
The cryptographic nature
of quantum computation

Fermi Ma

UC Berkeley & Simons Institute

1

2

I study quantum computers.

3

I study quantum computers.

devices that exploit
quantum phenomena

4

I study quantum computers.

devices that exploit
quantum phenomena

I also study cryptography.

5

I study quantum computers.

devices that exploit
quantum phenomena

I also study cryptography.

build protocols that provably
resist adversarial behavior.

6

Quantum computers will revolutionize cryptography

7

Quantum computers will revolutionize cryptography

New threats

Shor’s algorithm
breaks RSA!

8

Quantum computers will revolutionize cryptography

New threats

Shor’s algorithm
breaks RSA!

How do we build classical
cryptography that resists
quantum attack?

9

Quantum computers will revolutionize cryptography

New threats New opportunities

Shor’s algorithm
breaks RSA!

How do we build classical
cryptography that resists
quantum attack?

10

Quantum computers will revolutionize cryptography

New threats New opportunities

Can we leverage quantum
mechanics to build better
cryptographic protocols?

Shor’s algorithm
breaks RSA!

How do we build classical
cryptography that resists
quantum attack?

11

Quantum computers will revolutionize cryptography

New threats New opportunities

Can we leverage quantum
mechanics to build better
cryptographic protocols?

quantum cryptography

Shor’s algorithm
breaks RSA!

How do we build classical
cryptography that resists
quantum attack?

12

But quantum cryptography is not just
about cryptography…

13

Recently, quantum cryptography has been
showing up in fundamental physics.

14

Ex: AMPS firewall paradox.

Recently, quantum cryptography has been
showing up in fundamental physics.

15

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

Recently, quantum cryptography has been
showing up in fundamental physics.

16

Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

17

Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

18

Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

19

“decoded”
radiation

Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

20

[HH13] counterargument: this is cryptographically hard!

“decoded”
radiation

Recently, quantum cryptography has been
showing up in fundamental physics.

Ex: AMPS firewall paradox. Involves a thought experiment
in which an observer “decodes” black hole radiation.

21

Now common practice: model chaotic systems using
cryptographic pseudorandomness

Recently, quantum cryptography has been
showing up in fundamental physics.

22

Now common practice: model chaotic systems using
cryptographic pseudorandomness

Recently, quantum cryptography has been
showing up in fundamental physics.

“We shall assume that the unitary 𝑈 that
describes the formation and the evaporation of
the black hole is pseudorandom”

Kim-Preskill
(2023)

23

Now common practice: model chaotic systems using
cryptographic pseudorandomness

Recently, quantum cryptography has been
showing up in fundamental physics.

“We use the common simplification of modeling
black holes and more generally chaotic systems
via (pseudo)random dynamics”

“We shall assume that the unitary 𝑈 that
describes the formation and the evaporation of
the black hole is pseudorandom”

Kim-Preskill
(2023)

Yang-Engelhardt
(2023)

24

My research goals

25

1) Develop theoretical foundations
for quantum cryptography.

My research goals

26

1) Develop theoretical foundations
for quantum cryptography.

2) Apply these insights to the
broader theory of computation
and fundamental physics.

My research goals

Highlights of my research

quantum
security

Highlights of my research

• [CMSZ21, LMS22]: proved that textbook crypto protocols are
quantum secure via “quantum rewinding”
(FOCS 2021 special issue, FOCS 2022)

quantum
security

Highlights of my research

• [CMSZ21, LMS22]: proved that textbook crypto protocols are
quantum secure via “quantum rewinding”
(FOCS 2021 special issue, FOCS 2022)

• These techniques have found widespread use
[BBK22,BKLMMVVY23,BQSY24,CDGS24,MNZ24,…]

quantum
security

30

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩

31

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩

• [GJMZ23]: introduced commitments to quantum states
(STOC 2023 special issue)

32

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩

• [GJMZ23]: introduced commitments to quantum states
(STOC 2023 special issue)

• [HH13,A16,B23]+[M23]: decoding black hole radiation is
equivalent to breaking a “maximally entangled” commitment

33

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
𝑓

quantum
hardness

34

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
𝑓

quantum
hardness

How hard is it to break quantum crypto?

