIP 2025 plenary talk) 

Focus of today:

Featured last week in 
Quanta Magazine:
“The High Cost of Quantum 
Randomness is Dropping”
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The quantum we’ll need:
qubits: generalization of classical 
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

basic allowable operation:
unitary transformation (rotation)

|0⟩

|1⟩
𝑈|𝜓⟩

𝜓

in general:
• 𝑛-qubit quantum state ↔ 2!-dimensional vector
• 𝑛-qubit unitary ↔ 2!×2!-dimensional unitary matrix
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The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be 
implemented as a poly(n)-size quantum circuit:

𝑈|𝜓⟩

Not all unitaries can be implemented efficiently!
A random unitary is unlikely to be efficiently computable.

each gate      
is a 2-qubit unitary|𝜓⟩
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Haar measure: unique distribution on unitaries that is 
unchanged under any fixed unitary 𝑊

𝑈 𝑈 ∼ Haar

…

exp(𝑛)
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What exactly is a random unitary?

all 𝑛-qubit 
unitaries



66

Haar-random unitaries come up everywhere in quantum:



67

Haar-random unitaries come up everywhere in quantum:

information 
scrambling

random 
quantum 
circuits

...
quantum 

crypto

quantum learning 
algorithms

unitary 
complexity

quantum 
error 

correction

generate 
entanglement



68

Haar-random unitaries come up everywhere in quantum:

information 
scrambling

random 
quantum 
circuits

...
quantum 

crypto

quantum learning 
algorithms

unitary 
complexity

quantum 
error 

correction

generate 
entanglement

But they’re computationally infeasible to evaluate.
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There’s an analogous “problem” for functions: a random 
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

𝑥

𝑓(𝑥) PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

≈
random 𝑓

𝑥

𝑓(𝑥)

No efficient algorithm 
can tell the difference!
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Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

𝑈 𝑈 𝑈
measure 𝑏

Pr[𝑏 = 1 ∣ 𝑈 ← Haar] ≈ Pr[𝑏 = 1 ∣ 𝑈 ← PRU]

For any efficient algorithm 𝐴:
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1) Several candidate constructions [JLS18,MPSY24,…]

×fixed unitary
(Hadamard)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

What was known about PRUs

+1
−1
−1

⋱

pseudorandom
diagonal unitary
(uses a PRF)

[JLS18]
repeat many 

times:

𝑈 𝑈 𝑈
𝑈

can analyze 
this: 𝑈

𝑈

but not
this:
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Theorem: 
PRUs exist under cryptographic assumptions.

In [MH24], we resolve this question.

(the construction we analyze is by [MPSY24])
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Why has it been hard to prove PRUs secure?
1) Hard to characterize behavior of an arbitrary algorithm:

2) Mathematics of random unitaries is complicated.

• Weingarten calculus
• representation theory
• free probability

𝑈 𝑈 𝑈
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Cartoon overview of our proof
Want to show: 
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

Proof strategy: show that both 
are indistinguishable from

≈

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴! ⋯ 𝐴"
prO prO

(hidden
state)≈

most of the proof

(path-recording oracle)
a data structure that 
performs “lazy sampling” of 
a Haar-random unitary
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• remember what you sampled (for consistency)
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Goal: efficiently implement an algorithm that queries a 
random function 𝑓. 

𝑥!

𝑓(𝑥!)
Hidden state
𝑥" 𝑓(𝑥")

𝑥#
Hidden state
𝑥" 𝑓(𝑥")
𝑥# 𝑓(𝑥#)

Solution:

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)
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𝑥!

𝑓(𝑥!)
Hidden state
𝑥" 𝑓(𝑥")

𝑥#

𝑓(𝑥#)
Hidden state
𝑥" 𝑓(𝑥")
𝑥# 𝑓(𝑥#)

Solution:

Goal: efficiently implement an algorithm that queries a 
random function 𝑓. 

