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Quantum computers will revolutionize cryptography

New opportunities

New threats

% | Shor’s algorithm
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Can we leverage quantum
mechanics to build better
cryptographic protocols?

How do we build classical
cryptography that resists
quantum attack?

v
quantum cryptography



But quantum cryptography is not just
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Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

o o0 decoded”

2 o, radiation

[HH13] counterargument: this is cryptographically hard!
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Recently, quantum cryptography has been
showing up in fundamental physics.

Now common practice: model chaotic systems using
cryptographic pseudorandomness

“We shall assume that the unitary U that
describes the formation and the evaporation of
the black hole is pseudorandom”

Kim-Preskill
(2023)

“We use the common simplification of modeling
black holes and more generally chaotic systems
via (pseudo)random dynamics”

Yang-Engelhardt
(2023)
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My research goals

1) Develop theoretical foundations
for quantum cryptography.

2) Apply these insights to the
broader theory of computation
and fundamental physics.



Highlights of my research

Y

quantum
security




Highlights of my research

Ve

quantum
security

« [CMSZ21, LMS22]: proved that textbook crypto protocols are
quantum secure via “quantum rewinding”

(FOCS 2021 special issue, FOCS 2022)



Highlights of my research

Y

quantum
security

« [CMSZ21, LMS22]: proved that textbook crypto protocols are
quantum secure via “quantum rewinding”

(FOCS 2021 special issue, FOCS 2022)

» These techniques have found widespread use
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« [GJMZ23]: introduced commitments to quantum states
(STOC 2023 special issue)

 [HH13,A16,B23]+[M23]: decoding black hole radiation is
equivalent to breaking a “maximally entangled” commitment
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E ~ Haar

Focus of today:

pseudorandom
unitaries

[MH24]: first proof that Featured last week in
pseudorandom unitaries exist Quanta Magazine:

(under crypto assumptions). “The High Cost of Quantum
(STOC 2025, QIP 2025 plenary talk) Randomness is Dropping”

—
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qubits: generalization of classical [1)
bits that allows superposition 4 Ulp)

al0) + 1) = (p) \ )

basic allowable operation:
unitary transformation (rotation)

> [0)
in general:

* n-qubit quantum state < 2"™-dimensional vector
* n-qubit unitary & 2" x2"-dimensional unitary matrix
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The quantum we’ll need:

An n-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

Not al]

each gate [
¥) # UlY is a 2-qubit unitary

| unitaries can be implemented efficiently!

A rand

om unitary is unlikely to be efficiently computable.



The quantum we’ll need:

What exactly is a random unitary?



The quantum we’ll need:

What exactly is a random unitary?

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary W




The quantum we’ll need:

What exactly is a random unitary?

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary W

all n-qubit
unitaries

U U ~ Haar




The quantum we’ll need:

What exactly is a random unitary?

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary W

all n-qubit
i unitaries> %) %[ E Ulp)

U U ~ Haar exp(n)
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There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1| f@ . X
2 2 < ' <+ 4.“
B fo 3 =~ |PREf f@

> | e TN

No efficient algorithm
random f can tell the difference!
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Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

) D)

< <. N < <.
A N\ E

Haar U

For any efficient algorithm A:

3 U] U B =
s—a ==
=1

| U« Haar| = Pr[b =1 | U « PRU|

O

measure b
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What was known about PRUs

1) Several candidate constructions [JLS18,MPSY24,...]

[JLS18] fod un +1 | pseudorandom
repeat many | H1X€ ; umtadry X _1_1 _ diagonal unitary
times: | (Hadamard) ..| | (uses a PRF)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]
B U

U

can analyze

this:

=1 U

but not =i ;7 HE /B
HU U F
this: — 4.-
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In [MH24], we resolve this question.

Theorem:
PRUs exist under cryptographic assumptions.

(the construction we analyze is by [MPSY24])
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1) Hard to characterize behavior of an arbitrary algorithm:

U

B

By

Ubam U

i

b -

all

2) Mathematics of random unitaries is complicated.

* Weingarten calculus
* representation theory
 free probability

Theorem 3.1. Let k be a positive integer. For any permutation o € 8, and
nonnegative integer g, we have

(k — 1)%P(o,|o]) < #P(o,|o] +2g) < (6k7/2)9#P(G,|G|).
Theorem 3.2. For any o € Sy and d > Vek/4,

1 (—=1)leldk el wgY (o, d) 1
< :
I—=L = #P(0,|o]) = 1 _ &2

d2
In addition, the Lh.s inequality is valid for any d > k.

d2
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Cartoon overview of our proof

Want to show: Proof strategy: show that both
For all efficient adversaries A, are indistinguishable from
U < Haar S I— _ (hidden
Fdolk T HE o - |prO[ [—1|prO] state)
|44 | A, ~ |4 \ | Ay
e (path-recording oracle)
U < PRU a data structure that
Ttk T Hygk performs “lazy sampling” of
141 | Ay a Haar-random unitary
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most of the proof

_ (hidden
state)

(path-recording oracle)

a data structure that
performs “lazy sampling” of
a Haar-random unitary

107



Lazy sampling of a random function

108



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

109



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

Solution: °* only sample f(x) when needed, “on the fly”

110



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

111



Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

112



Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

113



Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

114



Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a

random function f.

