

# How to Construct Random Unitaries

Fermi Ma  
Berkeley → NYU

joint work with Hsin-Yuan Huang

**Haar measure:** uniform distribution on unitaries

**Haar measure:** uniform distribution on unitaries

Property: for any unitary  $W$ , if  $U \sim \text{Haar}$ ,  $W \cdot U \sim \text{Haar}$

**Haar measure:** uniform distribution on unitaries

Property: for any unitary  $W$ , if  $U \sim \text{Haar}$ ,  $W \cdot U \sim \text{Haar}$

Haar-random unitaries show up everywhere:

**Haar measure:** uniform distribution on unitaries

Property: for any unitary  $W$ , if  $U \sim \text{Haar}$ ,  $W \cdot U \sim \text{Haar}$

Haar-random unitaries show up everywhere:

black hole  
information  
scrambling

entanglement

quantum learning  
algorithms

...

quantum  
crypto

random  
quantum  
circuits

unitary  
complexity

quantum  
error  
correction

## Challenge:

Haar-random unitaries are exponentially complex

## Challenge:

Haar-random unitaries are exponentially complex

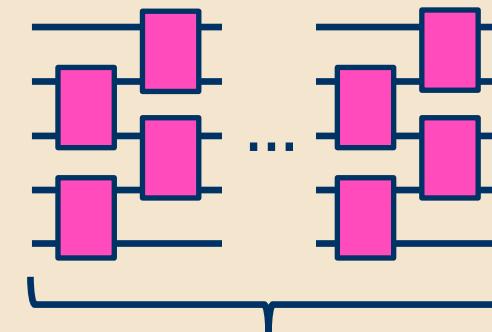


## Challenge:

Haar-random unitaries are exponentially complex



minimal circuit for  $U$

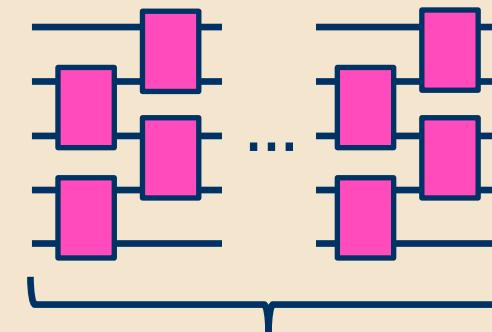


## Challenge:

Haar-random unitaries are exponentially complex



minimal circuit for  $U$



This makes them impractical for most applications!

There's an analogous "problem" for functions: a random function on  $n$  bits is exponentially complex!

There's an analogous “problem” for functions: a random function on  $n$  bits is exponentially complex!

|          |          |
|----------|----------|
| 1        | $f(1)$   |
| 2        | $f(2)$   |
| $\vdots$ | $\vdots$ |
| $2^n$    | $f(2^n)$ |

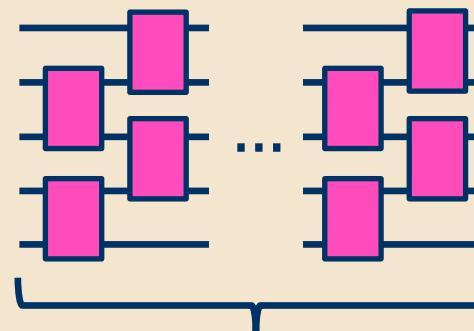
random  $f$

There's an analogous “problem” for functions: a random function on  $n$  bits is exponentially complex!

|          |          |
|----------|----------|
| 1        | $f(1)$   |
| 2        | $f(2)$   |
| $\vdots$ | $\vdots$ |
| $2^n$    | $f(2^n)$ |

random  $f$

minimal circuit for  $f$



$\exp(n)$

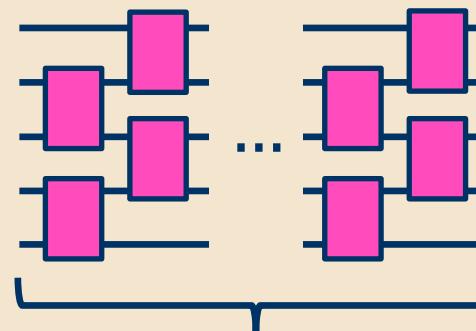
There's an analogous “problem” for functions: a random function on  $n$  bits is exponentially complex!

So in practice, we use **pseudorandom functions** (PRFs).

|          |          |
|----------|----------|
| 1        | $f(1)$   |
| 2        | $f(2)$   |
| $\vdots$ | $\vdots$ |
| $2^n$    | $f(2^n)$ |

random  $f$

minimal circuit for  $f$



$\exp(n)$

There's an analogous “problem” for functions: a random function on  $n$  bits is exponentially complex!

So in practice, we use **pseudorandom functions** (PRFs).

|          |          |
|----------|----------|
| 1        | $f(1)$   |
| 2        | $f(2)$   |
| $\vdots$ | $\vdots$ |
| $2^n$    | $f(2^n)$ |

random  $f$

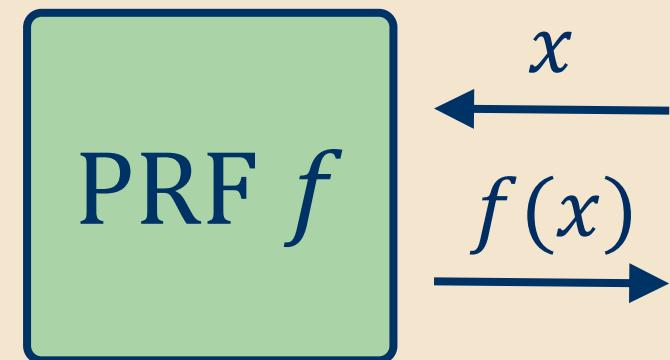


There's an analogous “problem” for functions: a random function on  $n$  bits is exponentially complex!

So in practice, we use **pseudorandom functions** (PRFs).

|          |          |
|----------|----------|
| 1        | $f(1)$   |
| 2        | $f(2)$   |
| $\vdots$ | $\vdots$ |
| $2^n$    | $f(2^n)$ |

random  $f$

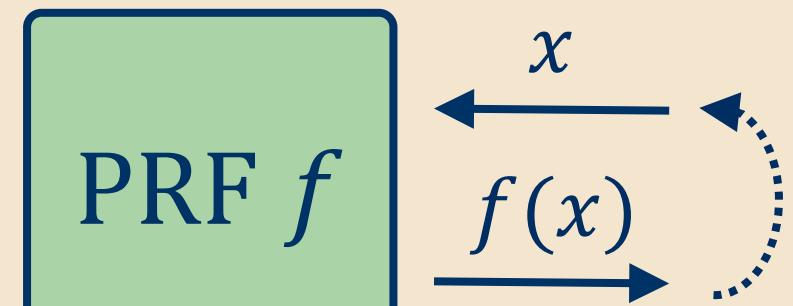


There's an analogous “problem” for functions: a random function on  $n$  bits is exponentially complex!

So in practice, we use **pseudorandom functions** (PRFs).

|          |          |
|----------|----------|
| 1        | $f(1)$   |
| 2        | $f(2)$   |
| $\vdots$ | $\vdots$ |
| $2^n$    | $f(2^n)$ |

random  $f$

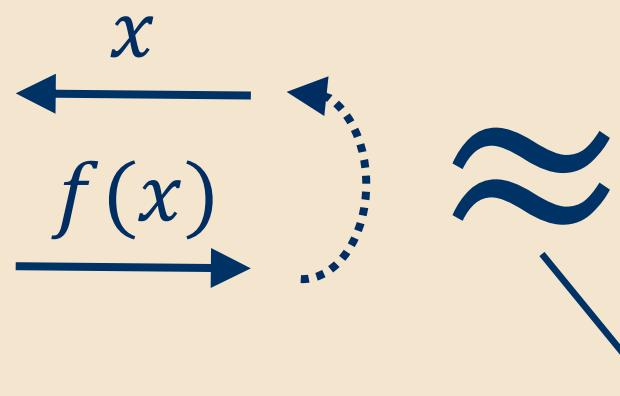


There's an analogous “problem” for functions: a random function on  $n$  bits is exponentially complex!

So in practice, we use **pseudorandom functions** (PRFs).

|       |          |
|-------|----------|
| 1     | $f(1)$   |
| 2     | $f(2)$   |
| :     | :        |
| $2^n$ | $f(2^n)$ |

random  $f$



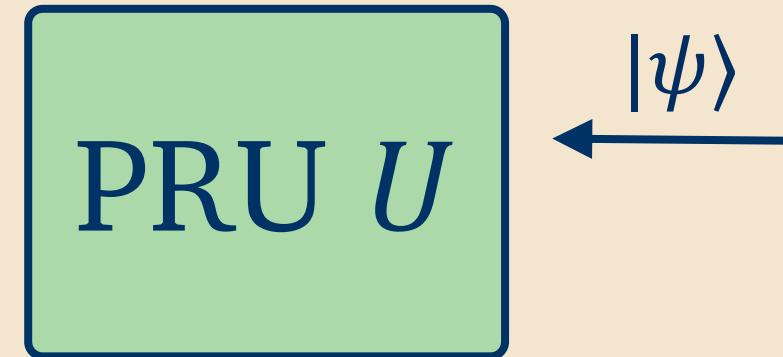
No efficient algorithm  
can tell the difference!

## Pseudorandom unitaries (PRUs) [JLS18]

efficiently-computable unitaries that appear Haar-random

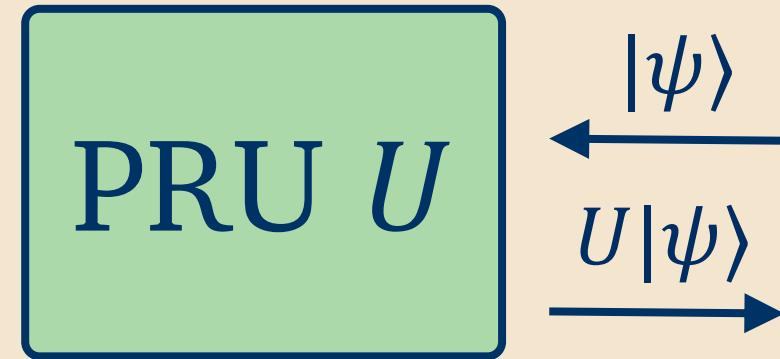
# Pseudorandom unitaries (PRUs) [JLS18]

efficiently-computable unitaries that appear Haar-random



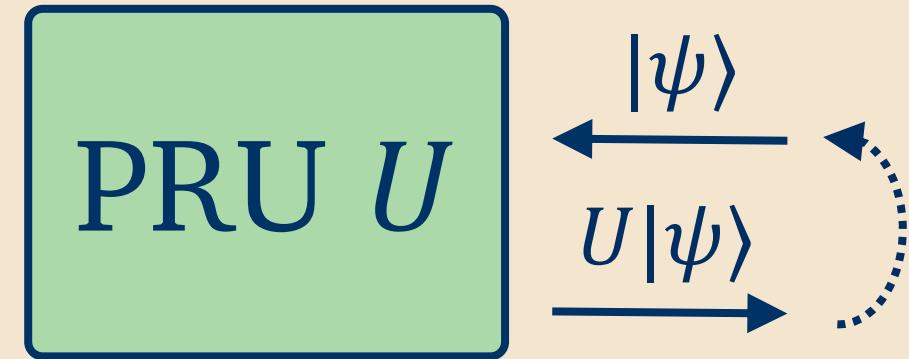
# Pseudorandom unitaries (PRUs) [JLS18]

efficiently-computable unitaries that appear Haar-random



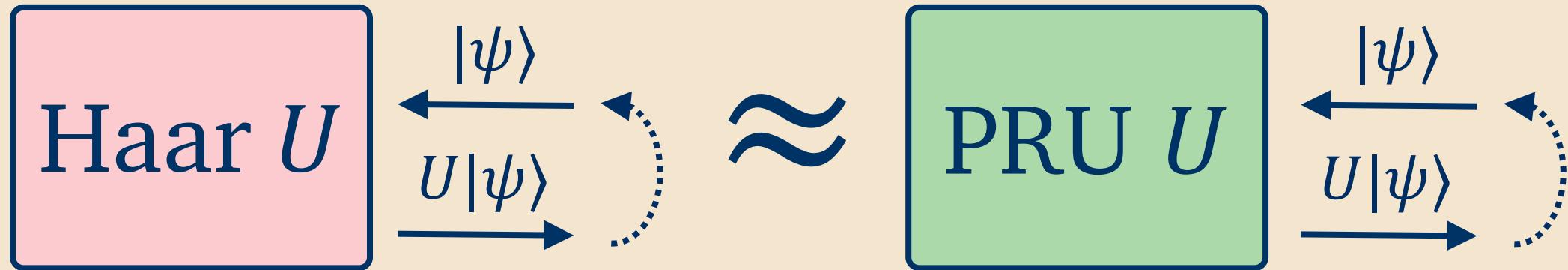
# Pseudorandom unitaries (PRUs) [JLS18]