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)
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Lazy sampling of a random unitary
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Our solution: the path-recording oracle
We use entanglement with a hidden data structure that 
succinctly “remembers” enough information to spoof a 
Haar-random 𝑈.

Goal: efficiently implement a quantum algorithm that 
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Classical case: the data structure is the list of (𝑥, 𝑓(𝑥)) pairs.

Lazy sampling of a random unitary
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Up next:
“Derive” the path-recording oracle 

through simple examples 
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Example 1: one query on |0⟩

0 $ 𝑈 0 $𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the 
“maximally mixed” state

How to “spoof” it:
8
%

𝑦 $ 𝑦 &

Fact: this is also the 
maximally mixed state.

(S register is hidden)
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Example 1: one query on |0⟩

How to “spoof” it:
8
%

𝑦 $ 𝑦 &

Idea 1: entanglement with a hidden register 𝑆 can simulate 
one query to 𝑈.

Fact: this is also the 
maximally mixed state.

0 $ 𝑈 0 $𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the 
“maximally mixed” state

(S register is hidden)
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Example 2: two queries on |0⟩
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Example 2: two queries on |0⟩
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:

(𝑈 ← Haar)
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(𝑈 ← Haar)

Fact: this is the 
maximally mixed 
“symmetric” state
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0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:
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8
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(S register is hidden)
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maximally mixed 
“symmetric” state
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8
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Example 2: two queries on |0⟩

How to “spoof” it:
8
%!,%"

𝑦! $ 𝑦# ' 𝑦!, 𝑦# &

Idea 2: use an unordered set to spoof “swap-symmetry”.

0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:

(𝑈 ← Haar)

(S register is hidden)

Fact: this is the 
maximally mixed 
“symmetric” state

also symmetric! 
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Example 3: mixed queries
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1 ) 𝑈 1 )𝑈

The algorithm:

(𝑈 ← Haar)
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Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1 ) 𝑈 1 )𝑈

The algorithm:

(𝑈 ← Haar)
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Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1 ) 𝑈 1 )𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)
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Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1 ) 𝑈 1 )𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
8

%!,%",%#

𝑦! $ 𝑦# ' 𝑦* ) (0, 𝑦!), 0, 𝑦# , (1, 𝑦*) &
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Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1 ) 𝑈 1 )𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)
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8
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Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1 ) 𝑈 1 )𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
8

%!,%",%#

𝑦! $ 𝑦# ' 𝑦* ) (0, 𝑦!), 0, 𝑦# , (1, 𝑦*) &
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Example 3: mixed queries

How to “spoof” it:
8

%!,%",%#

𝑦! $ 𝑦# ' 𝑦* ) (0, 𝑦!), 0, 𝑦# , (1, 𝑦*) &

symmetric

Idea 3: use ordered pairs to simulate symmetry “structure”

0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1 ) 𝑈 1 )𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)
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We can generate all of these examples by simply 
replacing each query to 𝑈 with this:
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path-
recording 

oracle

(superposition 
over all 𝑦)𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply 
replacing each query to 𝑈 with this:
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over all 𝑦)𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply 
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:
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path-
recording 

oracle

(superposition 
over all 𝑦)𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply 
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:

classical 
lazy 

sampling

(random 𝑦)𝑥

𝐷

𝑦

𝐷 ∪ { 𝑥, 𝑦 }
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The path-recording oracle is actually a general-purpose 
tool for analyzing Haar-random unitaries.
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Many statements about Haar-random 𝑈 can be reduced to 
simple claims about this data structure
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The path-recording oracle is actually a general-purpose 
tool for analyzing Haar-random unitaries.

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴! ⋯ 𝐴"

prO prO
(hidden

state)

Many statements about Haar-random 𝑈 can be reduced to 
simple claims about this data structure

• [MH24]: elementary proof of [SHH24] gluing lemma 
• [ABGL24]: compress PRU key length + other results
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In my view: our quantum understanding is on par with 
where our classical understanding was 40 years ago.
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Pseudorandom
functions 
[GGM84]

In my view: our quantum understanding is on par with 
where our classical understanding was 40 years ago.