Solution: < only sample f(x) when needed, “on the fly”
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Hidden state
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Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

Our solution: the path-recording oracle i
@)

We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a

Haar-random U.

Classical case: the data structure is the list of (x, f (x)) pairs.




Up next:

“Derive” the path-recording oracle
through simple examples
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Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), U0y, «

“maximally mixed” state

(U < Haar)

Fact: this is also the
How to “spoof” it: / maximally mixed state.

Z'y alyds (S register is hidden)
y

Idea 1: entanglement with a hidden register S can simulate
one query to U.
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The algorithm:

(U < Haar)

How to “spoof” it:

|O>A U
|O>B U

0)4

0)5

Fact: this is the
maximally mixed
“symmetric” state

> 1yaly)sl s, v2))s
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Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state

also symmetric!

> 1yDaly)sl s, v2))s

Y1,Y2

How to “spoof” it:

(S register is hidden)

Idea 2: use an unordered set to spoof “swap-symmetry”.
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Example 3: mixed queries

The algorithm: |q), U]0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C)(

How to “spoof” it: Y\ pg
v y1)aly2)81y3)cI1(0,¥1), (0,¥2), (1, ¥3) 15
Y1,Y2,Y3

Idea 3: use ordered pairs to simulate symmetry “structure”
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replacing each query to U with this:

[ X)a =

ID)s —

path-
recording
oracle

(superposition
— 1¥)a over all y)

IR |D U {(X,:V)})S
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We can generate all of these examples by simply
replacing each query to U with this:

(superposition
X)a o path- =¥ Gyer all y)
recording

|ID)s 9 oracle [ |DU{(x,y)})s

Note the similarity to classical lazy sampling:
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We can generate all of these examples by simply
replacing each query to U with this:

|X>A — path-
recording
ID)s < oracle

(superposition
— 1¥)a over all y)

IR |D U {(X,:V)})S

Note the similarity to classical lazy sampling:

x = classical
lazy
D — sampling

— Yy (random y)

— DU {(X,}’)}
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The path-recording oracle is actually a general-purpose
tool for analyzing Haar-random unitaries.
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The path-recording oracle is actually a general-purpose

tool for analyzing Haar-random unitaries.

|4

U

"':At

14,

U « Haar

prO

"':At

prO

_ (hidden

state)

Many statements about Haar-random U can be reduced to
simple claims about this data structure
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The path-recording oracle is actually a general-purpose

tool for analyzing Haar-random unitaries.

|4

U

"':At

14,

U « Haar

prO

"':At

prO

_ (hidden

state)

Many statements about Haar-random U can be reduced to
simple claims about this data structure

 [MH24]: elementary proof of [SHH24] gluing lemma
 [ABGL24]: compress PRU key length + other results
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In my view: our quantum understanding is on par with
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In my view: our quantum understanding is on par with
where our classical understanding was 40 years ago.

Pseudorandom Pseudorandom
functions — unitaries
[GGM84] IMH24]

[GGMS84] proof: [MH24] proof:

Lazy sampling of a <€—» Lazy sampling of a
random function random unitary
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Analogous classical question: can you prove that no
efficient algorithm breaks classical cryptography?

Complexity-theoretic barrier: this implies P # NP.

[LMW24]: in the quantum setting, there might be no
barriers from traditional complexity theory!
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Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

» But if PRUs exist, there might be a different barrier.

 C(Classically, there’s the natural proofs barrier [RR]:
PRFs “explain” why we haven’t proved P + NP.

Question 1b: can PRUs “explain” why we can’t
unconditionally prove that quantum cryptography
exists?
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Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

PRU

Black hole scrambling is usually modeled as a random
poly(n)-size quantum circuit.

Question 2’: Is a random quantum circuit a PRU?
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Upcoming work with Alex Lombardi:

We prove that random quantum circuits are PRUs under
a “structure-hiding” assumption.
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independent 2-qubit
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there are two possible “parities”.
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What is a random quantum circuit? Many possible defs!

Ex: brickwork architecture

“Even”

depth d

Actually, the distribution is still not fully specified...
there are two possible “parities”.
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What is a random quantum circuit? Many possible defs!

Ex: brickwork architecture

CCEven” C(Odd”

depth d depth d

Actually, the distribution is still not fully specified...
there are two possible “parities”.
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Our result: If even and odd parity random circuits are
computationally indistinguishable
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Our result: If even and odd parity random circuits are
computationally indistinguishable

CCEven” CCOdd”

depth d depth d

...this implies a random quantum circuit is a PRU!
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Other future directions

1) general framework for 3) build out a theory of
proving quantum security  physically relevant hardness

A A
\}1@ ItP)\./ %

=5/

quantum quantum quantum
security primitives hardness randomness

2) “minimal” assumption 4) computational
for quantum crypto? complexity of unitaries
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Thanks!