efficiently-computable unitaries that appear Haar-random



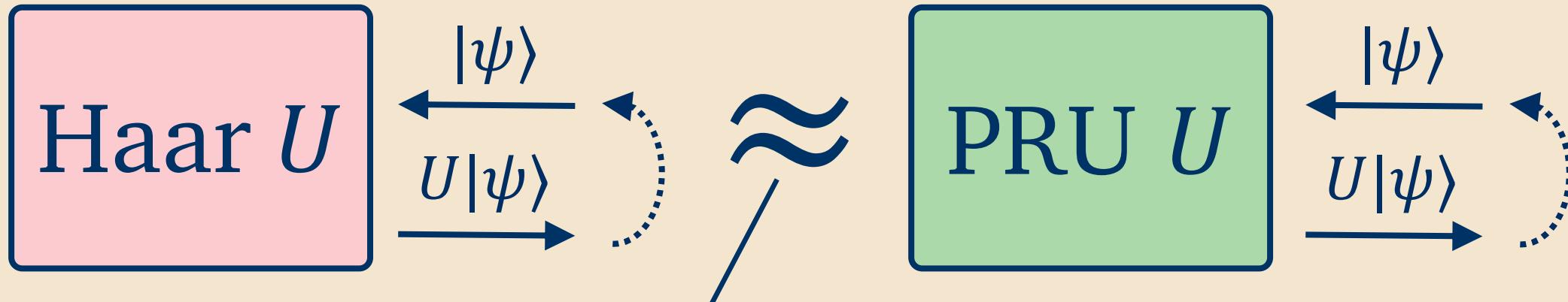
# Pseudorandom unitaries (PRUs) [JLS18]

efficiently-computable unitaries that appear Haar-random



## Pseudorandom unitaries (PRUs) [JLS18]

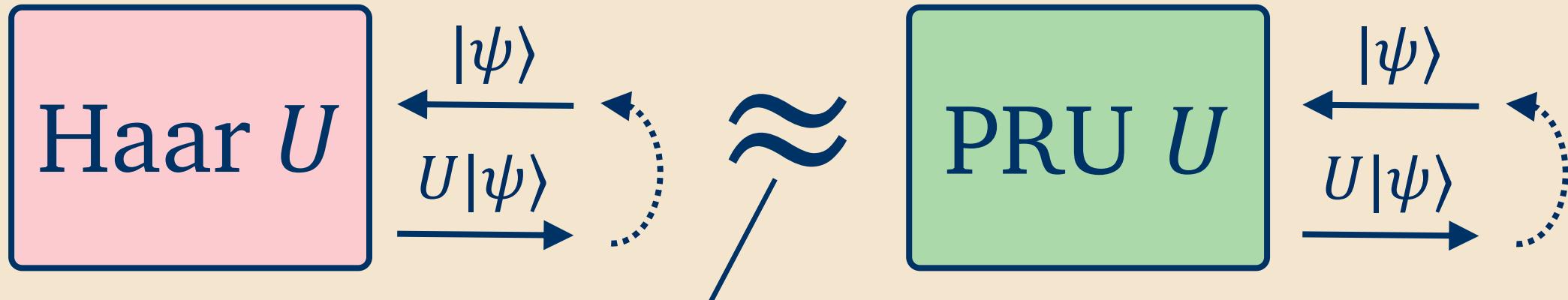
efficiently-computable unitaries that appear Haar-random



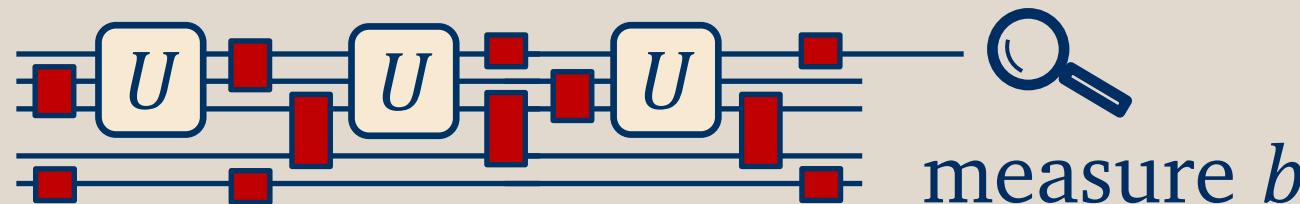
For any efficient algorithm  $A$ :

# Pseudorandom unitaries (PRUs) [JLS18]

efficiently-computable unitaries that appear Haar-random

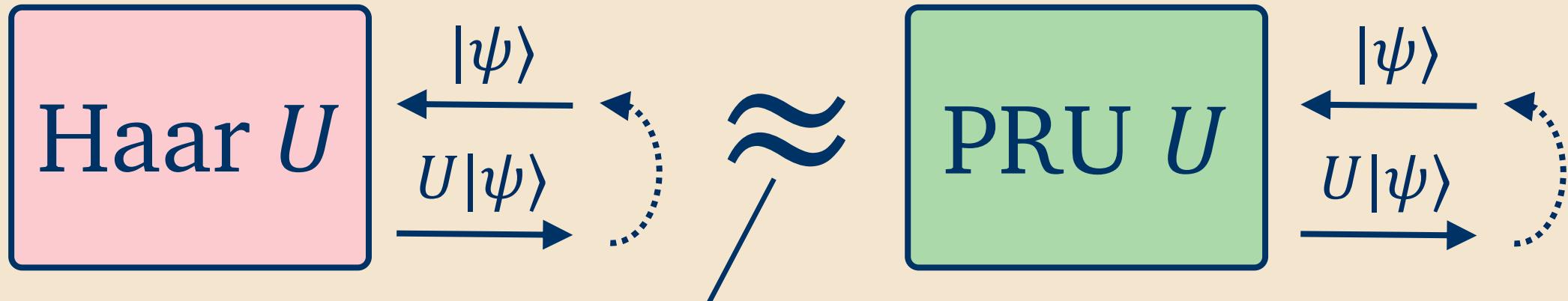


For any efficient algorithm  $A$ :

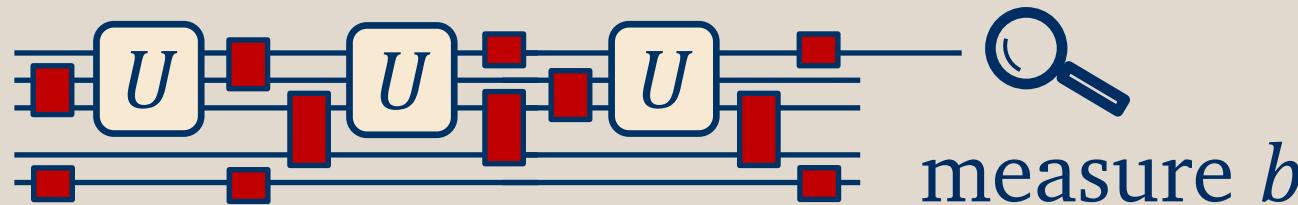


# Pseudorandom unitaries (PRUs) [JLS18]

efficiently-computable unitaries that appear Haar-random



For any efficient algorithm  $A$ :



$$\Pr[b = 1 \mid U \leftarrow \text{Haar}] \approx \Pr[b = 1 \mid U \leftarrow \text{PRU}]$$

# Application: modeling black hole dynamics

# Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:

# Application: modeling black hole dynamics

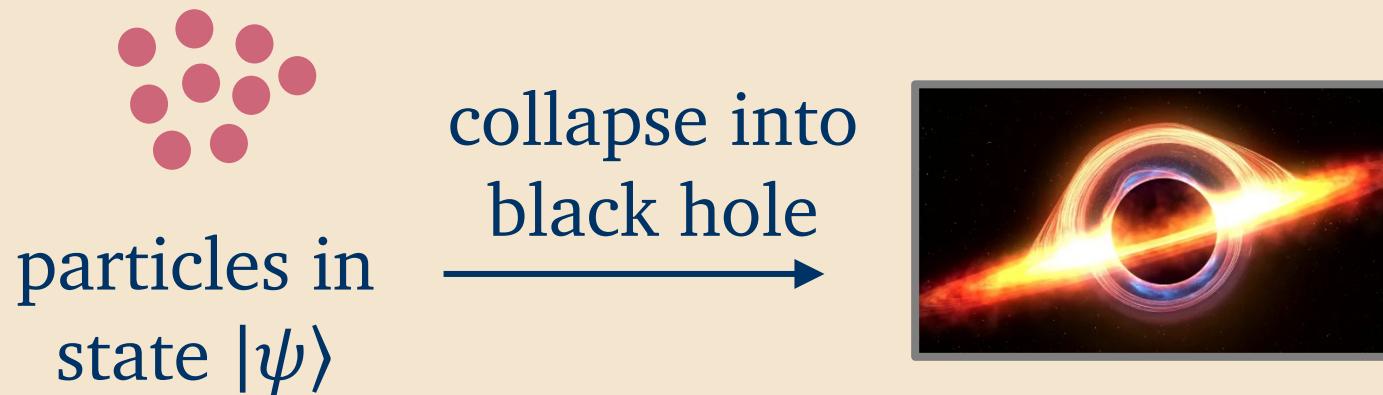
Physicists often study the dynamics of chaotic systems. Key example:



particles in  
state  $|\psi\rangle$

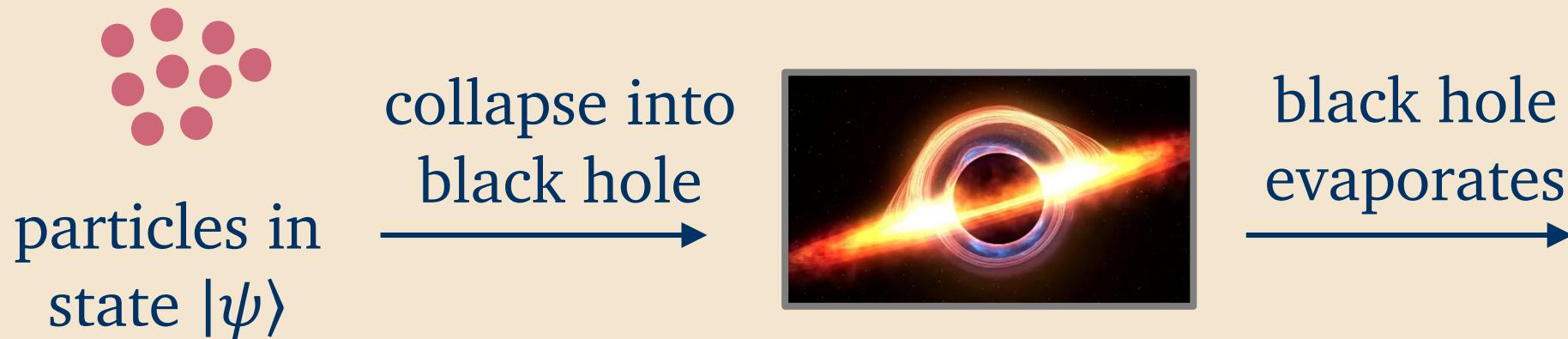
# Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:



# Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:



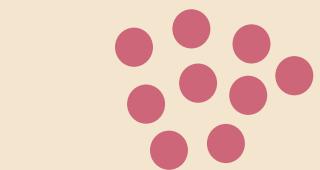
# Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:



# Application: modeling black hole dynamics

Common practice: pretend this Haar-random

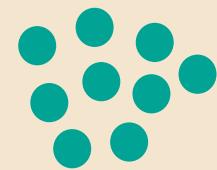


particles in  
state  $|\psi\rangle$

collapse into  
black hole



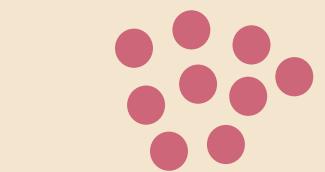
black hole  
evaporates



particles in  
state  $|\psi'\rangle$

# Application: modeling black hole dynamics

Common practice: pretend this Haar-random

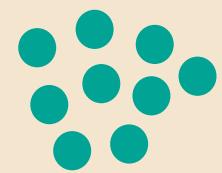


particles in  
state  $|\psi\rangle$

collapse into  
black hole



black hole  
evaporates

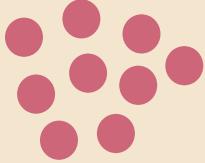


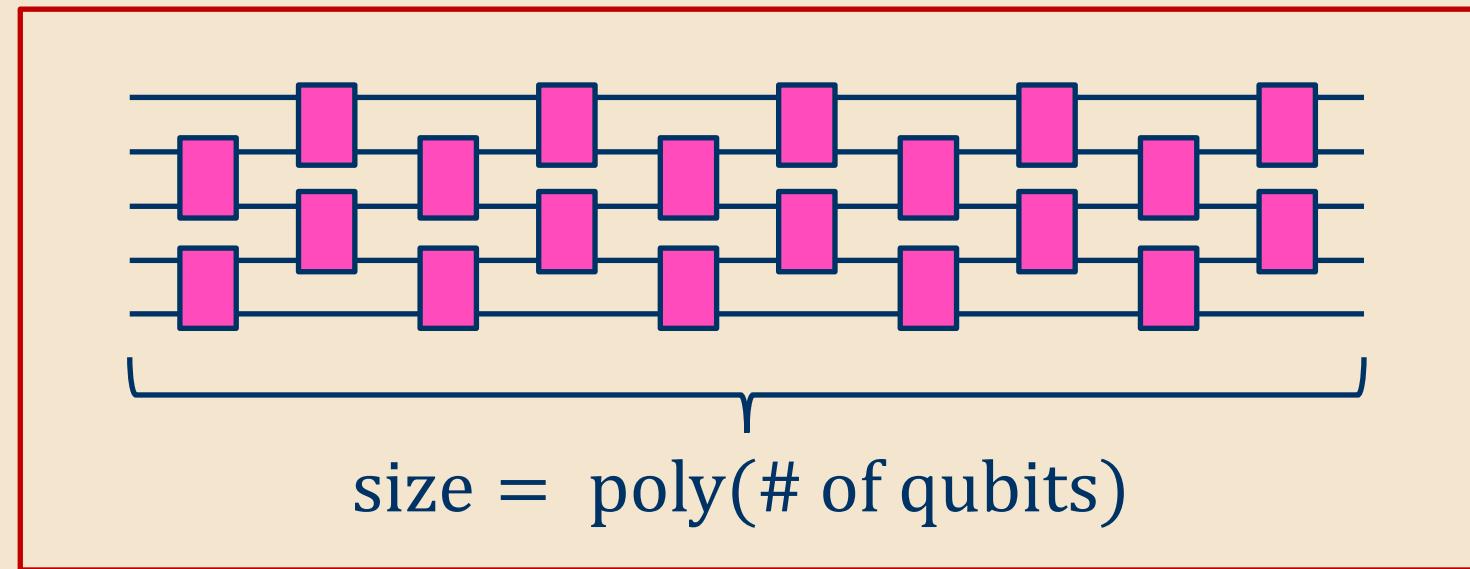
particles in  
state  $|\psi'\rangle$

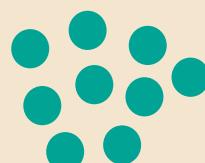
However, Quantum Church-Turing says this has to be efficient!

# Application: modeling black hole dynamics

Common practice: pretend this Haar-random

  
particles in  
state  $|\psi\rangle$

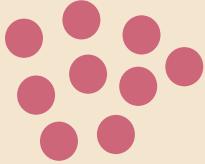


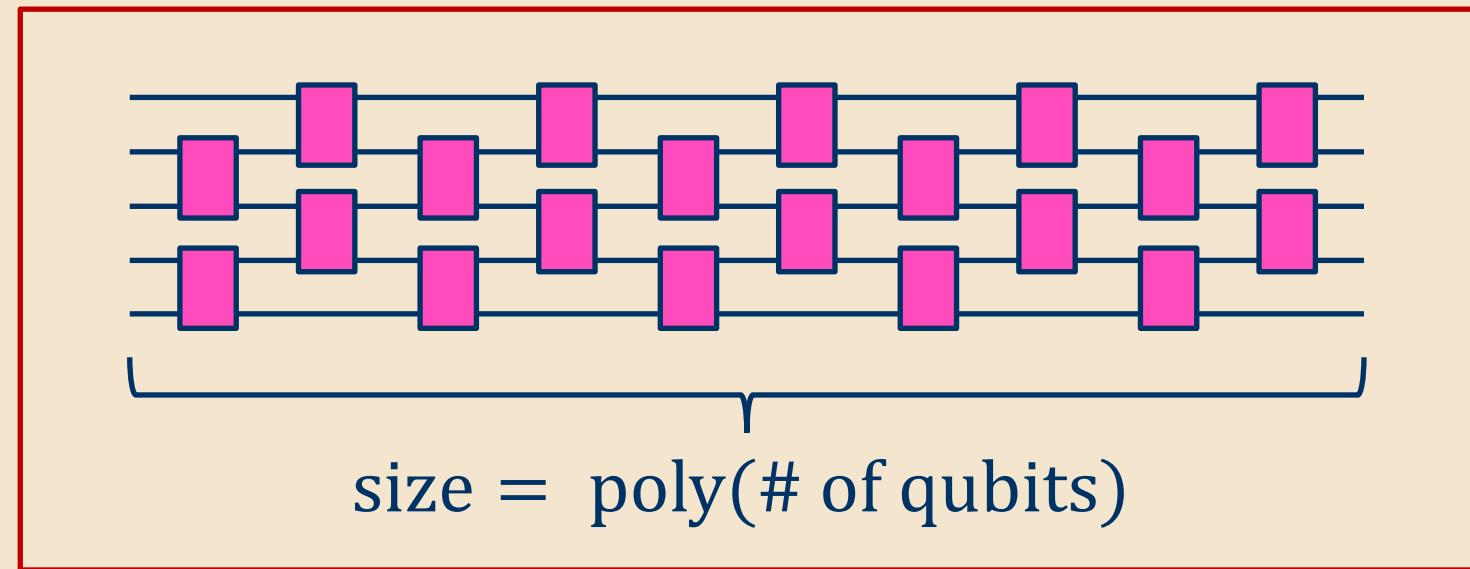
  
particles in  
state  $|\psi'\rangle$

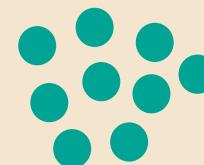
However, Quantum Church-Turing says this has to be efficient!

# Application: modeling black hole dynamics

Common practice: pretend this Haar-random

  
particles in  
state  $|\psi\rangle$



  
particles in  
state  $|\psi'\rangle$

However, Quantum Church-Turing says this has to be efficient!

**Consequence:** many physics results now rely on the assumption  
that various physical processes are PRUs [KP23, YE23, EFLVY24]

# But do PRUs exist?

But do PRUs exist?  
(under crypto assumptions)

# But do PRUs exist? (under crypto assumptions)

This was left as an open problem by [JLS18].

# Prior work

## Prior work

1) Many proposed constructions:

# Prior work

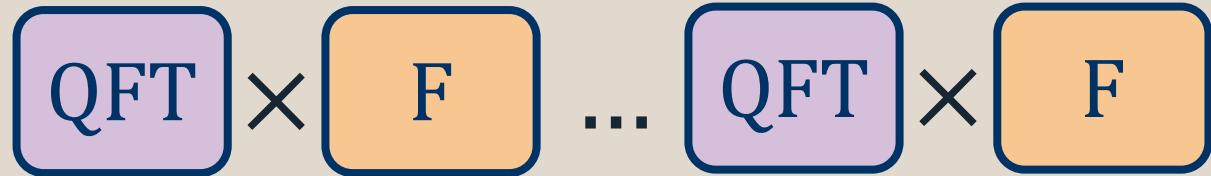
## 1) Many proposed constructions:



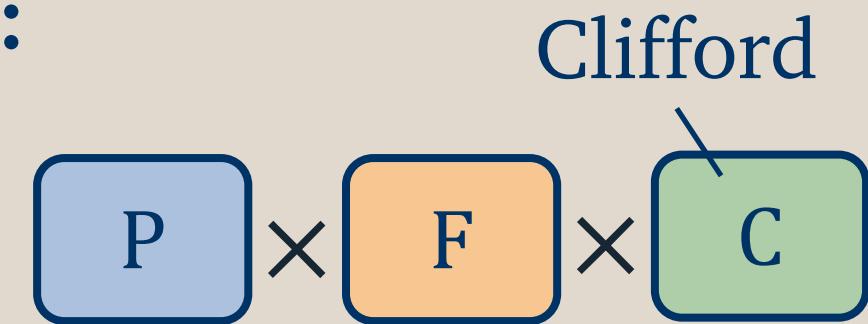
[JLS18]

# Prior work

## 1) Many proposed constructions:



[JLS18]



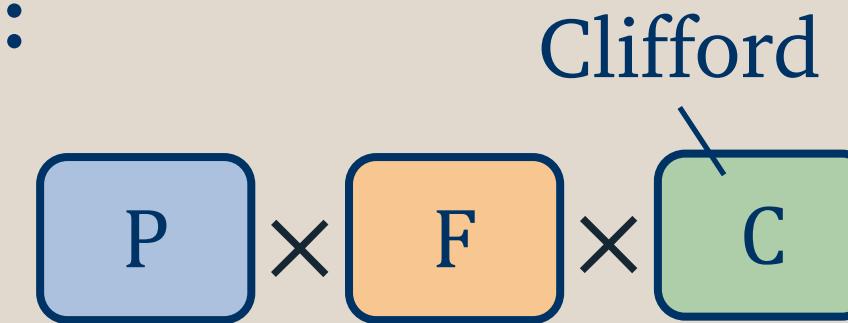
[MPSY24]

# Prior work

## 1) Many proposed constructions:



[JLS18]

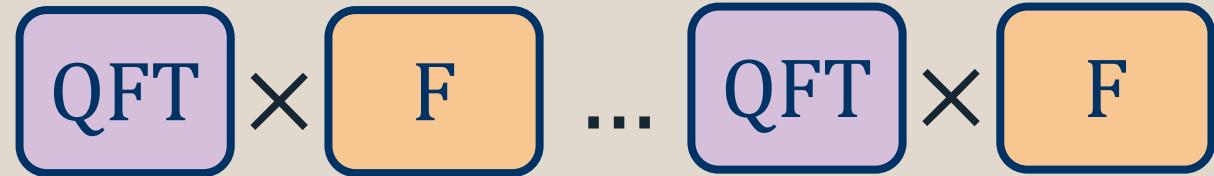


Clifford  
[MPSY24]

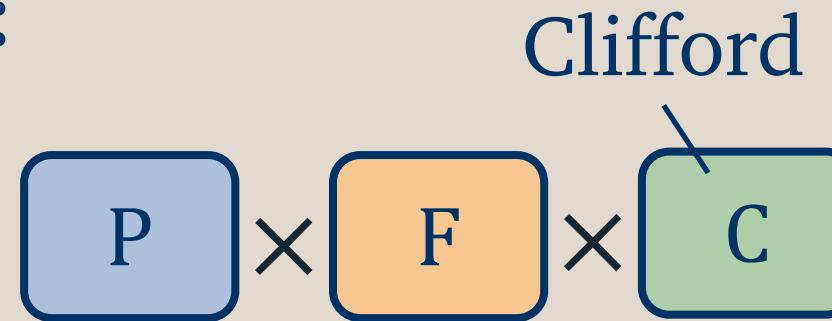
## 2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

# Prior work

## 1) Many proposed constructions:



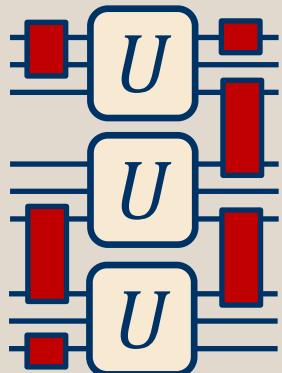
[JLS18]



Clifford  
[MPSY24]

## 2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

can analyze  
this:

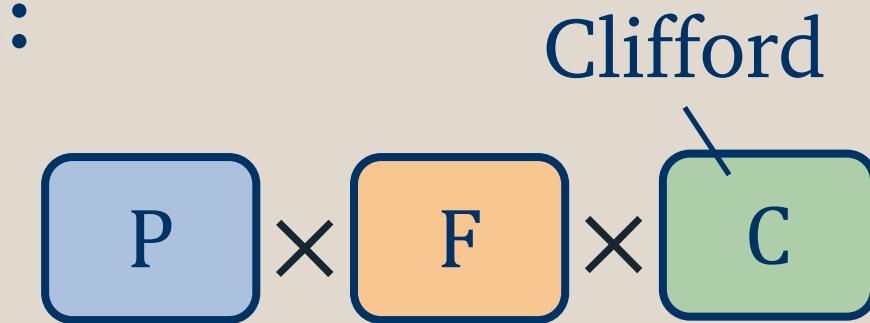


# Prior work

## 1) Many proposed constructions:



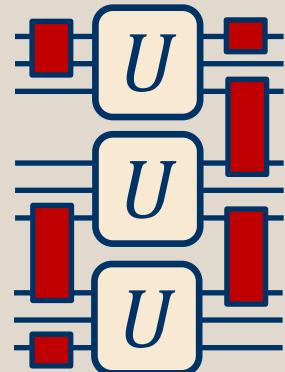
[JLS18]



