The cryptographic nature
of quantum computation

Fermi Ma

UC Berkeley & Simons Institute



[ study quantum computers.



[ study quantum computers.

J

|

devices that exploit
quantum phenomena




[ study quantum computers.

J o)yl

' g{fﬁ'/(«‘

devices that exploit
quantum phenomena

I also study cryptography.



[ study quantum computers.

J

|

devices that exploit
quantum phenomena

[ also study cryptography.

build protocols that provably
resist adversarial behavior.




Quantum computers will revolutionize cryptography



Quantum computers will revolutionize cryptography

New threats

s&” | Shor’s algorithm
& «| breaks RSA!




Quantum computers will revolutionize cryptography

New threats

s« | Shor’s algorithm
breaks RSA!

How do we build classical
cryptography that resists
quantum attack?




Quantum computers will revolutionize cryptography

New threats New opportunities

Shor’s algorithm @ 9, “«— & @

. | | breaks RSA!

() ()

How do we build classical
cryptography that resists
quantum attack?




Quantum computers will revolutionize cryptography

New threats New opportunities

Shor’s algorithm @ 9, “«— & @

. | | breaks RSA!

() ()

How do we build classical Can we leverage quantum
cryptography that resists mechanics to build better
quantum attack? cryptographic protocols?




Quantum computers will revolutionize cryptography

New opportunities

New threats

% | Shor’s algorithm
.| 7| breaks RSA!

|2 —2 |

Can we leverage quantum
mechanics to build better
cryptographic protocols?

How do we build classical
cryptography that resists
quantum attack?

v
quantum cryptography



But quantum cryptography is not just
about cryptography...



Recently, quantum cryptography has been
showing up in fundamental physics.




Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox.




Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.




Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.




Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.




Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.




Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

o o0 decoded”

2 o, radiation




Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

o o0 decoded”

2 o, radiation

[HH13] counterargument: this is cryptographically hard!




Recently, quantum cryptography has been
showing up in fundamental physics.

Now common practice: model chaotic systems using
cryptographic pseudorandomness




Recently, quantum cryptography has been
showing up in fundamental physics.

Now common practice: model chaotic systems using
cryptographic pseudorandomness

“We shall assume that the unitary U that
describes the formation and the evaporation of
the black hole is pseudorandom”

Kim-Preskill
(2023)




Recently, quantum cryptography has been
showing up in fundamental physics.

Now common practice: model chaotic systems using
cryptographic pseudorandomness

“We shall assume that the unitary U that
describes the formation and the evaporation of
the black hole is pseudorandom”

Kim-Preskill
(2023)

“We use the common simplification of modeling
black holes and more generally chaotic systems
via (pseudo)random dynamics”

Yang-Engelhardt
(2023)




My research goals



My research goals

1) Develop theoretical foundations
for quantum cryptography.



My research goals

1) Develop theoretical foundations
for quantum cryptography.

2) Apply these insights to the
broader theory of computation
and fundamental physics.



Highlights of my research

Y

quantum
security




Highlights of my research

Ve

quantum
security

« [CMSZ21, LMS22]: proved that textbook crypto protocols are
quantum secure via “quantum rewinding”

(FOCS 2021 special issue, FOCS 2022)



Highlights of my research

Y

quantum
security

« [CMSZ21, LMS22]: proved that textbook crypto protocols are
quantum secure via “quantum rewinding”

(FOCS 2021 special issue, FOCS 2022)

» These techniques have found widespread use
[BBK22,BKLMMVVY23,BQSY24,CDGS24,MNZ24,...]



Ve

quantum
security

Highlights of my research

V) i
o

quantum
primitives

30



Highlights of my research

%ﬁg V) i

=af

quantum quantum
security primitives

[GIMZ23]: introduced commitments to quantum states
(STOC 2023 special issue)

31



Highlights of my research

%@3 V) i

=af

quantum quantum
security primitives

« [GJMZ23]: introduced commitments to quantum states
(STOC 2023 special issue)

 [HH13,A16,B23]+[M23]: decoding black hole radiation is
equivalent to breaking a “maximally entangled” commitment

S



Highlights of my research

%@3 V) i

=af

quantum quantum quantum
security primitives hardness




Highlights of my research

\H@Q V) i

=af

quantum quantum quantum
security primitives hardness

How hard is it to break quantum crypto?



