
1

How to Construct Random Unitaries

Fermi Ma
Berkeley → NYU

joint work with Hsin-Yuan Huang

2

Haar measure: uniform distribution on unitaries

3

Haar measure: uniform distribution on unitaries
Property: for any unitary 𝑊, if 𝑈 ∼ Haar, 𝑊 ⋅ 𝑈 ∼ Haar

4

Haar-random unitaries show up everywhere:

Haar measure: uniform distribution on unitaries
Property: for any unitary 𝑊, if 𝑈 ∼ Haar, 𝑊 ⋅ 𝑈 ∼ Haar

5

black hole
information
scrambling

random
quantum
circuits

...
quantum

crypto

quantum learning
algorithms

unitary
complexity

quantum
error

correction

entanglement

Haar measure: uniform distribution on unitaries
Property: for any unitary 𝑊, if 𝑈 ∼ Haar, 𝑊 ⋅ 𝑈 ∼ Haar

Haar-random unitaries show up everywhere:

6

Challenge:
Haar-random unitaries are exponentially complex

7

Challenge:
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

8

Challenge:
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

…

exp(𝑛)

minimal circuit for 𝑈

9

Challenge:
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

…

exp(𝑛)

minimal circuit for 𝑈

This makes them impractical for most applications!

10

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

11

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

random 𝑓

12

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

random 𝑓

…

exp(𝑛)

minimal circuit for 𝑓

13

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

…

exp(𝑛)

minimal circuit for 𝑓

14

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮
PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

15

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮
PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

𝑥

𝑓(𝑥)

16

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮
PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

random 𝑓

𝑥

𝑓(𝑥)

17

There’s an analogous “problem” for functions: a random
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

𝑥

𝑓(𝑥) PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

≈
random 𝑓

𝑥

𝑓(𝑥)

No efficient algorithm
can tell the difference!

18

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

19

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

PRU 𝑈
|𝜓⟩

20

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

PRU 𝑈
|𝜓⟩

𝑈|𝜓⟩

21

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

PRU 𝑈
|𝜓⟩

𝑈|𝜓⟩

22

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

23

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

For any efficient algorithm 𝐴:

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

24

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

𝑈 𝑈 𝑈
measure 𝑏

For any efficient algorithm 𝐴:

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

25

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

𝑈 𝑈 𝑈
measure 𝑏

Pr[𝑏 = 1 ∣ 𝑈 ← Haar] ≈ Pr[𝑏 = 1 ∣ 𝑈 ← PRU]

For any efficient algorithm 𝐴:

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩

26

Application: modeling black hole dynamics

27

Physicists often study the dynamics of chaotic systems. Key example:

Application: modeling black hole dynamics

28

particles in
state 𝜓

Physicists often study the dynamics of chaotic systems. Key example:

Application: modeling black hole dynamics

29

particles in
state 𝜓

collapse into
black hole

Physicists often study the dynamics of chaotic systems. Key example:

Application: modeling black hole dynamics

30

particles in
state 𝜓

black hole
evaporates

collapse into
black hole

Physicists often study the dynamics of chaotic systems. Key example:

Application: modeling black hole dynamics

31

particles in
state 𝜓

particles in
state 𝜓!

black hole
evaporates

collapse into
black hole

Physicists often study the dynamics of chaotic systems. Key example:

Application: modeling black hole dynamics

32

particles in
state 𝜓

particles in
state 𝜓!

black hole
evaporates

collapse into
black hole

Common practice: pretend this Haar-random

Application: modeling black hole dynamics

33

particles in
state 𝜓

particles in
state 𝜓!

However, Quantum Church-Turing says this has to be efficient!

black hole
evaporates

collapse into
black hole

Common practice: pretend this Haar-random

Application: modeling black hole dynamics

34

particles in
state 𝜓

particles in
state 𝜓!

size = poly(# of qubits)

However, Quantum Church-Turing says this has to be efficient!

Common practice: pretend this Haar-random

Application: modeling black hole dynamics

35

particles in
state 𝜓

particles in
state 𝜓!

However, Quantum Church-Turing says this has to be efficient!
Consequence: many physics results now rely on the assumption
that various physical processes are PRUs [KP23,YE23,EFLVY24]

size = poly(# of qubits)

Common practice: pretend this Haar-random

Application: modeling black hole dynamics

42

But do PRUs exist?