35

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
𝑓

quantum
hardness

How hard is it to break quantum crypto?
• [K21,KQST23]: a magic device that

solves NP-hard problems isn’t enough!

36

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
𝑓

quantum
hardness

How hard is it to break quantum crypto?
• [K21,KQST23]: a magic device that

solves NP-hard problems isn’t enough!
• [LMW24]: magic device that evaluates

any function (once) isn’t enough!
(STOC 2024)

37

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
𝑓

quantum
hardness

How hard is it to break quantum crypto?
• [K21,KQST23]: a magic device that

solves NP-hard problems isn’t enough!
• [LMW24]: magic device that evaluates

any function (once) isn’t enough!
(STOC 2024)

Featured in
Quanta Magazine:
“Cryptographers
Discover a New
Foundation for
Quantum Secrecy”

38

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudorandom
unitaries

𝑓 ≈

quantum
hardness

39

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudorandom
unitaries

𝑓 ≈

quantum
hardness

[MH24]: first proof that
pseudorandom unitaries exist
(under crypto assumptions).
(STOC 2025, QIP 2025 plenary talk)

40

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudorandom
unitaries

𝑓 ≈

quantum
hardness

[MH24]: first proof that
pseudorandom unitaries exist
(under crypto assumptions).
(STOC 2025, QIP 2025 plenary talk)

Featured last week in
Quanta Magazine:
“The High Cost of Quantum
Randomness is Dropping”

41

Highlights of my research

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudorandom
unitaries

𝑓 ≈

quantum
hardness

[MH24]: first proof that
pseudorandom unitaries exist
(under crypto assumptions).
(STOC 2025, QIP 2025 plenary talk)

Focus of today:

Featured last week in
Quanta Magazine:
“The High Cost of Quantum
Randomness is Dropping”

42

Pseudorandom unitaries

43

The quantum we’ll need:

44

|0⟩

|1⟩

classical
bits

qubits: generalization of classical
bits that allows superposition

The quantum we’ll need:

45

|0⟩

|1⟩

classical
bits

qubits: generalization of classical
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

The quantum we’ll need:

46

|0⟩

|1⟩

𝛼

𝛽

𝛼 0 + 𝛽 1
unit vector

qubits: generalization of classical
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

The quantum we’ll need:

47

qubits: generalization of classical
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

basic allowable operation:
unitary transformation (rotation)

|0⟩

|1⟩

𝛼

𝛽

𝛼 0 + 𝛽 1
unit vector

The quantum we’ll need:

48

|0⟩

|1⟩
𝑈|𝜓⟩

𝜓

qubits: generalization of classical
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

basic allowable operation:
unitary transformation (rotation)

The quantum we’ll need:

49

qubits: generalization of classical
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

basic allowable operation:
unitary transformation (rotation)

|0⟩

|1⟩
𝑈|𝜓⟩

𝜓

in general:

The quantum we’ll need:

50

qubits: generalization of classical
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

basic allowable operation:
unitary transformation (rotation)

|0⟩

|1⟩
𝑈|𝜓⟩

𝜓

in general:
• 𝑛-qubit quantum state ↔ 2!-dimensional vector

The quantum we’ll need:

51

The quantum we’ll need:
qubits: generalization of classical
bits that allows superposition

𝛼 0 + 𝛽 1 =
𝛼
𝛽

basic allowable operation:
unitary transformation (rotation)

|0⟩

|1⟩
𝑈|𝜓⟩

𝜓

in general:
• 𝑛-qubit quantum state ↔ 2!-dimensional vector
• 𝑛-qubit unitary ↔ 2!×2!-dimensional unitary matrix

52

The quantum we’ll need:

53

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

54

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

|𝜓⟩

55

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate
is a 2-qubit unitary|𝜓⟩

56

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate
is a 2-qubit unitary|𝜓⟩

57

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate
is a 2-qubit unitary|𝜓⟩

58

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate
is a 2-qubit unitary|𝜓⟩

59

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

each gate
is a 2-qubit unitary|𝜓⟩ 𝑈|𝜓⟩

60

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

𝑈|𝜓⟩ each gate
is a 2-qubit unitary|𝜓⟩

Not all unitaries can be implemented efficiently!