Highlights of my research

\H@Q V) i

=af

quantum quantum quantum
security primitives hardness

How hard is it to break quantum crypto?

« [K21,KQST23]: a magic device that
solves NP-hard problems isn’t enough!

5t



Highlights of my research

A A

quantum quantum quantum
security primitives hardness

How hard is it to break quantum crypto?

« [K21,KQST23]: a magic device that
solves NP-hard problems isn’t enough!

« [LMW24]: magic device that evaluates
any function (once) isn’t enough!
(STOC 2024) y



Highlights of my research

\H&Q V) i

=af

quantum quantum quantum
security primitives hardness

How hard is it to break quantum crypto? ] Featured in

e [K21,KQST23]: a magic device that Quanta Magazine:
solves NP-hard problems isn’t enough! “Cryptographers

« [LMW24]: magic device that evaluates Discover a New

) ., Foundation for

any function (once) isn’t enough! ”
Quantum Secrecy

(STOC 2024) — 37




Highlights of my research

A\
wh | 352 <

quantum quantum quantum pseudorandom
security primitives hardness unitaries

38



Highlights of my research

A\
wh | 352 <

quantum quantum quantum pseudorandom
security primitives hardness unitaries

[MH24]: first proof that
pseudorandom unitaries exist
(under crypto assumptions).

(STOC 2025, QIP 2025 plenary talk)

39



Highlights of my research

%@3 V) i

=5
quantum quantum quantum pseudorandom
security primitives hardness unitaries
[MH24]: first proof that Featured last week in
pseudorandom unitaries exist Quanta Magazine:
(under crypto assumptions). “The High Cost of Quantum
(STOC 2025, QIP 2025 plenary talk) Randomness is Dropping”

—

40



E ~ Haar

Focus of today:

pseudorandom
unitaries

[MH24]: first proof that Featured last week in
pseudorandom unitaries exist Quanta Magazine:

(under crypto assumptions). “The High Cost of Quantum
(STOC 2025, QIP 2025 plenary talk) Randomness is Dropping”

—

41



Pseudorandom unitaries



The quantum we’ll need:



The quantum we’ll need:

qubits: generalization of classical [1)

bits that allows superposition 4 v,

~

~~ classical
bits




The quantum we’ll need:

qubits: generalization of classical |1)
bits that allows superposition 4 vo_
a "~ classical
«l0) +611) = (5) oits




The quantum we’ll need:

qubits: generalization of classical [1)

bits that allows superposition
unit vector

«l0) + 1) = () 2|0) + B1)




The quantum we’ll need:

qubits: generalization of classical |1)
bits that allows superposition 4 |
- unit vector
@l0) + BI1) = () a|0) + BI1)

basic allowable operation: £ -
unitary transformation (rotation)




The quantum we’ll need:
1)

qubits: generalization of classical
bits that allows superposition

«l0) + 1) = ()

basic allowable operation:
unitary transformation (rotation)

A

Ul)

\ )

>10)



The quantum we’ll need:
1)

qubits: generalization of classical
bits that allows superposition

«l0) + 1) = ()

basic allowable operation:
unitary transformation (rotation)

in general:

A

Ul)

\ )

>10)



The quantum we’ll need:

qubits: generalization of classical [1)
bits that allows superposition 4 Ulp)

al0) + 1) = (p) \ )

basic allowable operation:
unitary transformation (rotation)

> [0)
in general:
* n-qubit quantum state < 2"™-dimensional vector



The quantum we’ll need:

qubits: generalization of classical [1)
bits that allows superposition 4 Ulp)

al0) + 1) = (p) \ )

basic allowable operation:
unitary transformation (rotation)

> [0)
in general:

* n-qubit quantum state < 2"™-dimensional vector
* n-qubit unitary & 2" x2"-dimensional unitary matrix



The quantum we’ll need:



The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:



The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

D)




The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

. each gate [
D) is a 2-qubit unitar
1 d v




The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate |
V) is a 2-qubi '
qubit unitary




The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate |
V) is a 2-qubi '
qubit unitary




The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate |
V) is a 2-qubi '
qubit unitary




The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate [
¥) # UlY is a 2-qubit unitary




The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate [
¥) # UlY is a 2-qubit unitary

Not all unitaries can be implemented efficiently!