43

But do PRUs exist?
(under crypto assumptions)

44

But do PRUs exist?
(under crypto assumptions)

This was left as an open problem by [JLS18].

45

Prior work

46

1) Many proposed constructions:

Prior work

47

Prior work

1) Many proposed constructions:

[JLS18]

×QFT F ×QFT F…

48

Prior work

1) Many proposed constructions:

[JLS18]

×QFT F ×QFT F

[MPSY24]

×P F × C

Clifford

…

49

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

Prior work

1) Many proposed constructions:

[JLS18]

×QFT F ×QFT F

[MPSY24]

×P F × C

Clifford

…

50

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]
𝑈

can analyze
this: 𝑈

𝑈

Prior work

1) Many proposed constructions:

[JLS18]

×QFT F ×QFT F

[MPSY24]

×P F × C

Clifford

…

51

1) Many proposed constructions:

[JLS18]

×QFT F ×QFT F

[MPSY24]

×P F × C

Clifford

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

𝑈 𝑈 𝑈
𝑈

can analyze
this: 𝑈

𝑈

but not
this:

…

Prior work

52

Why has it been hard to prove PRUs exist?

53

𝑈 𝑈 𝑈

1) Need to understand behavior of an arbitrary algorithm:

Why has it been hard to prove PRUs exist?

54

2) Mathematics of random unitaries is complicated.

𝑈 𝑈 𝑈

1) Need to understand behavior of an arbitrary algorithm:

Why has it been hard to prove PRUs exist?

55

1) Need to understand behavior of an arbitrary algorithm:

2) Mathematics of random unitaries is complicated.

• Weingarten calculus
• free probability
• ???

𝑈 𝑈 𝑈

Why has it been hard to prove PRUs exist?

56

[MH24]: PRUs exist
(if one-way functions exist)

57

Same construction
as [MPSY24]:

×P F × C

[MH24]: PRUs exist
(if one-way functions exist)

58

New technique: the path-recording oracle

Same construction
as [MPSY24]:

×P F × C

[MH24]: PRUs exist
(if one-way functions exist)

59

New technique: the path-recording oracle
• efficient simulation of Haar-random unitaries

Same construction
as [MPSY24]:

×P F × C

[MH24]: PRUs exist
(if one-way functions exist)

60

New technique: the path-recording oracle
• efficient simulation of Haar-random unitaries
• only uses basic quantum info (purification)

Same construction
as [MPSY24]:

×P F × C

[MH24]: PRUs exist
(if one-way functions exist)

61

Our second result

62

In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼!?

Our second result

63

In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼!?

Our second result

Result #2: “Strong” PRUs exist
(assuming OWFs).

×P F × 𝐶"𝐶# ×Construction:

64

In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼!?

Our second result

Result #2: “Strong” PRUs exist
(assuming OWFs).

×P F × 𝐶"𝐶# ×Construction:

[SMLBH25]: same proof extends to 𝑈" and 𝑈∗.

65

In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼!?

Our second result

But for this talk, I’ll focus on the weakest notion.

Result #2: “Strong” PRUs exist
(assuming OWFs).

×P F × 𝐶"𝐶# ×Construction:

[SMLBH25]: same proof extends to 𝑈" and 𝑈∗.

66

Cartoon overview of our proof

67

Want to show:
For all efficient algorithms 𝐴,

Cartoon overview of our proof

68

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

Want to show:
For all efficient algorithms 𝐴,

Cartoon overview of our proof

≈

69

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

Want to show:
For all efficient algorithms 𝐴,

Cartoon overview of our proof

≈

70

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝑈 ← 𝐏𝐅𝐂

Want to show:
For all efficient algorithms 𝐴,

Cartoon overview of our proof

≈

71

𝐴" ⋯ 𝐴#
𝑈 𝑈

Proof strategy: show that both
are indistinguishable from

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝑈 ← 𝐏𝐅𝐂

Want to show:
For all efficient algorithms 𝐴,

Cartoon overview of our proof

≈

72

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐅𝐂

Proof strategy: show that both
are indistinguishable from

≈

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

Want to show:
For all efficient algorithms 𝐴,

Cartoon overview of our proof

≈

73

Want to show:
For all efficient algorithms 𝐴,

𝐴" ⋯ 𝐴#
𝑈 𝑈

Proof strategy: show that both
are indistinguishable from

≈

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

(path-recording oracle)
maintains a data structure
that “lazily samples” a Haar-
random unitary