61

The quantum we’ll need:
An 𝑛-qubit unitary is efficiently computable if it can be
implemented as a poly(n)-size quantum circuit:

𝑈|𝜓⟩

Not all unitaries can be implemented efficiently!
A random unitary is unlikely to be efficiently computable.

each gate
is a 2-qubit unitary|𝜓⟩

62

The quantum we’ll need:
What exactly is a random unitary?

63

The quantum we’ll need:

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary 𝑊

What exactly is a random unitary?

64

The quantum we’ll need:

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary 𝑊

𝑈

all 𝑛-qubit
unitaries

𝑈 ∼ Haar

What exactly is a random unitary?

65

The quantum we’ll need:

Haar measure: unique distribution on unitaries that is
unchanged under any fixed unitary 𝑊

𝑈 𝑈 ∼ Haar

…

exp(𝑛)

|𝜓⟩ 𝑈|𝜓⟩

What exactly is a random unitary?

all 𝑛-qubit
unitaries

66

Haar-random unitaries come up everywhere in quantum:

67

Haar-random unitaries come up everywhere in quantum:

information
scrambling

random
quantum
circuits

...
quantum

crypto

quantum learning
algorithms

unitary
complexity

quantum
error

correction

generate
entanglement

68

Haar-random unitaries come up everywhere in quantum:

information
scrambling

random
quantum
circuits

...
quantum

crypto

quantum learning
algorithms

unitary
complexity

quantum
error

correction

generate
entanglement

But they’re computationally infeasible to evaluate.

69

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

70

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

random 𝑓

71

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

72

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮
PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

73

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮
PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

𝑥

𝑓(𝑥)

74

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮
PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

𝑥

𝑓(𝑥)

75

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

𝑥

𝑓(𝑥) PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

≈
random 𝑓

𝑥

𝑓(𝑥)

No efficient algorithm
can tell the difference!

76

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

77

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

PRU 𝑈
|𝜓⟩

78

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

PRU 𝑈
|𝜓⟩

𝑈|𝜓⟩

79

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

PRU 𝑈
|𝜓⟩

𝑈|𝜓⟩

80

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

81

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

For any efficient algorithm 𝐴:

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

82

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

𝑈 𝑈 𝑈
measure 𝑏

For any efficient algorithm 𝐴:

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

83

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

𝑈 𝑈 𝑈
measure 𝑏

Pr[𝑏 = 1 ∣ 𝑈 ← Haar] ≈ Pr[𝑏 = 1 ∣ 𝑈 ← PRU]

For any efficient algorithm 𝐴:

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

84

What was known about PRUs

85

1) Several candidate constructions [JLS18,MPSY24,…]

What was known about PRUs

86

1) Several candidate constructions [JLS18,MPSY24,…]

What was known about PRUs

[JLS18]
repeat many

times:

87

1) Several candidate constructions [JLS18,MPSY24,…]

×fixed unitary
(Hadamard)

What was known about PRUs

+1
−1
−1

⋱

[JLS18]
repeat many

times:

88

1) Several candidate constructions [JLS18,MPSY24,…]

×fixed unitary
(Hadamard)

What was known about PRUs

+1
−1
−1

⋱

[JLS18]
repeat many

times:

pseudorandom
diagonal unitary
(uses a PRF)

89

1) Several candidate constructions [JLS18,MPSY24,…]

×fixed unitary
(Hadamard)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

What was known about PRUs

+1
−1
−1

⋱

[JLS18]
repeat many

times:

pseudorandom
diagonal unitary
(uses a PRF)

90

1) Several candidate constructions [JLS18,MPSY24,…]

×fixed unitary
(Hadamard)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

What was known about PRUs

+1
−1
−1

⋱

pseudorandom
diagonal unitary
(uses a PRF)

[JLS18]
repeat many

times:

𝑈
can analyze

this: 𝑈
𝑈

91

1) Several candidate constructions [JLS18,MPSY24,…]

×fixed unitary
(Hadamard)

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

What was known about PRUs

+1
−1
−1

⋱

pseudorandom
diagonal unitary
(uses a PRF)

[JLS18]
repeat many

times:

𝑈 𝑈 𝑈
𝑈

can analyze
this: 𝑈

𝑈

but not
this:

92

In [MH24], we resolve this question.

93

Theorem:
PRUs exist under cryptographic assumptions.