The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

Not al]

each gate [
¥) # UlY is a 2-qubit unitary

| unitaries can be implemented efficiently!

A rand

om unitary is unlikely to be efficiently computable.



The quantum we’ll need:

What exactly is a random unitary?



The quantum we’ll need:

What exactly is a random unitary?

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary W




The quantum we’ll need:

What exactly is a random unitary?

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary W

all n-qubit
unitaries

U U ~ Haar




The quantum we’ll need:

What exactly is a random unitary?

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary W

all n-qubit
i unitaries> %) %[ E Ulp)

U U ~ Haar exp(n)




Haar-random unitaries come up everywhere in quantum:



Haar-random unitaries come up everywhere in quantum:

[ N [ )
information 1 A quantum learning

generate

.

scrambling )

entanglement
. J

algorithms

J

7

.

quantum
crypto

~\

J

(

&

random
quantum
circuits

\

J

.

) )
unitary

complexity )

(

&

\
quantum

error
correction

J




Haar-random unitaries come up everywhere in quantum:

[ N [ )
information 1 A quantum learning

. generate .
scrambling ) | entanglement | | algorithms )

.

f N N N A

.

quantum
crypto

J

&

random
quantum
circuits

J

.

unitary

complexity )

&

quantum
error
correction

J

But they’re computationally infeasible to evaluate.



There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!



There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

1 | O
2 | f@
| fem

random f



There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1 | O
2 | f@
| fem

random f



There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1 | O
2 | f@ PRE £
| fem

random f



There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1 f( y
f

% f(.z) PRF f | r(x

—>

| fem

random f




There’s an analogous “problem” for functions: a random

function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

on

f (1)
f(2)

F(2m)

PRF f

random f

X

<.

f .
flx)
> ..



There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1| f@ . X
2 2 < ' <+ 4.“
B fo 3 =~ |PREf f@

> | e TN

No efficient algorithm
random f can tell the difference!




Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random



Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

D)

PRUU |*




Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

JP
PRUU | 3,




Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

D)

< 4“‘
PRU U Ulp)




Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

) D)

<+ ‘. A\ < +,
Haar U o) 1 PRU U ) 3




Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

[P) [P)
< ‘x“ "N < ‘x“
Haar Uy ") 7% [BRUU

For any efficient algorithm A:




Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

) D)

< <. N < <.
A N\ E

Haar U

For any efficient algorithm A:

U:l:U"Ti

= U': O

O B measure b

5 |




Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

) D)

< <. N < <.
A N\ E

Haar U

For any efficient algorithm A:

3 U] U B =
s—a ==
=1

| U« Haar| = Pr[b =1 | U « PRU|

O

measure b

U

Pr(b




What was known about PRUs



What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]




What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]

[JLS18]
repeat many

times:




What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]

[JLS18] +1

repeat many fixed unitary | —1_1
fimes- | (Hadamard)




What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]

[JLS18]
repeat many

times:

fixed unitary
(Hadamard)

X

—

pseudorandom
- diagonal unitary

(uses a PRF)




What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]

[JLS18]
repeat many

times:

fixed unitary
(Hadamard)

X

—

pseudorandom
- diagonal unitary

—

(uses a PRF)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]




What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]

[JLS18]
repeat many
times:

fixed unitary
(Hadamard)

X

—

pseudorandom
- diagonal unitary

—

(uses a PRF)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

:

can analyze

U

this:

U

-

U

||




What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]

[JLS18] fod un +1 | pseudorandom
repeat many | H1X€ ; umtadry X _1_1 _ diagonal unitary
times: | (Hadamard) ..| | (uses a PRF)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]
B U

U

can analyze

this:

=1 U

but not =i ;7 HE /B
HU U F
this: — 4.-

U

all

||




In [MH24], we resolve this question.

92



In [MH24], we resolve this question.

Theorem:
PRUs exist under cryptographic assumptions.




In [MH24], we resolve this question.

Theorem:
PRUs exist under cryptographic assumptions.

(the construction we analyze is by [MPSY24])




Why has it been hard to prove PRUs secure?