𝑈 ← 𝐏𝐅𝐂

Cartoon overview of our proof

Want to show:
For all efficient algorithms 𝐴,

(path-recording oracle)
maintains a data structure
that “lazily samples” a Haar-
random unitary

≈

74

Cartoon overview of our proof

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

Proof strategy: show that both
are indistinguishable from

≈

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

most of the proof

75

Rest of this talk

• Lazy sampling of a random function

• Lazy sampling of a random unitary

• Proving correctness + PRUs exist

• Applications

76

Lazy sampling of a random function

77

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

78

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”

79

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

80

𝑥"

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

81

𝑥"
Hidden state
𝑥# 𝑓(𝑥#)

Solution:

Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function 𝑓.

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

82

𝑥"

𝑓(𝑥")
Hidden state
𝑥# 𝑓(𝑥#)

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

83

𝑥"

𝑓(𝑥")
Hidden state
𝑥# 𝑓(𝑥#)

𝑥$
Hidden state
𝑥# 𝑓(𝑥#)

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

84

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

𝑥"

𝑓(𝑥")
Hidden state
𝑥# 𝑓(𝑥#)

𝑥$
Hidden state
𝑥# 𝑓(𝑥#)
𝑥" 𝑓(𝑥")

Solution:

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

85

𝑥"

𝑓(𝑥")
Hidden state
𝑥# 𝑓(𝑥#)

𝑥$

𝑓(𝑥$)
Hidden state
𝑥# 𝑓(𝑥#)
𝑥" 𝑓(𝑥")

Solution:

Goal: efficiently implement an algorithm that queries a
random function 𝑓.

Lazy sampling of a random function

• only sample 𝑓(𝑥) when needed, “on the fly”
• remember what you sampled (for consistency)

86

Rest of this talk

• Lazy sampling of a random function

• Lazy sampling of a random unitary

• Proving correctness + PRUs exist

• Applications

87

Lazy sampling of a random unitary

88

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

Lazy sampling of a random unitary

89

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Lazy sampling of a random unitary

90

Our solution: the path-recording oracle

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Lazy sampling of a random unitary

91

Our solution: the path-recording oracle
We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random 𝑈.

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!

Lazy sampling of a random unitary

92

Our solution: the path-recording oracle
We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random 𝑈.

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!
Classically, the data structure
is the set of (𝑥, 𝑓(𝑥)) tuples.

Lazy sampling of a random unitary

93

Our solution: the path-recording oracle
We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random 𝑈.

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!
Classically, the data structure
is the set of (𝑥, 𝑓(𝑥)) tuples.

Lazy sampling of a random unitary

Inspiration: compressed oracle technique [Zhandry19]

94

Up next:
“Derive” the path-recording oracle

through simple examples

95

Example 1: one query on |0⟩

96

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

97

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

98

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

How to “spoof” it:
E
&

𝑦 % 𝑦 ' (S register is hidden)

99

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

How to “spoof” it:
E
&

𝑦 % 𝑦 '

Fact: this is also the
maximally mixed state.

(S register is hidden)

100

Example 1: one query on |0⟩

How to “spoof” it:
E
&

𝑦 % 𝑦 '

Idea 1: entanglement with a hidden register 𝑆 can simulate
one query to 𝑈.

Fact: this is also the
maximally mixed state.

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the
“maximally mixed” state

(S register is hidden)

101

Example 2: two queries on |0⟩

102

Example 2: two queries on |0⟩
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

The algorithm:

(𝑈 ← Haar)

103

Example 2: two queries on |0⟩
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

The algorithm:

(𝑈 ← Haar)

Fact: this is the
maximally mixed
“symmetric” state

104

Example 2: two queries on |0⟩
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

The algorithm:

(𝑈 ← Haar)

Fact: this is the
maximally mixed
“symmetric” state

How to “spoof” it:
E
&!,&"

𝑦" % 𝑦$ (𝑦", 𝑦$ '

(S register is hidden)

105

Example 2: two queries on |0⟩
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

The algorithm:

(𝑈 ← Haar)

Fact: this is the
maximally mixed
“symmetric” state

How to “spoof” it:
E
&!,&"

𝑦" % 𝑦$ (𝑦", 𝑦$ '

(S register is hidden)

also symmetric!