Pseudorandom
unitaries 
[MH24]



155

Pseudorandom
functions 
[GGM84]

[GGM84] proof:
Lazy sampling of a 
random function

Pseudorandom
unitaries 
[MH24]

[MH24] proof:
Lazy sampling of a 

random unitary

In my view: our quantum understanding is on par with 
where our classical understanding was 40 years ago.
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Future directions
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Question 1a: Can we unconditionally prove that no 
efficient algorithm can break quantum cryptography?
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Analogous classical question: can you prove that no 
efficient algorithm breaks classical cryptography?
Complexity-theoretic barrier: this implies P ≠ NP.

Question 1a: Can we unconditionally prove that no 
efficient algorithm can break quantum cryptography?
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Analogous classical question: can you prove that no 
efficient algorithm breaks classical cryptography?
Complexity-theoretic barrier: this implies P ≠ NP.

[LMW24]: in the quantum setting, there might be no 
barriers from traditional complexity theory!

Question 1a: Can we unconditionally prove that no 
efficient algorithm can break quantum cryptography?
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Question 1a: Can we unconditionally prove that no 
efficient algorithm can break quantum cryptography?

• But if PRUs exist, there might be a different barrier.
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Question 1a: Can we unconditionally prove that no 
efficient algorithm can break quantum cryptography?

• But if PRUs exist, there might be a different barrier.
• Classically, there’s the natural proofs barrier [RR]: 

PRFs “explain” why we haven’t proved P ≠ NP.
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Question 1a: Can we unconditionally prove that no 
efficient algorithm can break quantum cryptography?

• But if PRUs exist, there might be a different barrier.
• Classically, there’s the natural proofs barrier [RR]: 

PRFs “explain” why we haven’t proved P ≠ NP.

Question 1b: can PRUs “explain” why we can’t 
unconditionally prove that quantum cryptography 
exists?
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Question 2: Physicists model chaotic systems as 
pseudorandom unitaries. Is this actually justifiable? 

≈ PRU
?
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Black hole scrambling is usually modeled as a random 
poly(𝑛)–size quantum circuit.
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Question 2: Physicists model chaotic systems as 
pseudorandom unitaries. Is this actually justifiable? 

≈ PRU≈

Black hole scrambling is usually modeled as a random 
poly(𝑛)–size quantum circuit.

Question 2’: Is a random quantum circuit a PRU?
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Upcoming work with Alex Lombardi: 
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Upcoming work with Alex Lombardi: 
We prove that random quantum circuits are PRUs under 

a “structure-hiding” assumption.
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What is a random quantum circuit? 
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Ex: brickwork architecture
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depth 𝑑

each gate is an 
independent 2-qubit 
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What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

Actually, the distribution is still not fully specified… 
there are two possible “parities”.
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depth 𝑑

What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

“Even”

Actually, the distribution is still not fully specified… 
there are two possible “parities”.
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depth 𝑑

What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

depth 𝑑

“Even” “Odd”

Actually, the distribution is still not fully specified… 
there are two possible “parities”.
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Our result: If even and odd parity random circuits are 
computationally indistinguishable
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depth 𝑑 depth 𝑑

≈

Our result: If even and odd parity random circuits are 
computationally indistinguishable

“Even” “Odd”
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depth 𝑑

…this implies a random quantum circuit is a PRU!

depth 𝑑

≈“Even” “Odd”

Our result: If even and odd parity random circuits are 
computationally indistinguishable
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1) general framework for 
proving quantum security

2) “minimal” assumption 
for quantum crypto?

3) build out a theory of 
physically relevant hardness

4) computational 
complexity of unitaries

quantum 
security

quantum 
primitives

|𝜓⟩
Haar

pseudo-
randomness

𝑓 ≈

quantum 
hardness

Other future directions
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Thanks!