Why has it been hard to prove PRUs secure?

1) Hard to characterize behavior of an arbitrary algorithm:

a5

SEm U

i

U

4 W
!

96



Why has it been hard to prove PRUs secure?

1) Hard to characterize behavior of an arbitrary algorithm:

e el e

2) Mathematics of random unitaries is complicated.



Why has it been hard to prove PRUs secure?

1) Hard to characterize behavior of an arbitrary algorithm:

U

B

By

Ubam U

i

b -

all

2) Mathematics of random unitaries is complicated.

* Weingarten calculus
* representation theory
 free probability

Theorem 3.1. Let k be a positive integer. For any permutation o € 8, and
nonnegative integer g, we have

(k — 1)%P(o,|o]) < #P(o,|o] +2g) < (6k7/2)9#P(G,|G|).
Theorem 3.2. For any o € Sy and d > Vek/4,

1 (—=1)leldk el wgY (o, d) 1
< :
I—=L = #P(0,|o]) = 1 _ &2

d2
In addition, the Lh.s inequality is valid for any d > k.

d2



Cartoon overview of our proof



Cartoon overview of our proof

Want to show:
For all efficient adversaries A,



Cartoon overview of our proof

Want to show:

For all efficient adversaries A,

U « Haar

|4

U

"':At

101



Cartoon overview of our proof

Want to show:

For all efficient adversaries A,

U « Haar

|4

U

"':At

NS
NS

102



Cartoon overview of our proof

Want to show:

For all efficient adversaries A,

U < Haar

[T |
~

U < PRU

L

103



Cartoon overview of our proof

Want to show:

For all efficient adversaries A,

U < Haar

[T |
~

U < PRU

L

Proof strategy: show that both
are indistinguishable from

104



Cartoon overview of our proof

Want to show:

For all efficient adversaries A,

U < Haar

:A1 u _'":At_
~

U < PRU

L Ja ]

i

14,

prO

"':At

prO

Proof strategy: show that both
are indistinguishable from

_ (hidden

state)

105



Cartoon overview of our proof

Want to show: Proof strategy: show that both
For all efficient adversaries A, are indistinguishable from
U < Haar S I— _ (hidden
Fdolk T HE o - |prO[ [—1|prO] state)
|44 | A, ~ |4 \ | Ay
e (path-recording oracle)
U < PRU a data structure that
Ttk T Hygk performs “lazy sampling” of
141 | Ay a Haar-random unitary

106



most of the proof

_ (hidden
state)

(path-recording oracle)

a data structure that
performs “lazy sampling” of
a Haar-random unitary

107



Lazy sampling of a random function

108



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

109



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

Solution: °* only sample f(x) when needed, “on the fly”

110



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

111



Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

112



Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

113



Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

114



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a

random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

Hidden state

x; | f(x1)

115



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a

random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

Hidden state

x; | f(x1)

xy | f(x2)

116



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a

random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

Hidden state

x; | f(x1)

xy | f(x2)

117



Lazy sampling of a random unitary

118



Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

119



Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

120



Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

Our solution: the path-recording oracle

0.




Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

Our solution: the path-recording oracle i
@)

We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a

Haar-random U.




Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

Our solution: the path-recording oracle i
@)

We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a

Haar-random U.

Classical case: the data structure is the list of (x, f (x)) pairs.




Up next:

“Derive” the path-recording oracle
through simple examples



Example 1: one query on |0)



Example 1: one query on |0)

The algorithm: |g), U]0),

(U < Haar)



Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), Uloy, «

“maximally mixed” state

(U < Haar)



Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), Uloy, «

“maximally mixed” state

(U < Haar)

How to “spoof” it:

‘0) A Z'y aly)s (S register is hidden)
y

128



Example 1: one query on |0)

. Fact: this is the
The algorithm: |g), U0y, «

“maximally mixed” state

(U < Haar)

Fact: this is also the
How to “spoof” it: / maximally mixed state.

‘0) A Z'y aly)s (S register is hidden)
y

129



Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), U0y, «

“maximally mixed” state

(U < Haar)

Fact: this is also the
How to “spoof” it: / maximally mixed state.

Z'y alyds (S register is hidden)
y

Idea 1: entanglement with a hidden register S can simulate
one query to U.