106

Example 2: two queries on |0⟩

How to “spoof” it:
E
&!,&"

𝑦" % 𝑦$ (𝑦", 𝑦$ '

Idea 2: use an unordered set to spoof “swap-symmetry”.

0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

The algorithm:

(𝑈 ← Haar)

(S register is hidden)

Fact: this is the
maximally mixed
“symmetric” state

also symmetric!

107

Example 3: mixed queries

108

Example 3: mixed queries
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

1 * 𝑈 1 *𝑈

The algorithm:

(𝑈 ← Haar)

109

Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

1 * 𝑈 1 *𝑈

The algorithm:

(𝑈 ← Haar)

110

Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

111

Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
E

&!,&",&#

𝑦" % 𝑦$ (𝑦+ * (0, 𝑦"), 0, 𝑦$, (1, 𝑦+) '

112

Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
E

&!,&",&#

𝑦" % 𝑦$ (𝑦+ * (0, 𝑦"), 0, 𝑦$, (1, 𝑦+) '

113

Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
E

&!,&",&#

𝑦" % 𝑦$ (𝑦+ * (0, 𝑦"), 0, 𝑦$, (1, 𝑦+) '

114

Example 3: mixed queries

How to “spoof” it:
E

&!,&",&#

𝑦" % 𝑦$ (𝑦+ * (0, 𝑦"), 0, 𝑦$, (1, 𝑦+) '

symmetric

Idea 3: use ordered pairs to simulate symmetry “structure”

0 % 𝑈 0 %𝑈

0 (𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

115

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

116

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

path-
recording

oracle

𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

E
&

117

path-
recording

oracle

𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:

E
&

118

We can generate all of these examples by simply
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:

classical
lazy

sampling

(random 𝑦)𝑥

𝐷

𝑦

𝐷 ∪ { 𝑥, 𝑦 }

path-
recording

oracle

𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

E
&

119

Rest of this talk

• Lazy sampling of a random function

• Lazy sampling of a random unitary

• Proving correctness + PRUs exist

• Applications

120

≈

Recall our cartoon proof overview
Want to show:
For all efficient adversaries 𝐴,

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐅𝐂

Proof strategy: show that both
are indistinguishable from

≈

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐅𝐂

121

≈

Recall our cartoon proof overview
Want to show:
For all efficient adversaries 𝐴,

Proof strategy: show that both
are indistinguishable from

≈

Up next: prove this

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

122

≈

Recall our cartoon proof overview
Want to show:
For all efficient adversaries 𝐴,

Proof strategy: show that both
are indistinguishable fromUp next: prove this

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐅𝐂 ≈ The same proof
will show this!

123

Hybrid 0

𝑈
𝑈 ← Haar

124

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

125

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

Step 1: insert random permutation 𝑃 random ±1 diagonal 𝐹.

𝑃 =
1

1
1

𝐹 =
+1

−1
−1

126

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩

127

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩

Step 2: replace random 𝑃, 𝐹 with a purification.
• Initialize external/ancilla system to ∑-,. |𝑃, 𝐹⟩

• On each query, apply 𝑃 ⋅ 𝐹 controlled on |𝑃, 𝐹⟩

128

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

129

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: Key idea: analyze ctl-PF in a different basis.

Let’s see how this works…

130

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

131

(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *(|𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

132

(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *(|𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

Φ+ ≔8
),&

−1 & '! -⋯-& '" ⋅ 𝛿) '! *(!⋯𝛿) '" *(" |𝑃, 𝐹⟩

Definition: for 𝐷 = 𝑥#, 𝑦# , … , 𝑥/ , 𝑦/ ,

133

𝑥 ⊗ Φ+ ↦8
(

𝑦 ⊗ Φ+∪{ ',(}ctl-𝑃𝐹:

(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *(|𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