In [MH24], we resolve this question.

94

Theorem:
PRUs exist under cryptographic assumptions.

In [MH24], we resolve this question.

(the construction we analyze is by [MPSY24])

95

Why has it been hard to prove PRUs secure?

96

Why has it been hard to prove PRUs secure?
1) Hard to characterize behavior of an arbitrary algorithm:

𝑈 𝑈 𝑈

97

Why has it been hard to prove PRUs secure?
1) Hard to characterize behavior of an arbitrary algorithm:

2) Mathematics of random unitaries is complicated.

𝑈 𝑈 𝑈

98

Why has it been hard to prove PRUs secure?
1) Hard to characterize behavior of an arbitrary algorithm:

2) Mathematics of random unitaries is complicated.

• Weingarten calculus
• representation theory
• free probability

𝑈 𝑈 𝑈

99

Cartoon overview of our proof

100

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

101

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

≈

102

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

≈

103

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

≈

104

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

Proof strategy: show that both
are indistinguishable from

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

≈

105

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

Proof strategy: show that both
are indistinguishable from

≈

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴! ⋯ 𝐴"
prO prO

(hidden
state)≈

≈

106

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

Proof strategy: show that both
are indistinguishable from

≈

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴! ⋯ 𝐴"
prO prO

(hidden
state)≈

(path-recording oracle)
a data structure that
performs “lazy sampling” of
a Haar-random unitary

≈

107

Cartoon overview of our proof
Want to show:
For all efficient adversaries 𝐴,

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

Proof strategy: show that both
are indistinguishable from

≈

𝐴! ⋯ 𝐴"
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴! ⋯ 𝐴"
prO prO

(hidden
state)≈

most of the proof

(path-recording oracle)
a data structure that
performs “lazy sampling” of
a Haar-random unitary

108

Lazy sampling of a random function

109

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

110

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”

111

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

112

𝑥!

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

113

𝑥!
Hidden state
𝑥" 𝑓(𝑥")

Solution:

Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function 𝑓.

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

114

𝑥!

𝑓(𝑥!)
Hidden state
𝑥" 𝑓(𝑥")

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

115

𝑥!

𝑓(𝑥!)
Hidden state
𝑥" 𝑓(𝑥")

𝑥#
Hidden state
𝑥" 𝑓(𝑥")

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

116

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

𝑥!

𝑓(𝑥!)
Hidden state
𝑥" 𝑓(𝑥")

𝑥#
Hidden state
𝑥" 𝑓(𝑥")
𝑥# 𝑓(𝑥#)

Solution:

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

117

𝑥!

𝑓(𝑥!)
Hidden state
𝑥" 𝑓(𝑥")

𝑥#

𝑓(𝑥#)
Hidden state
𝑥" 𝑓(𝑥")
𝑥# 𝑓(𝑥#)

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

118

Lazy sampling of a random unitary

119

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

Lazy sampling of a random unitary

120

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Lazy sampling of a random unitary

121

Our solution: the path-recording oracle

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Lazy sampling of a random unitary

122

Our solution: the path-recording oracle
We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random 𝑈.

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Lazy sampling of a random unitary

123

Our solution: the path-recording oracle
We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random 𝑈.

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Classical case: the data structure is the list of (𝑥, 𝑓(𝑥)) pairs.

Lazy sampling of a random unitary

124

Up next:
“Derive” the path-recording oracle

through simple examples

125

Example 1: one query on |0⟩

126

Example 1: one query on |0⟩

0 $ 𝑈 0 $𝑈The algorithm:

(𝑈 ← Haar)

127

Example 1: one query on |0⟩

0 $ 𝑈 0 $𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

128

Example 1: one query on |0⟩

0 $ 𝑈 0 $𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

How to “spoof” it:
8
%

𝑦 $ 𝑦 & (S register is hidden)

129

Example 1: one query on |0⟩

0 $ 𝑈 0 $𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

How to “spoof” it:
8
%

𝑦 $ 𝑦 &

Fact: this is also the
maximally mixed state.

(S register is hidden)

130

Example 1: one query on |0⟩

How to “spoof” it:
8
%

𝑦 $ 𝑦 &

Idea 1: entanglement with a hidden register 𝑆 can simulate
one query to 𝑈.