130




Example 2: two queries on |0)



Example 2: two queries on |0)

The algorithm: |q), U]0),
(U < Haar) 10)5 U|0)g




Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state




Example 2: two queries on |0)

The algorithm:

(U < Haar)

How to “spoof” it:

|O>A U
|O>B U

0)4

0)5

Fact: this is the
maximally mixed
“symmetric” state

> 1yaly)sl s, v2))s

Y1,Y2

(S register is hidden)

134



Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state

also symmetric!

> 1yDaly)sl s, v2))s

Y1,Y2

How to “spoof” it:

(S register is hidden)

135



Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state

also symmetric!

> 1yDaly)sl s, v2))s

Y1,Y2

How to “spoof” it:

(S register is hidden)

Idea 2: use an unordered set to spoof “swap-symmetry”.

136




Example 3: mixed queries



Example 3: mixed queries
The algorithm: |q), _._ U|0),,

(U « Haar) 0)p -.- Ul0)p
e v F o




Example 3: mixed queries
The algorithm: |q), _._ U|0),,

) symmetric
(U « Haar) 0)p -.- Ul0)p
e v F o

139



Example 3: mixed queries

The algorithm: 10),, U]0) , ,
1) symimetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C>(

140



Example 3: mixed queries

The algorithm: 10),, U]0) , ,
) symimetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C)(

How to “spoof” it:

z V1) aly228ly3)cl{(0,y1), (0,¥2), (1,y3)})s

Y1,Y2,Y3

141



Example 3: mixed queries

The algorithm: |q), U]0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C)(

(14 Y 24,
How to spoof it: N

V1) aly228ly3)cl{(0,y1), (0,¥2), (1,y3)})s
Y1,Y2,Y3

142



Example 3: mixed queries

The algorithm: |q), U]0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
11)c U|1>c)

How to “spoof” it: Y\ pg
v z y1)aly2)81y3)cI1(0,¥1), (0,¥2), (1, ¥3) 15

Y1,Y2,Y3

143



Example 3: mixed queries

The algorithm: |q), U]0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C)(

How to “spoof” it: Y\ pg
v y1)aly2)81y3)cI1(0,¥1), (0,¥2), (1, ¥3) 15
Y1,Y2,Y3

Idea 3: use ordered pairs to simulate symmetry “structure”

144



We can generate all of these examples by simply
replacing each query to U with this:



We can generate all of these examples by simply
replacing each query to U with this:

[ X)a =

ID)s —

path-
recording
oracle

(superposition
— 1¥)a over all y)

IR |D U {(X,:V)})S

146



We can generate all of these examples by simply
replacing each query to U with this:

(superposition
X)a o path- =¥ Gyer all y)
recording

|ID)s 9 oracle [ |DU{(x,y)})s

Note the similarity to classical lazy sampling:

147



We can generate all of these examples by simply
replacing each query to U with this:

|X>A — path-
recording
ID)s < oracle

(superposition
— 1¥)a over all y)

IR |D U {(X,:V)})S

Note the similarity to classical lazy sampling:

x = classical
lazy
D — sampling

— Yy (random y)

— DU {(X,}’)}

148



The path-recording oracle is actually a general-purpose
tool for analyzing Haar-random unitaries.

149




The path-recording oracle is actually a general-purpose
tool for analyzing Haar-random unitaries.

L _ (hidden
:Al_ Y _o--:At_ Ur —_— prO prO| state)

150



The path-recording oracle is actually a general-purpose

tool for analyzing Haar-random unitaries.

|4

U

"':At

14,

U « Haar

prO

"':At

prO

_ (hidden

state)

Many statements about Haar-random U can be reduced to
simple claims about this data structure

151



The path-recording oracle is actually a general-purpose

tool for analyzing Haar-random unitaries.

|4

U

"':At

14,

U « Haar

prO

"':At

prO

_ (hidden

state)

Many statements about Haar-random U can be reduced to
simple claims about this data structure

 [MH24]: elementary proof of [SHH24] gluing lemma
 [ABGL24]: compress PRU key length + other results

152



In my view: our quantum understanding is on par with
where our classical understanding was 40 years ago.




In my view: our quantum understanding is on par with
where our classical understanding was 40 years ago.