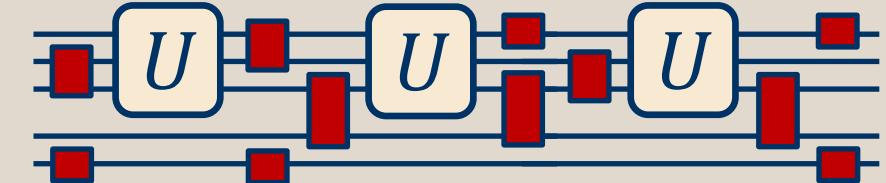
Clifford [MPSY24]

## 2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

can analyze  
this:



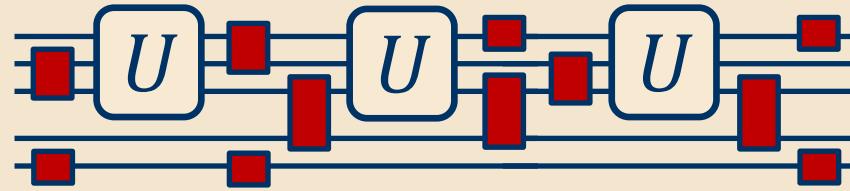
but not  
this:



# Why has it been hard to prove PRUs exist?

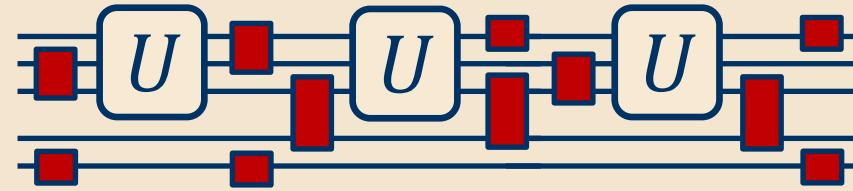
# Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:



# Why has it been hard to prove PRUs exist?

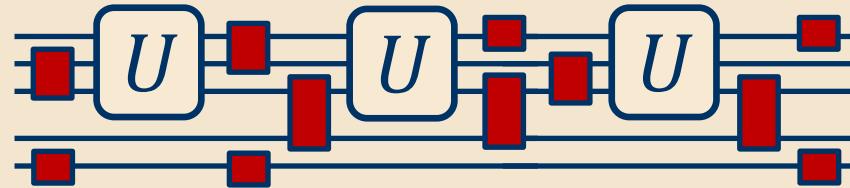
1) Need to understand behavior of an arbitrary algorithm:



2) Mathematics of random unitaries is complicated.

# Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:



2) Mathematics of random unitaries is complicated.

- Weingarten calculus
- free probability
- ???

**Theorem 3.1.** Let  $k$  be a positive integer. For any permutation  $\sigma \in \mathcal{S}_k$  and nonnegative integer  $g$ , we have

$$(k-1)^g \#P(\sigma, |\sigma|) \leq \#P(\sigma, |\sigma| + 2g) \leq (6k^{7/2})^g \#P(\sigma, |\sigma|).$$

**Theorem 3.2.** For any  $\sigma \in \mathcal{S}_k$  and  $d > \sqrt{6}k^{7/4}$ ,

$$\frac{1}{1 - \frac{k-1}{d^2}} \leq \frac{(-1)^{|\sigma|} d^{k+|\sigma|} Wg^U(\sigma, d)}{\#P(\sigma, |\sigma|)} \leq \frac{1}{1 - \frac{6k^{7/2}}{d^2}}.$$

In addition, the l.h.s inequality is valid for any  $d \geq k$ .

[MH24]: PRUs exist  
(if one-way functions exist)

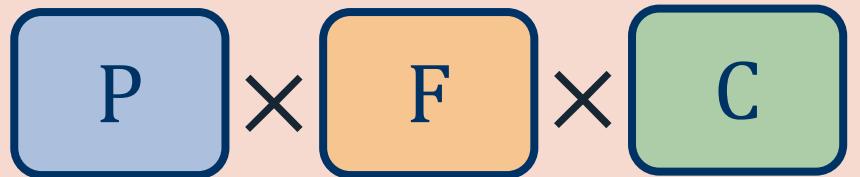
[MH24]: PRUs exist  
(if one-way functions exist)

Same construction  
as [MPSY24]:



[MH24]: PRUs exist  
(if one-way functions exist)

Same construction  
as [MPSY24]:



New technique: the path-recording oracle

[MH24]: PRUs exist  
(if one-way functions exist)

Same construction  
as [MPSY24]:

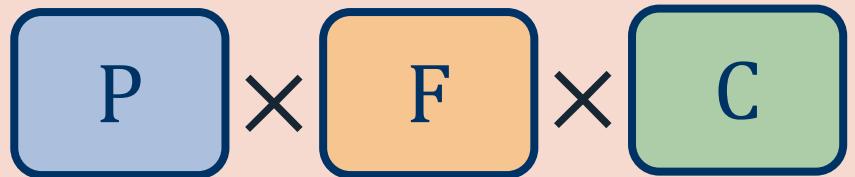


New technique: the path-recording oracle

- efficient simulation of Haar-random unitaries

[MH24]: PRUs exist  
(if one-way functions exist)

Same construction  
as [MPSY24]:



**New technique:** the path-recording oracle

- efficient simulation of Haar-random unitaries
- only uses basic quantum info (purification)

# Our second result

## Our second result

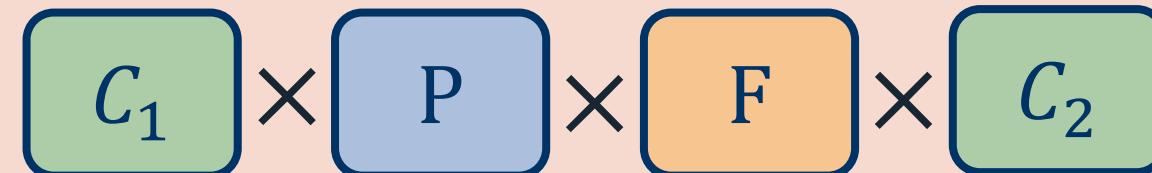
In the [JLS18] PRU definition, the distinguisher only queries  $U$ . What if it queries  $U$  and  $U^\dagger$ ?

## Our second result

In the [JLS18] PRU definition, the distinguisher only queries  $U$ . What if it queries  $U$  and  $U^\dagger$ ?

Result #2: “Strong” PRUs exist  
(assuming OWFs).

Construction:



## Our second result

In the [JLS18] PRU definition, the distinguisher only queries  $U$ . What if it queries  $U$  and  $U^\dagger$ ?

Result #2: “Strong” PRUs exist  
(assuming OWFs).

Construction:  $C_1 \times P \times F \times C_2$

[SMLBH25]: same proof extends to  $U^T$  and  $U^*$ .

## Our second result

In the [JLS18] PRU definition, the distinguisher only queries  $U$ . What if it queries  $U$  and  $U^\dagger$ ?

Result #2: “Strong” PRUs exist  
(assuming OWFs).

Construction:  $C_1 \times P \times F \times C_2$

[SMLBH25]: same proof extends to  $U^T$  and  $U^*$ .

But for this talk, I’ll focus on the weakest notion.

# Cartoon overview of our proof

# Cartoon overview of our proof

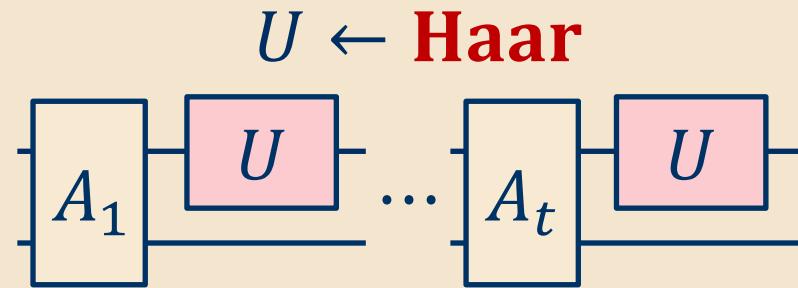
**Want to show:**

For all efficient algorithms  $A$ ,

# Cartoon overview of our proof

Want to show:

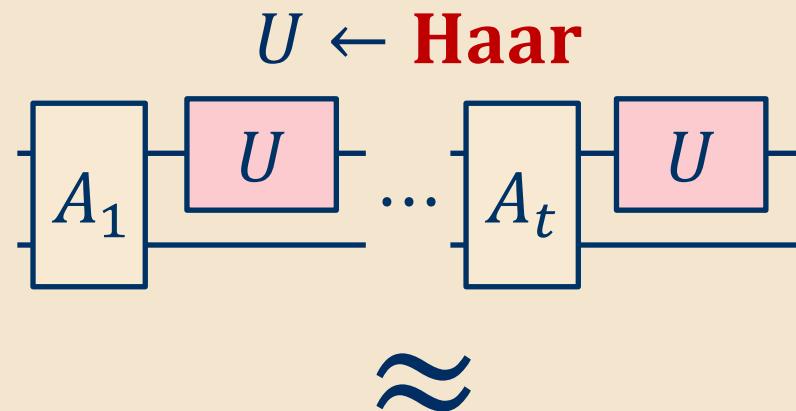
For all efficient algorithms  $A$ ,



# Cartoon overview of our proof

Want to show:

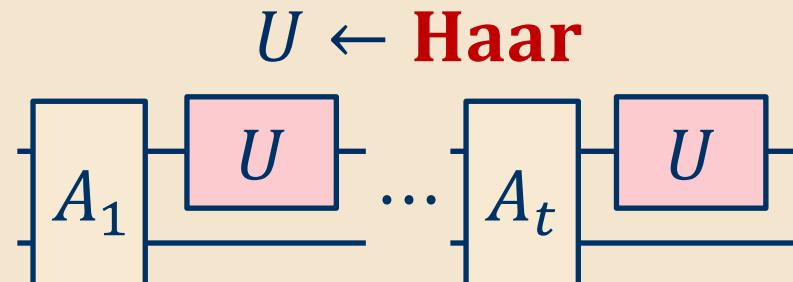
For all efficient algorithms  $A$ ,



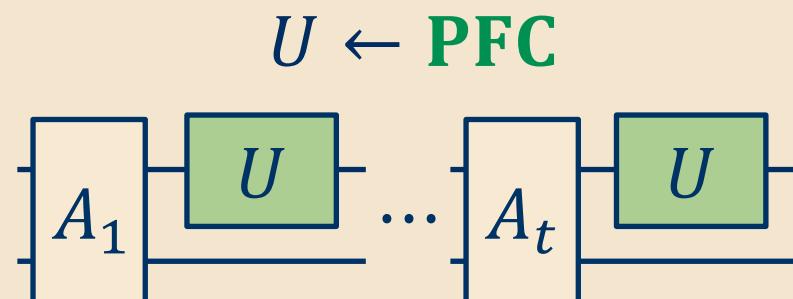
# Cartoon overview of our proof

Want to show:

For all efficient algorithms  $A$ ,



$\approx$

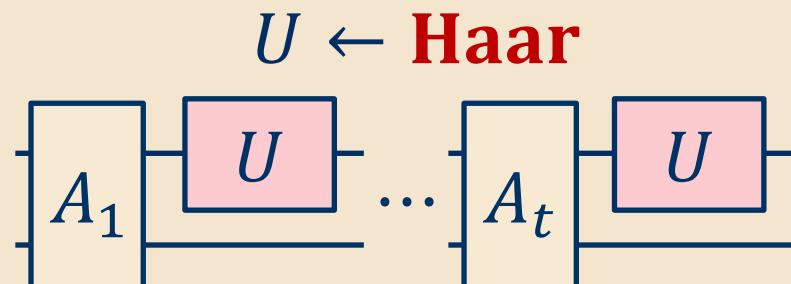


# Cartoon overview of our proof

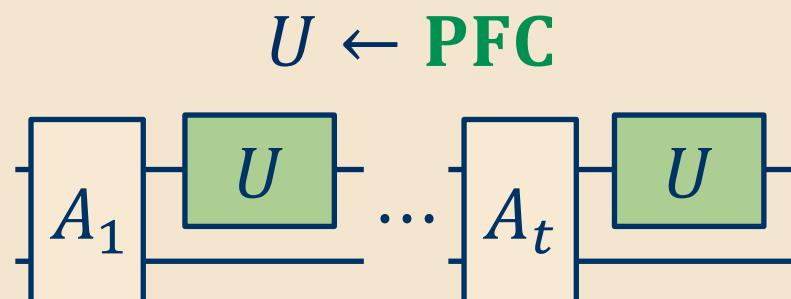
Want to show:

For all efficient algorithms  $A$ ,

Proof strategy: show that both  
are indistinguishable from



$\approx$

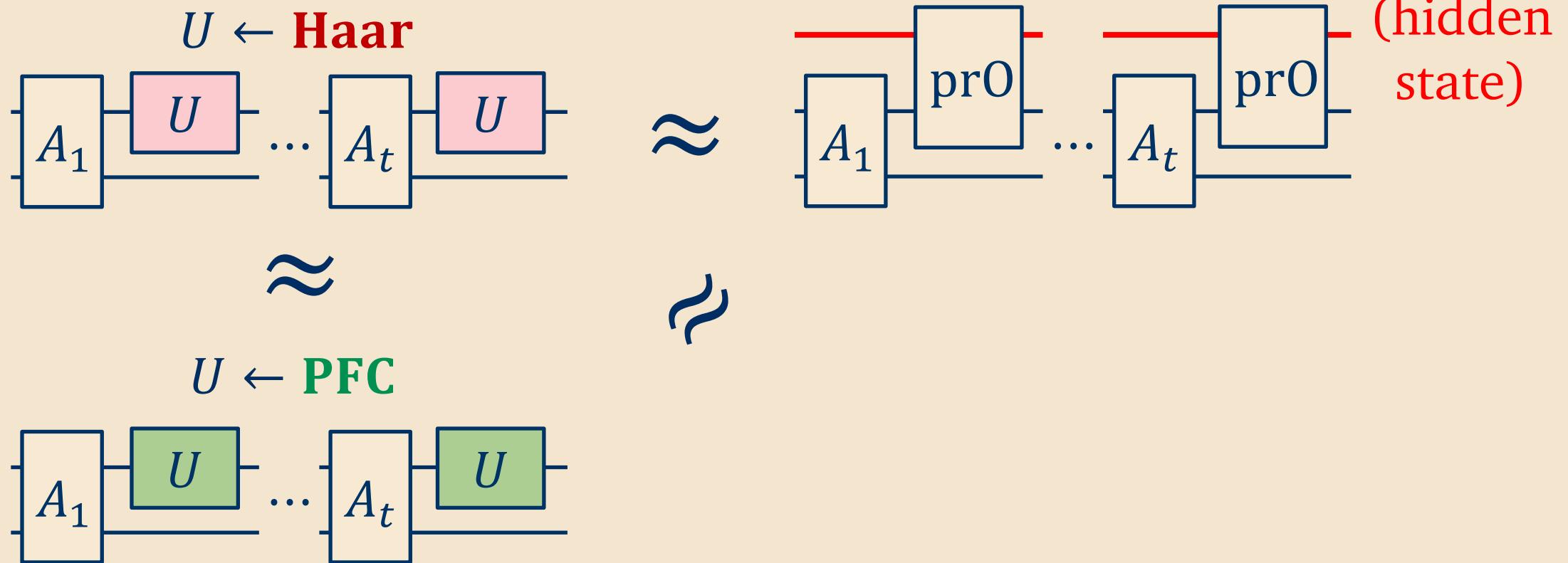


# Cartoon overview of our proof

Want to show:

For all efficient algorithms  $A$ ,

Proof strategy: show that both are indistinguishable from

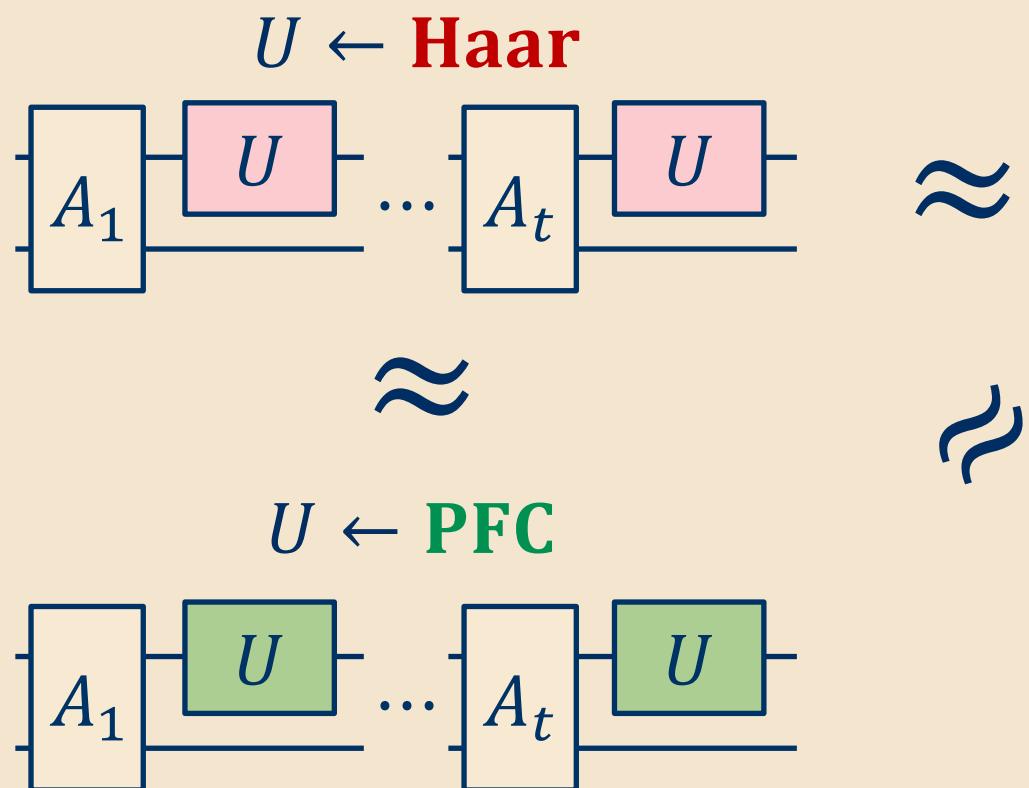
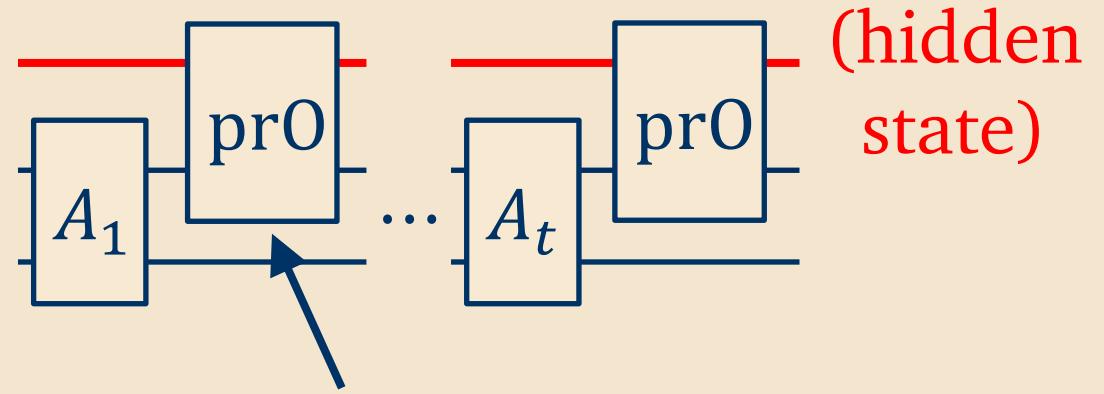


# Cartoon overview of our proof

Want to show:

For all efficient algorithms  $A$ ,

Proof strategy: show that both are indistinguishable from



(path-recording oracle)  
maintains a data structure  
that “lazily samples” a Haar-  
random unitary

# Cartoon overview of our proof

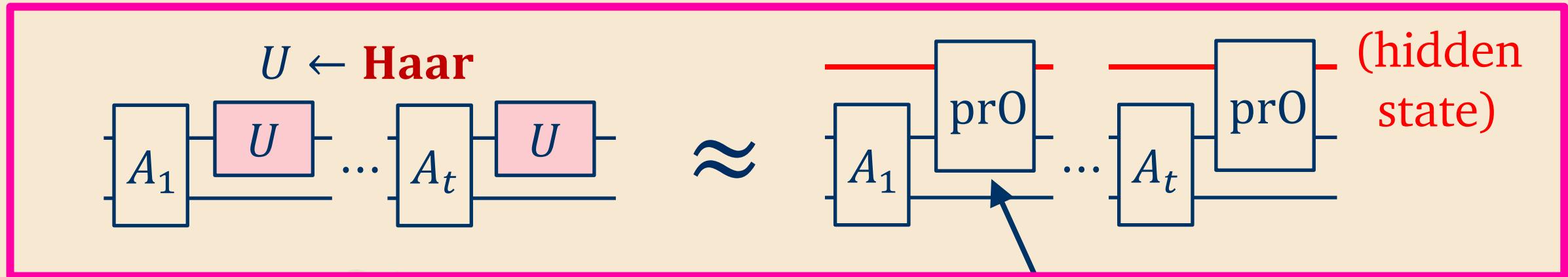
Want to show:

For all efficient algorithms  $A_i$ ,

Proof strategy: show that both

are indistinguishable from

## most of the proof



(path-recording oracle)  
maintains a data structure  
that “lazily samples” a Haar-  
random unitary

## Rest of this talk

- **Lazy sampling of a random function**
- Lazy sampling of a random unitary
- Proving correctness + PRUs exist
- Applications

# Lazy sampling of a random function

# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:** • only sample  $f(x)$  when needed, “on the fly”

# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:**

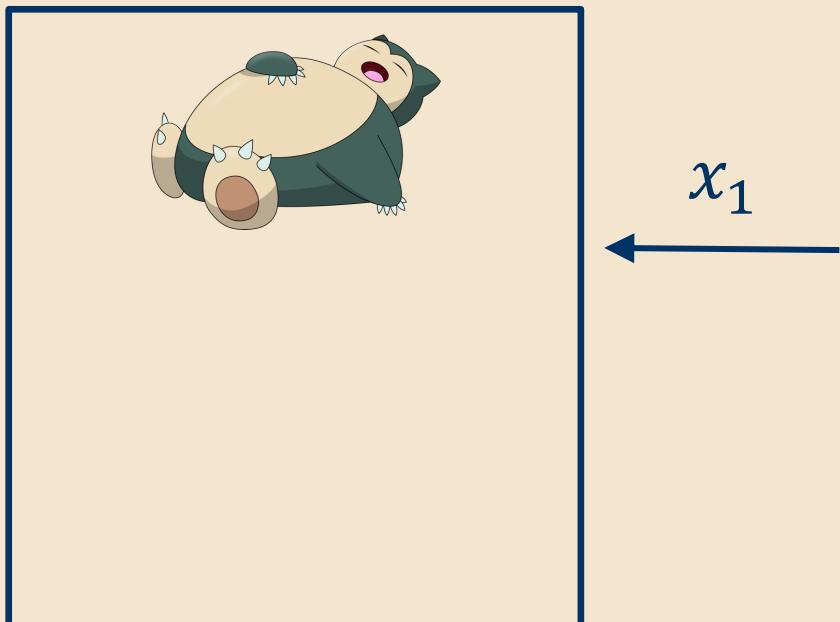
- only sample  $f(x)$  when needed, “on the fly”
- remember what you sampled (for consistency)

# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:**

- only sample  $f(x)$  when needed, “on the fly”
- remember what you sampled (for consistency)

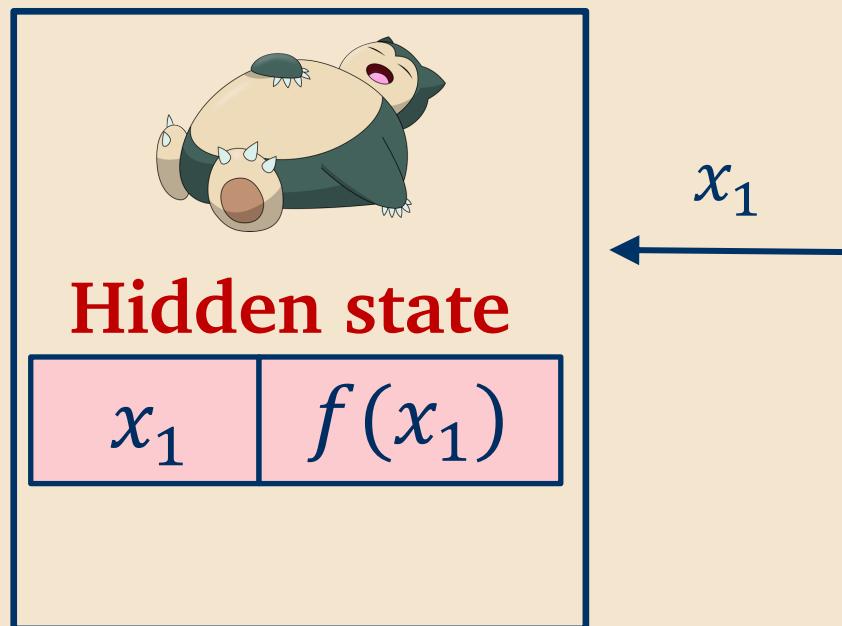


# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:**

- only sample  $f(x)$  when needed, “on the fly”
- remember what you sampled (for consistency)