Fact: this is also the
maximally mixed state.

0 $ 𝑈 0 $𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

(S register is hidden)

131

Example 2: two queries on |0⟩

132

Example 2: two queries on |0⟩
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:

(𝑈 ← Haar)

133

Example 2: two queries on |0⟩
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:

(𝑈 ← Haar)

Fact: this is the
maximally mixed
“symmetric” state

134

Example 2: two queries on |0⟩
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:

(𝑈 ← Haar)

Fact: this is the
maximally mixed
“symmetric” state

How to “spoof” it:
8
%!,%"

𝑦! $ 𝑦# ' 𝑦!, 𝑦# &

(S register is hidden)

135

Example 2: two queries on |0⟩
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:

(𝑈 ← Haar)

Fact: this is the
maximally mixed
“symmetric” state

How to “spoof” it:
8
%!,%"

𝑦! $ 𝑦# ' 𝑦!, 𝑦# &

(S register is hidden)

also symmetric!

136

Example 2: two queries on |0⟩

How to “spoof” it:
8
%!,%"

𝑦! $ 𝑦# ' 𝑦!, 𝑦# &

Idea 2: use an unordered set to spoof “swap-symmetry”.

0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

The algorithm:

(𝑈 ← Haar)

(S register is hidden)

Fact: this is the
maximally mixed
“symmetric” state

also symmetric!

137

Example 3: mixed queries

138

Example 3: mixed queries
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1) 𝑈 1)𝑈

The algorithm:

(𝑈 ← Haar)

139

Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1) 𝑈 1)𝑈

The algorithm:

(𝑈 ← Haar)

140

Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1) 𝑈 1)𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

141

Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1) 𝑈 1)𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
8

%!,%",%#

𝑦! $ 𝑦# ' 𝑦*) (0, 𝑦!), 0, 𝑦# , (1, 𝑦*) &

142

Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1) 𝑈 1)𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
8

%!,%",%#

𝑦! $ 𝑦# ' 𝑦*) (0, 𝑦!), 0, 𝑦# , (1, 𝑦*) &

143

Example 3: mixed queries

symmetric
0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1) 𝑈 1)𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
8

%!,%",%#

𝑦! $ 𝑦# ' 𝑦*) (0, 𝑦!), 0, 𝑦# , (1, 𝑦*) &

144

Example 3: mixed queries

How to “spoof” it:
8

%!,%",%#

𝑦! $ 𝑦# ' 𝑦*) (0, 𝑦!), 0, 𝑦# , (1, 𝑦*) &

symmetric

Idea 3: use ordered pairs to simulate symmetry “structure”

0 $ 𝑈 0 $𝑈

0 ' 𝑈 0 '𝑈

1) 𝑈 1)𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

145

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

146

path-
recording

oracle

(superposition
over all 𝑦)𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

147

path-
recording

oracle

(superposition
over all 𝑦)𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:

148

path-
recording

oracle

(superposition
over all 𝑦)𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:

classical
lazy

sampling

(random 𝑦)𝑥

𝐷

𝑦

𝐷 ∪ { 𝑥, 𝑦 }

149

The path-recording oracle is actually a general-purpose
tool for analyzing Haar-random unitaries.

150

The path-recording oracle is actually a general-purpose
tool for analyzing Haar-random unitaries.

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴! ⋯ 𝐴"

prO prO
(hidden

state)

151

The path-recording oracle is actually a general-purpose
tool for analyzing Haar-random unitaries.

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴! ⋯ 𝐴"

prO prO
(hidden

state)

Many statements about Haar-random 𝑈 can be reduced to
simple claims about this data structure

152

The path-recording oracle is actually a general-purpose
tool for analyzing Haar-random unitaries.

𝐴! ⋯ 𝐴"
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴! ⋯ 𝐴"

prO prO
(hidden

state)

Many statements about Haar-random 𝑈 can be reduced to
simple claims about this data structure

• [MH24]: elementary proof of [SHH24] gluing lemma
• [ABGL24]: compress PRU key length + other results

153

In my view: our quantum understanding is on par with
where our classical understanding was 40 years ago.

154

Pseudorandom
functions
[GGM84]

In my view: our quantum understanding is on par with
where our classical understanding was 40 years ago.