Pseudorandom Pseudorandom
functions S — unitaries

|GGM84] [MH24]




In my view: our quantum understanding is on par with
where our classical understanding was 40 years ago.

Pseudorandom Pseudorandom
functions — unitaries
[GGM84] IMH24]

[GGMS84] proof: [MH24] proof:

Lazy sampling of a <€—» Lazy sampling of a
random function random unitary




Future directions



Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?



Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

Analogous classical question: can you prove that no
efficient algorithm breaks classical cryptography?

158




Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

Analogous classical question: can you prove that no
efficient algorithm breaks classical cryptography?

Complexity-theoretic barrier: this implies P # NP.

159




Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

Analogous classical question: can you prove that no
efficient algorithm breaks classical cryptography?

Complexity-theoretic barrier: this implies P # NP.

[LMW24]: in the quantum setting, there might be no
barriers from traditional complexity theory!




Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

» But if PRUs exist, there might be a different barrier.



Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

» But if PRUs exist, there might be a different barrier.

 C(Classically, there’s the natural proofs barrier [RR]:
PRFs “explain” why we haven’t proved P + NP.



Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

» But if PRUs exist, there might be a different barrier.

 C(Classically, there’s the natural proofs barrier [RR]:
PRFs “explain” why we haven’t proved P + NP.

Question 1b: can PRUs “explain” why we can’t
unconditionally prove that quantum cryptography
exists?



Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

~ PRU




Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

~ PRU

Black hole scrambling is usually modeled as a random
poly(n)-size quantum circuit.



Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

PRU

Black hole scrambling is usually modeled as a random
poly(n)-size quantum circuit.



Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

PRU

Black hole scrambling is usually modeled as a random
poly(n)-size quantum circuit.

Question 2’: Is a random quantum circuit a PRU?



Upcoming work with Alex Lombardi:



Upcoming work with Alex Lombardi:

We prove that random quantum circuits are PRUs under
a “structure-hiding” assumption.



What is a random quantum circuit?



What is a random quantum circuit? Many possible defs!



What is a random quantum circuit? Many possible defs!

Ex: brickwork architecture

depth d

172



What is a random quantum circuit? Many possible defs!

Ex: brickwork architecture

each gate is an
independent 2-qubit
Haar-random unitary

depth d

173



What is a random quantum circuit? Many possible defs!

Ex: brickwork architecture

each gate is an
independent 2-qubit
Haar-random unitary

depth d

Actually, the distribution is still not fully specified...
there are two possible “parities”.

174



What is a random quantum circuit? Many possible defs!

Ex: brickwork architecture

“Even”

depth d

Actually, the distribution is still not fully specified...
there are two possible “parities”.

175



What is a random quantum circuit? Many possible defs!

Ex: brickwork architecture

CCEven” C(Odd”

depth d depth d

Actually, the distribution is still not fully specified...
there are two possible “parities”.

176



Our result: If even and odd parity random circuits are
computationally indistinguishable



Our result: If even and odd parity random circuits are
computationally indistinguishable

CCEven” CCOdd”

depth d depth d

178



Our result: If even and odd parity random circuits are
computationally indistinguishable

CCEven” CCOdd”

depth d depth d

...this implies a random quantum circuit is a PRU!

179



Other future directions

A
[ B3 -r

quantum quantum quantum pseudo-
security primitives hardness randomness

180



Other future directions

1) general framework for
proving quantum security

A
[ B3 -r

quantum quantum quantum pseudo-
security primitives hardness randomness

181



Other future directions

1) general framework for
proving quantum security

A
[ B3 -r

quantum quantum quantum pseudo-
security primitives hardness randomness

2) “minimal” assumption
for quantum crypto?

182



Other future directions

1) general framework for 3) build out a theory of
proving quantum security  physically relevant hardness

A
[ 22 -

quantum quantum quantum pseudo-
security primitives hardness randomness

2) “minimal” assumption
for quantum crypto?

183



Other future directions

1) general framework for 3) build out a theory of
proving quantum security  physically relevant hardness

A A
\}1@ ItP)\./ %

=5/

quantum quantum quantum
security primitives hardness randomness

2) “minimal” assumption 4) computational
for quantum crypto? complexity of unitaries

184



Thanks!