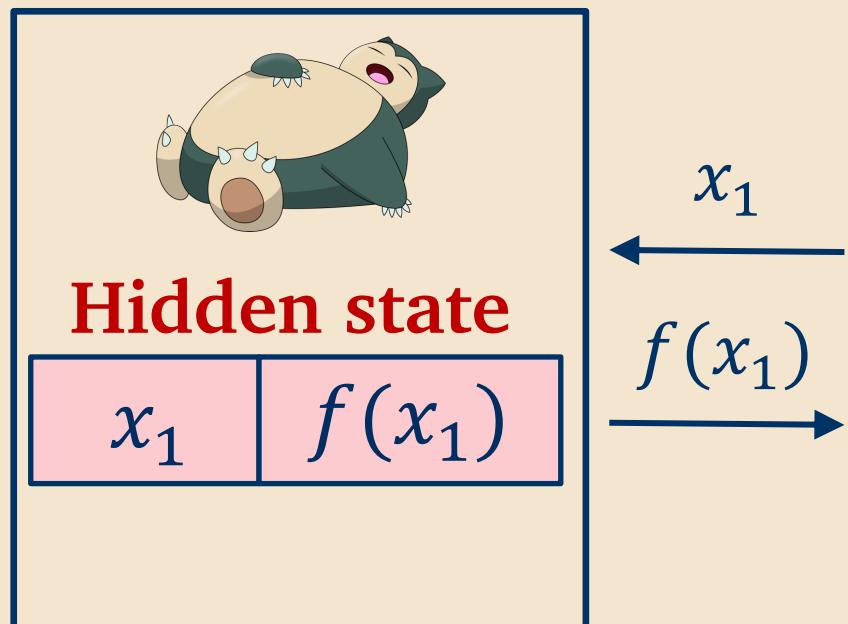


# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:**

- only sample  $f(x)$  when needed, “on the fly”
- remember what you sampled (for consistency)

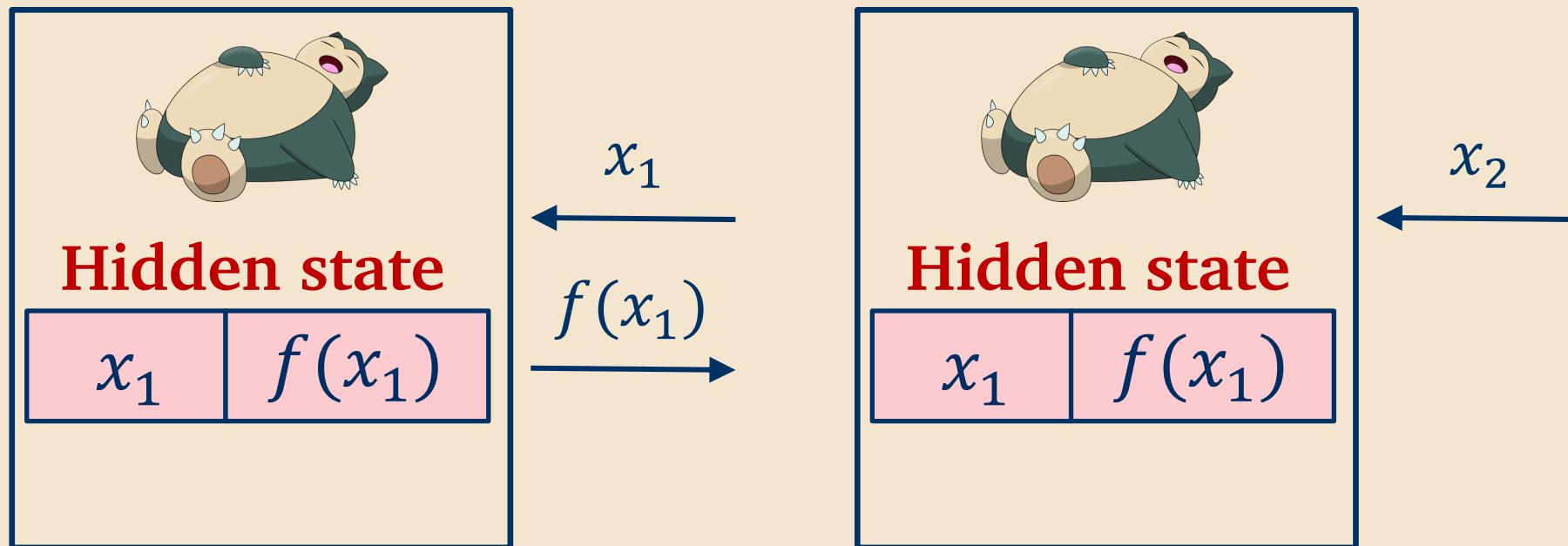


# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:**

- only sample  $f(x)$  when needed, “on the fly”
- remember what you sampled (for consistency)

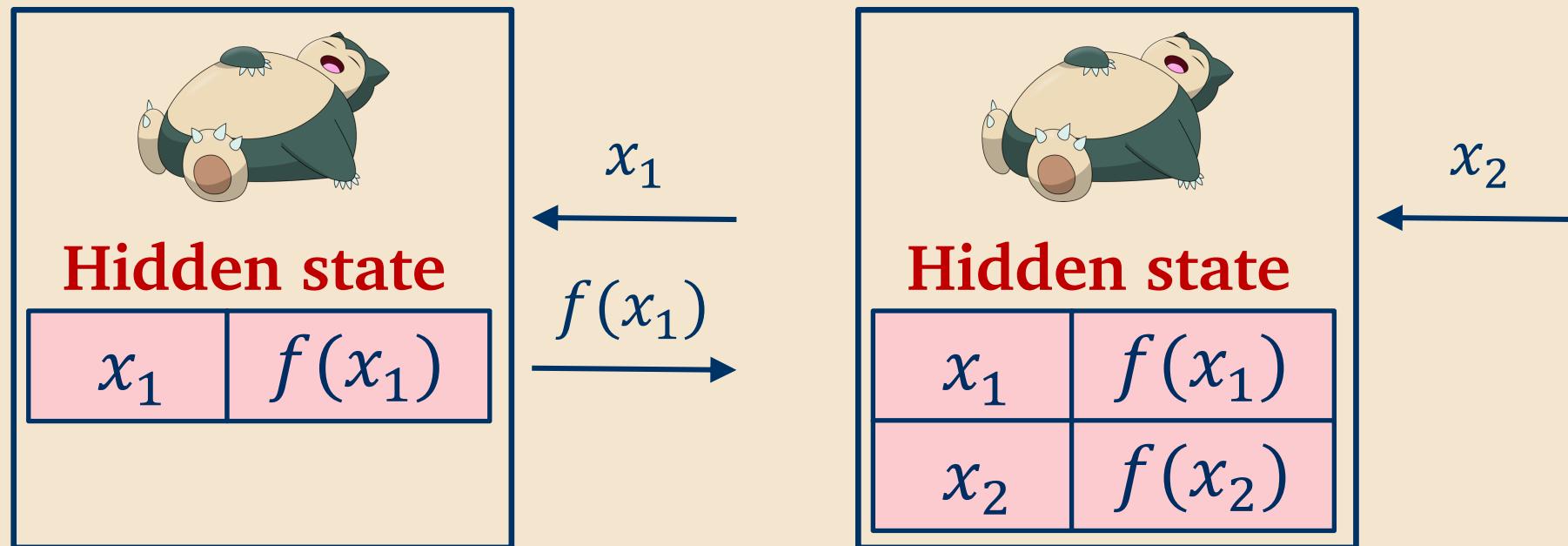


# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:**

- only sample  $f(x)$  when needed, “on the fly”
- remember what you sampled (for consistency)

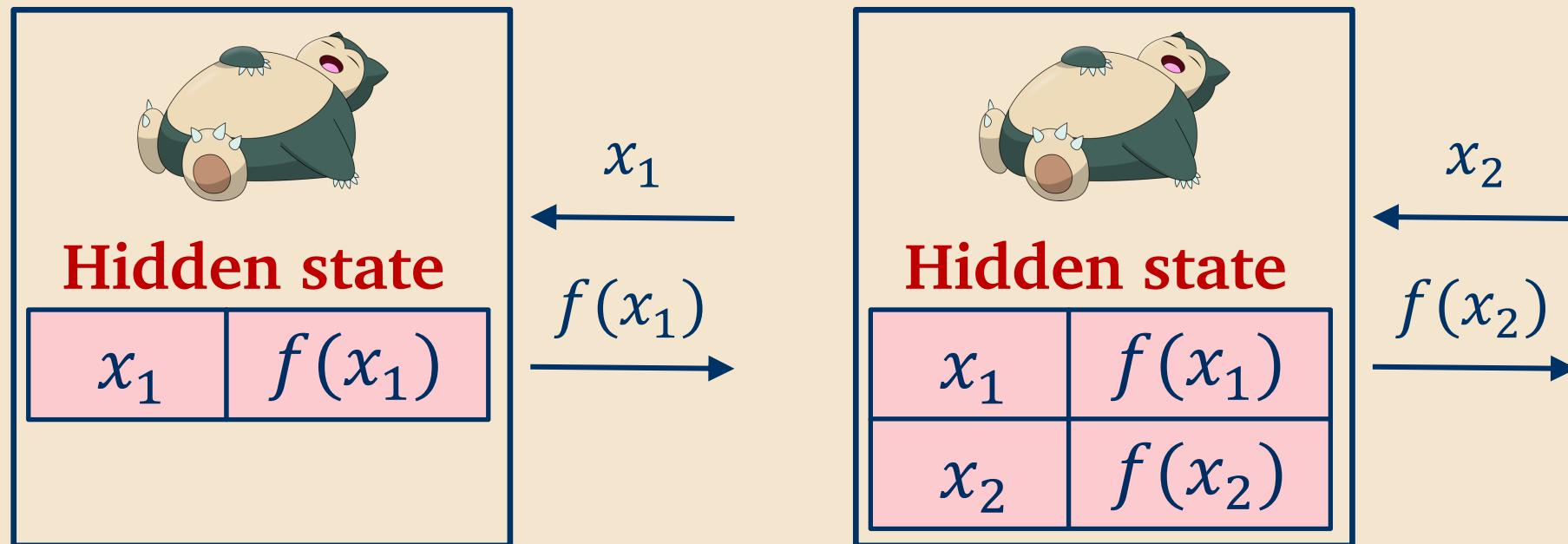


# Lazy sampling of a random function

**Goal:** efficiently implement an algorithm that queries a random **function**  $f$ .

**Solution:**

- only sample  $f(x)$  when needed, “on the fly”
- remember what you sampled (for consistency)



## Rest of this talk

- Lazy sampling of a random function
- **Lazy sampling of a random unitary**
- Proving correctness + PRUs exist
- Applications

# Lazy sampling of a random **unitary**

# Lazy sampling of a random **unitary**

**Goal:** efficiently implement a quantum algorithm that queries a Haar-random unitary  $U$ .

# Lazy sampling of a random **unitary**

**Goal:** efficiently implement a quantum algorithm that queries a Haar-random unitary  $U$ .

A priori, not clear how to do this!

# Lazy sampling of a random **unitary**

**Goal:** efficiently implement a quantum algorithm that queries a Haar-random unitary  $U$ .

A priori, not clear how to do this!

**Our solution:** the path-recording oracle



# Lazy sampling of a random **unitary**

**Goal:** efficiently implement a quantum algorithm that queries a Haar-random unitary  $U$ .

A priori, not clear how to do this!

**Our solution:** the path-recording oracle

We use **entanglement** with a **hidden data structure** that succinctly “remembers” enough information to spoof a Haar-random  $U$ .



# Lazy sampling of a random **unitary**

**Goal:** efficiently implement a quantum algorithm that queries a Haar-random unitary  $U$ .

A priori, not clear how to do this!

Classically, the data structure is the set of  $(x, f(x))$  tuples.

**Our solution:** the path-recording oracle

We use **entanglement** with a **hidden data structure** that succinctly “remembers” enough information to spoof a Haar-random  $U$ .



# Lazy sampling of a random **unitary**

**Goal:** efficiently implement a quantum algorithm that queries a Haar-random unitary  $U$ .

A priori, not clear how to do this!

Classically, the data structure is the set of  $(x, f(x))$  tuples.

**Our solution:** the path-recording oracle

We use **entanglement** with a **hidden data structure** that succinctly “remembers” enough information to spoof a Haar-random  $U$ .