Pseudorandom
unitaries
[MH24]

155

Pseudorandom
functions
[GGM84]

[GGM84] proof:
Lazy sampling of a
random function

Pseudorandom
unitaries
[MH24]

[MH24] proof:
Lazy sampling of a

random unitary

In my view: our quantum understanding is on par with
where our classical understanding was 40 years ago.

156

Future directions

157

Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

158

Analogous classical question: can you prove that no
efficient algorithm breaks classical cryptography?

Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

159

Analogous classical question: can you prove that no
efficient algorithm breaks classical cryptography?
Complexity-theoretic barrier: this implies P ≠ NP.

Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

160

Analogous classical question: can you prove that no
efficient algorithm breaks classical cryptography?
Complexity-theoretic barrier: this implies P ≠ NP.

[LMW24]: in the quantum setting, there might be no
barriers from traditional complexity theory!

Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

161

Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

• But if PRUs exist, there might be a different barrier.

162

Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

• But if PRUs exist, there might be a different barrier.
• Classically, there’s the natural proofs barrier [RR]:

PRFs “explain” why we haven’t proved P ≠ NP.

163

Question 1a: Can we unconditionally prove that no
efficient algorithm can break quantum cryptography?

• But if PRUs exist, there might be a different barrier.
• Classically, there’s the natural proofs barrier [RR]:

PRFs “explain” why we haven’t proved P ≠ NP.

Question 1b: can PRUs “explain” why we can’t
unconditionally prove that quantum cryptography
exists?

164

Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

≈ PRU
?

165

Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

≈ PRU
?

Black hole scrambling is usually modeled as a random
poly(𝑛)–size quantum circuit.

166

Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

≈ PRU≈

Black hole scrambling is usually modeled as a random
poly(𝑛)–size quantum circuit.

167

Question 2: Physicists model chaotic systems as
pseudorandom unitaries. Is this actually justifiable?

≈ PRU≈

Black hole scrambling is usually modeled as a random
poly(𝑛)–size quantum circuit.

Question 2’: Is a random quantum circuit a PRU?

168

Upcoming work with Alex Lombardi:

169

Upcoming work with Alex Lombardi:
We prove that random quantum circuits are PRUs under

a “structure-hiding” assumption.

170

What is a random quantum circuit?

171

What is a random quantum circuit? Many possible defs!

172

depth 𝑑

What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

173

depth 𝑑

What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

each gate is an
independent 2-qubit
Haar-random unitary

174

depth 𝑑

each gate is an
independent 2-qubit
Haar-random unitary

What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

Actually, the distribution is still not fully specified…
there are two possible “parities”.

175

depth 𝑑

What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

“Even”

Actually, the distribution is still not fully specified…
there are two possible “parities”.

176

depth 𝑑

What is a random quantum circuit? Many possible defs!
Ex: brickwork architecture

depth 𝑑

“Even” “Odd”

Actually, the distribution is still not fully specified…
there are two possible “parities”.

177

Our result: If even and odd parity random circuits are
computationally indistinguishable

178

depth 𝑑 depth 𝑑

≈

Our result: If even and odd parity random circuits are
computationally indistinguishable

“Even” “Odd”

179

depth 𝑑

…this implies a random quantum circuit is a PRU!

depth 𝑑

≈“Even” “Odd”

Our result: If even and odd parity random circuits are
computationally indistinguishable

180

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudo-
randomness

𝑓 ≈

quantum
hardness

Other future directions

181

1) general framework for
proving quantum security

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudo-
randomness

𝑓 ≈

quantum
hardness

Other future directions

182

1) general framework for
proving quantum security

2) “minimal” assumption
for quantum crypto?

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudo-
randomness

𝑓 ≈

quantum
hardness

Other future directions

183

1) general framework for
proving quantum security

2) “minimal” assumption
for quantum crypto?

3) build out a theory of
physically relevant hardness

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudo-
randomness

𝑓 ≈

quantum
hardness

Other future directions

184

1) general framework for
proving quantum security

2) “minimal” assumption
for quantum crypto?

3) build out a theory of
physically relevant hardness

4) computational
complexity of unitaries

quantum
security

quantum
primitives

|𝜓⟩
Haar

pseudo-
randomness

𝑓 ≈

quantum
hardness

Other future directions

185

Thanks!