Φ+ ≔8
),&

−1 & '! -⋯-& '" ⋅ 𝛿) '! *(!⋯𝛿) '" *(" |𝑃, 𝐹⟩

Definition: for 𝐷 = 𝑥#, 𝑦# , … , 𝑥/ , 𝑦/ ,

134

𝑥 ⊗ Φ+ ↦8
(

𝑦 ⊗ Φ+∪{ ',(}ctl-𝑃𝐹:

(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *(|𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

Φ+ ≔8
),&

−1 & '! -⋯-& '" ⋅ 𝛿) '! *(!⋯𝛿) '" *(" |𝑃, 𝐹⟩

Definition: for 𝐷 = 𝑥#, 𝑦# , … , 𝑥/ , 𝑦/ ,

prO: 𝑥 ⊗ 𝐷 ↦8
(

𝑦 ⊗ 𝐷 ∪ {(𝑥, 𝑦)}

135

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝐷 = { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } can define |Φ/⟩ s.t.
ctl-PF ⋅ 𝑥 Φ/ = ∑& 𝑦 |Φ/∪{ 2,& }⟩

136

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝐷 = { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } can define |Φ/⟩ s.t.
ctl-PF ⋅ 𝑥 Φ/ = ∑& 𝑦 |Φ/∪{ 2,& }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ/ ↦ |𝐷⟩

137

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝐷 = { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } can define |Φ/⟩ s.t.
ctl-PF ⋅ 𝑥 Φ/ = ∑& 𝑦 |Φ/∪{ 2,& }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ/ ↦ |𝐷⟩
• Actually, Φ/ / aren’t fully orthogonal. But composing with
𝑈 ← (2-design) makes the “non-orthogonal” ones hard to find.

138

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

139

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following unitary invariance property:

140

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

𝑈prO𝑡 queries to

Step 4: Turns out prO has the following unitary invariance property:

141

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

𝑈prO =𝑡 queries to prO𝑡 queries to apply 𝑈⊗# to the
purifying register+

Step 4: Turns out prO has the following unitary invariance property:

142

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

143

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design.

144

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design. So
𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈

145

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design. So
𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈

146

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design. So
𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈

Finally, replace 𝑃 and 𝐹 with pseudorandom.

147

Rest of this talk

• Lazy sampling of a random function

• Lazy sampling of a random unitary

• Proving correctness + PRUs exist

• Applications

148

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

149

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴" ⋯ 𝐴#

prO prO
(hidden

state)

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

150

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴" ⋯ 𝐴#

prO prO
(hidden

state)

Many statements about Haar-random 𝑈 can be reduced to
simple claims about this data structure

151

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴" ⋯ 𝐴#

prO prO
(hidden

state)

Many statements about Haar-random 𝑈 can be reduced to
simple claims about this data structure

• [MH24]: elementary proof of [SHH24] gluing lemma
• [SMLBH25]: existence of low-depth PRUs

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

152

Let’s see an example.

153

Application: a simpler proof of the “gluing” lemma

154

Gluing lemma [SHH24]:
If 𝑈" and 𝑈$ overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈$ ⋅ 𝑈" ≈ 𝑈+.

Application: a simpler proof of the “gluing” lemma

155

𝑈"
≈

𝐶

𝐴
𝐵 𝑈$ 𝑈+

Gluing lemma [SHH24]:
If 𝑈" and 𝑈$ overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈$ ⋅ 𝑈" ≈ 𝑈+.

Application: a simpler proof of the “gluing” lemma

156

𝑈"
≈

𝐶

𝐴
𝐵 𝑈$ 𝑈+

𝐶

𝐴
𝐵 prO"

prO$ prO+

|∅⟩
|∅⟩

𝑅" |𝑅$⟩ 𝑅+

Gluing lemma [SHH24]:
If 𝑈" and 𝑈$ overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈$ ⋅ 𝑈" ≈ 𝑈+.

New proof: combinatorial
claim about path-recording
oracle. ≈

Application: a simpler proof of the “gluing” lemma

157

Future directions

158

Future directions

1) Is a random quantum circuit a PRU?

159

Future directions

1) Is a random quantum circuit a PRU?

2) Unitary natural proof barrier?

160

Future directions

1) Is a random quantum circuit a PRU?

2) Unitary natural proof barrier?

3) Cryptographic applications of PRUs?

161

Future directions

1) Is a random quantum circuit a PRU?

2) Unitary natural proof barrier?

3) Cryptographic applications of PRUs?

Thanks!