Inspiration: compressed oracle technique [Zhandry19]

Up next:  
“Derive” the path-recording oracle  
through simple examples

# Example 1: one query on $|0\rangle$

# Example 1: one query on $|0\rangle$

**The algorithm:**  $|0\rangle_A \xrightarrow{U} U|0\rangle_A$   
 $(U \leftarrow \text{Haar})$

# Example 1: one query on $|0\rangle$

**The algorithm:**  $|0\rangle_A \xrightarrow{U} U|0\rangle_A$  

$(U \leftarrow \text{Haar})$

# Example 1: one query on $|0\rangle$

The algorithm:  $|0\rangle_A \xrightarrow{U} U|0\rangle_A$  Fact: this is the “maximally mixed” state  
 $(U \leftarrow \text{Haar})$

How to “spoof” it:



$$\sum_y |y\rangle_A |y\rangle_S \quad (\text{S register is hidden})$$

# Example 1: one query on $|0\rangle$

The algorithm:

$$|0\rangle_A \xrightarrow{U} U|0\rangle_A$$

Fact: this is the  
“maximally mixed” state

$$(U \leftarrow \text{Haar})$$

How to “spoof” it:



$$\sum_y |y\rangle_A |y\rangle_S$$

Fact: this is *also* the  
maximally mixed state.

**(S register is hidden)**

# Example 1: one query on $|0\rangle$

The algorithm:



Fact: this is the  
“maximally mixed” state

$(U \leftarrow \text{Haar})$

How to “spoof” it:



$$\sum_y |y\rangle_A |y\rangle_S$$

Fact: this is *also* the  
maximally mixed state.

**(S register is hidden)**

Idea 1: entanglement with a **hidden register  $S$**  can simulate  
one query to  $U$ .

## Example 2: two queries on $|0\rangle$

## Example 2: two queries on $|0\rangle$

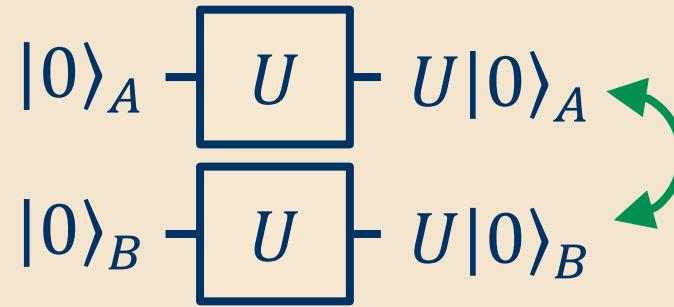
**The algorithm:**

$(U \leftarrow \text{Haar})$

$$|0\rangle_A \xrightarrow{U} U|0\rangle_A$$
$$|0\rangle_B \xrightarrow{U} U|0\rangle_B$$

## Example 2: two queries on $|0\rangle$

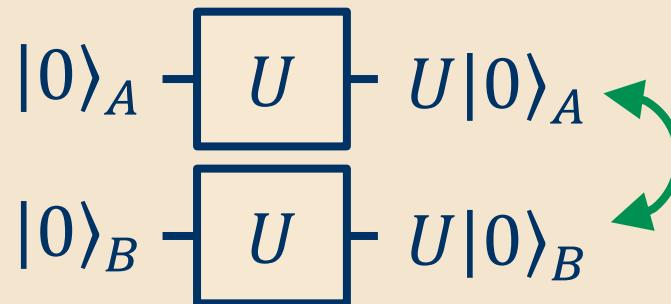
**The algorithm:**  
 $(U \leftarrow \text{Haar})$



Fact: this is the  
maximally mixed  
“symmetric” state

## Example 2: two queries on $|0\rangle$

The algorithm:  
 $(U \leftarrow \text{Haar})$



Fact: this is the  
maximally mixed  
“symmetric” state

How to “spoof” it:

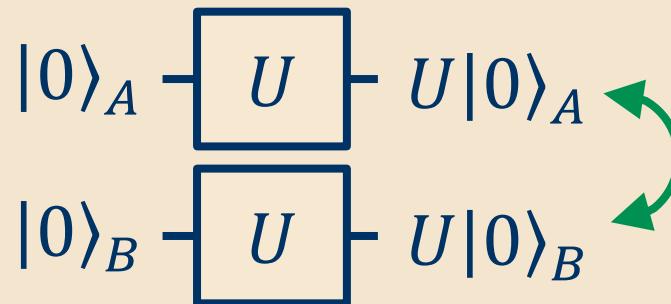


$$\sum_{y_1, y_2} |y_1\rangle_A |y_2\rangle_B |\{y_1, y_2\}\rangle_S$$

(S register is hidden)

## Example 2: two queries on $|0\rangle$

The algorithm:  
 $(U \leftarrow \text{Haar})$



Fact: this is the  
maximally mixed  
“symmetric” state

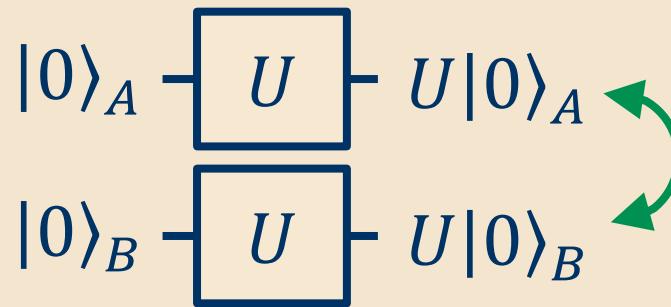
How to “spoof” it:



also symmetric!  
$$\sum_{y_1, y_2} |y_1\rangle_A |y_2\rangle_B |\{y_1, y_2\}\rangle_S$$
  
**(S register is hidden)**

## Example 2: two queries on $|0\rangle$

The algorithm:  
( $U \leftarrow$  Haar)



Fact: this is the  
maximally mixed  
“symmetric” state

How to “spoof” it:



also symmetric!

$$\sum_{y_1, y_2} |y_1\rangle_A |y_2\rangle_B |\{y_1, y_2\}\rangle_S$$

(S register is hidden)

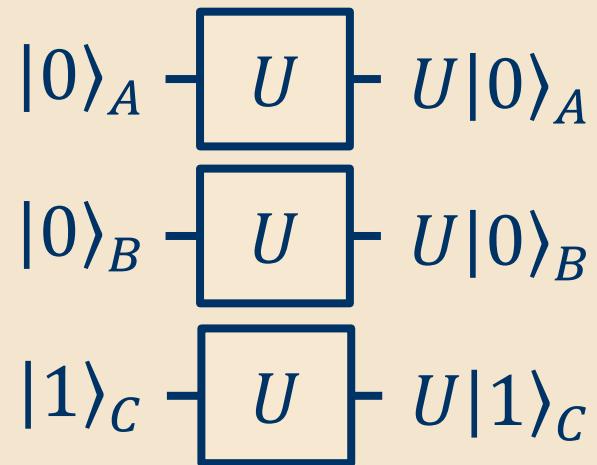
Idea 2: use an **unordered set** to spoof “swap-symmetry”.

# Example 3: mixed queries

# Example 3: mixed queries

**The algorithm:**

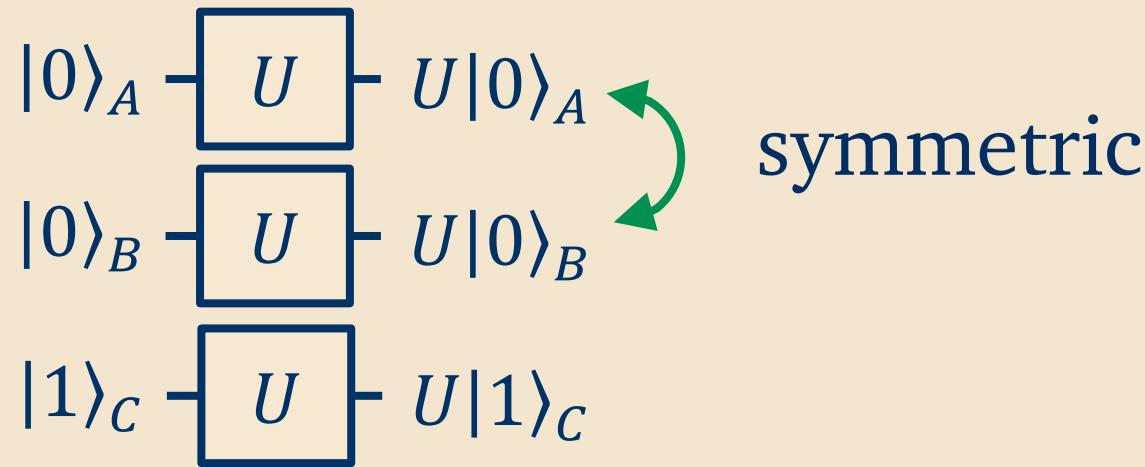
$(U \leftarrow \text{Haar})$



# Example 3: mixed queries

The algorithm:

$(U \leftarrow \text{Haar})$

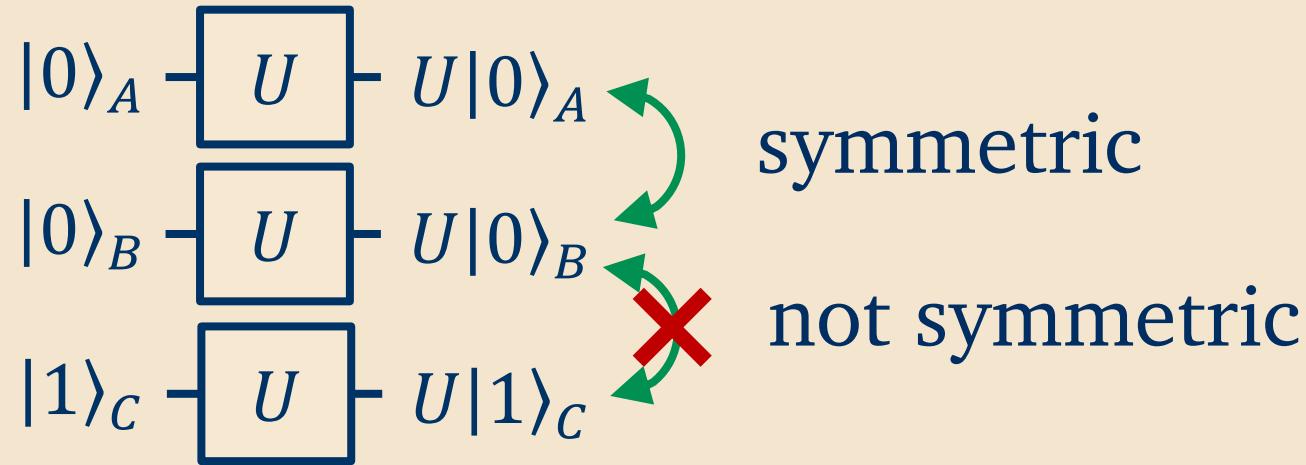


symmetric

# Example 3: mixed queries

The algorithm:

$(U \leftarrow \text{Haar})$



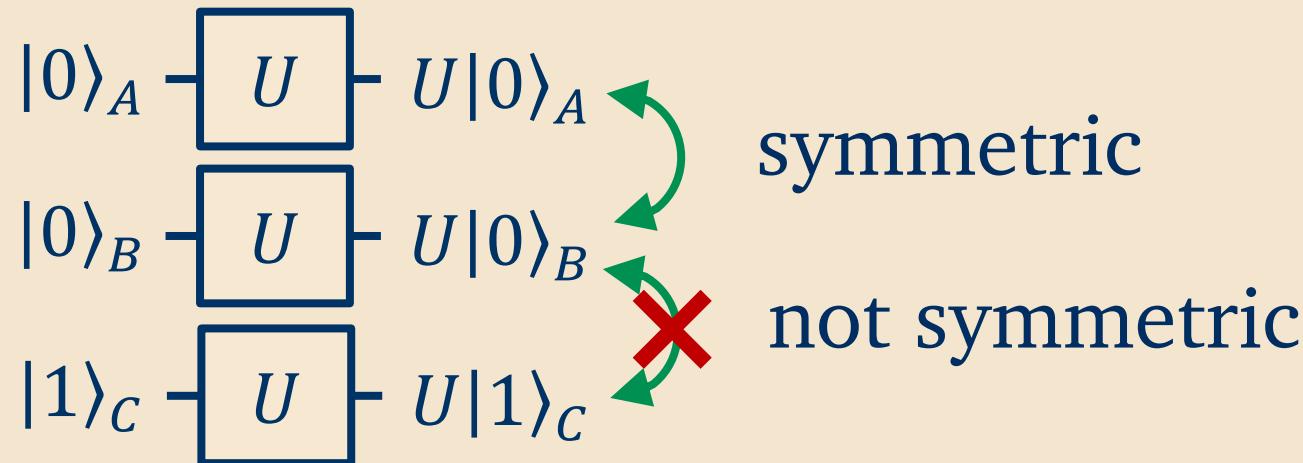
symmetric

not symmetric

# Example 3: mixed queries

The algorithm:

$(U \leftarrow \text{Haar})$



How to “spoof” it:

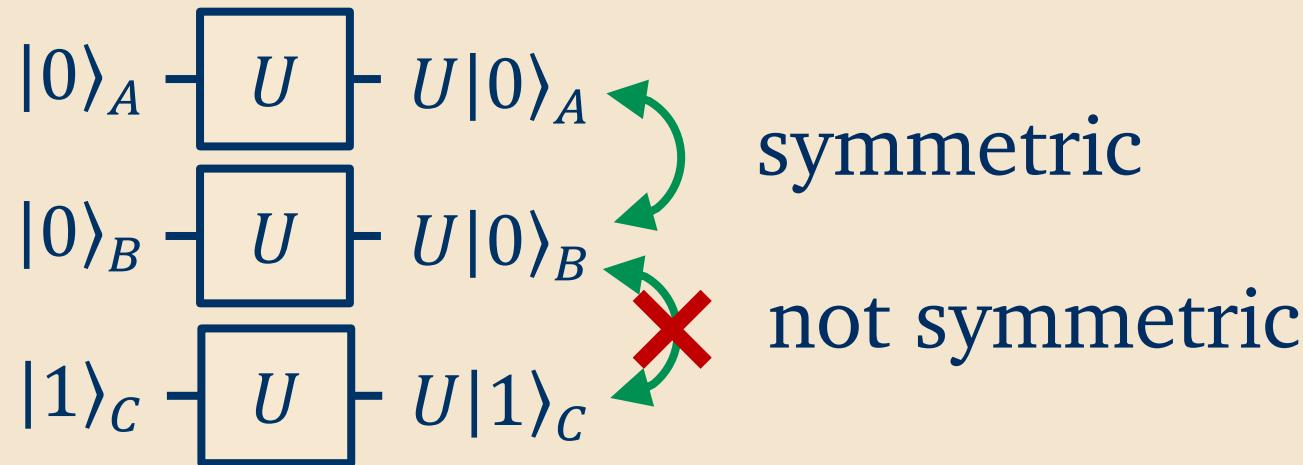


$$\sum_{y_1, y_2, y_3} |y_1\rangle_A |y_2\rangle_B |y_3\rangle_C |\{(0, y_1), (0, y_2), (1, y_3)\}\rangle_S$$

# Example 3: mixed queries

The algorithm:

$(U \leftarrow \text{Haar})$



How to “spoof” it:

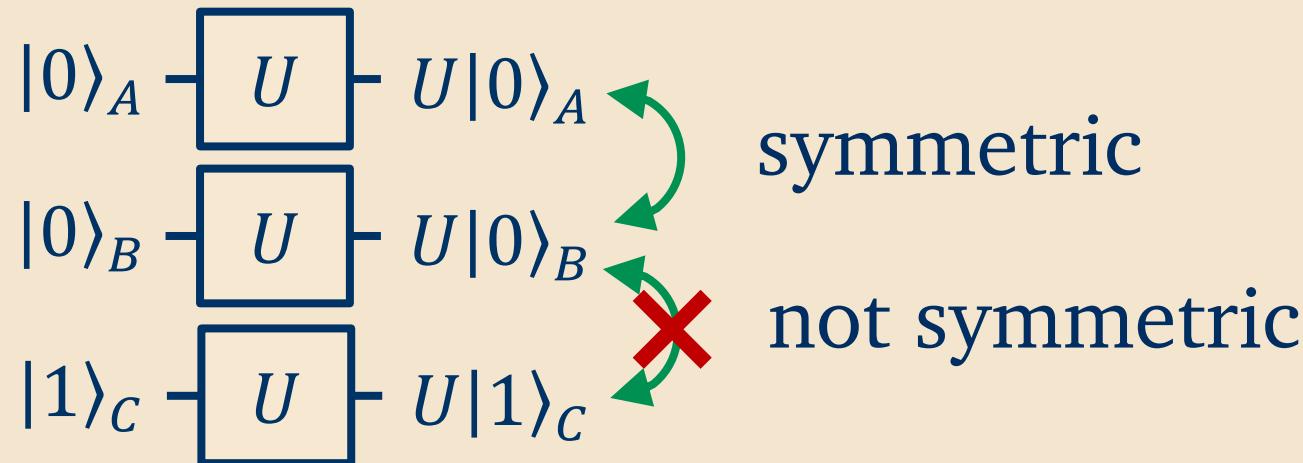


$$\sum_{y_1, y_2, y_3} |y_1\rangle_A |y_2\rangle_B |y_3\rangle_C |\{(0, y_1), (0, y_2), (1, y_3)\}\rangle_S$$

# Example 3: mixed queries

The algorithm:

$(U \leftarrow \text{Haar})$



How to “spoof” it:

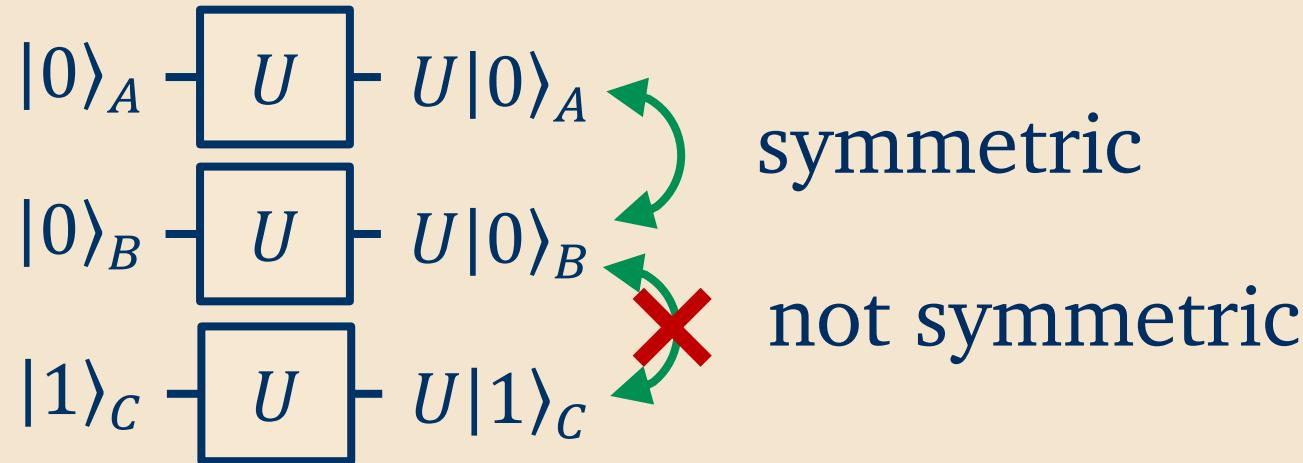


$$\sum_{y_1, y_2, y_3} |y_1\rangle_A |y_2\rangle_B |y_3\rangle_C |\{(0, y_1), (0, y_2), (1, y_3)\}\rangle_S$$

# Example 3: mixed queries

The algorithm:

$(U \leftarrow \text{Haar})$



How to “spoof” it:

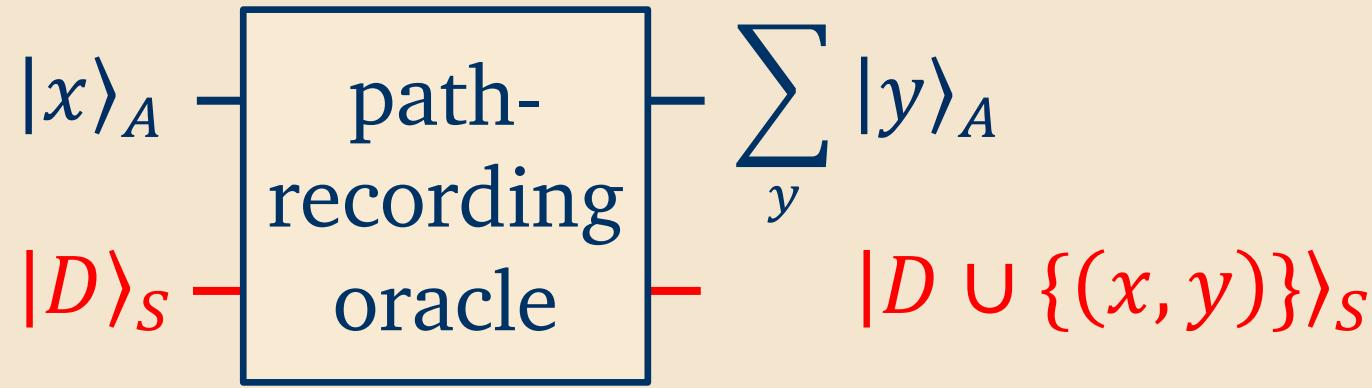


$$\sum_{y_1, y_2, y_3} |y_1\rangle_A |y_2\rangle_B |y_3\rangle_C |\{(0, y_1), (0, y_2), (1, y_3)\}\rangle_S$$

Idea 3: use ordered pairs to simulate symmetry “structure”

We can generate all of these examples by simply replacing each query to  $U$  with this:

We can generate all of these examples by simply replacing each query to  $U$  with this:



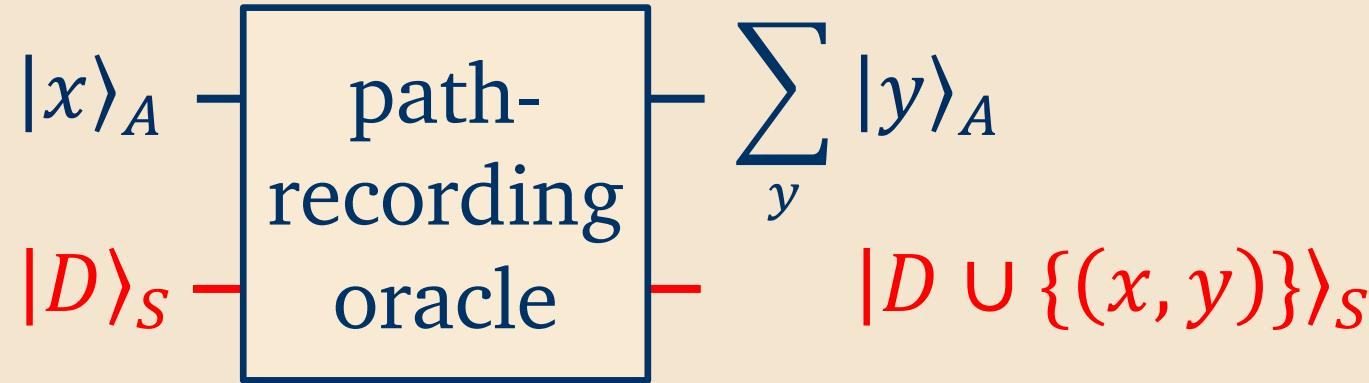
We can generate all of these examples by simply replacing each query to  $U$  with this:



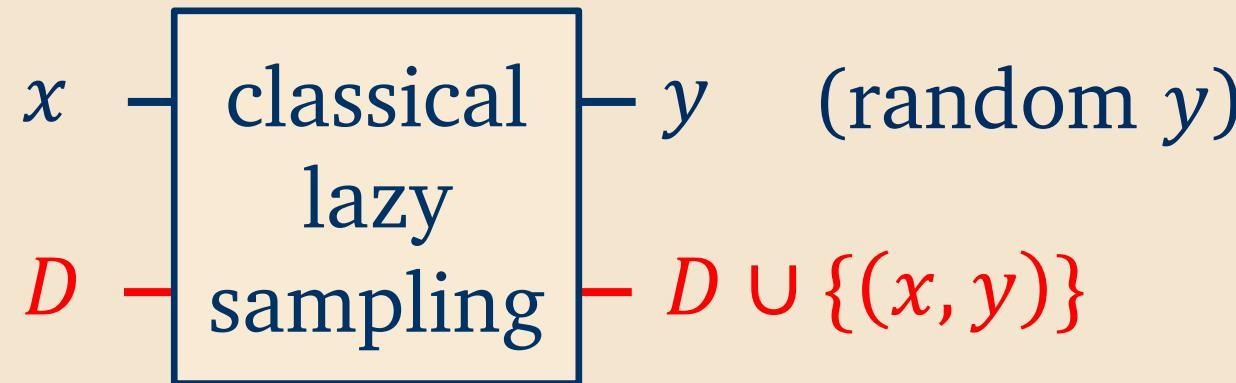
$$\begin{array}{c} |x\rangle_A \\ |D\rangle_S \end{array} \xrightarrow{\text{path-} \\ \text{recording} \\ \text{oracle}} \sum_y |y\rangle_A \quad |D \cup \{(x, y)\}\rangle_S$$

Note the similarity to classical lazy sampling:

We can generate all of these examples by simply replacing each query to  $U$  with this:



Note the similarity to classical lazy sampling:



## Rest of this talk

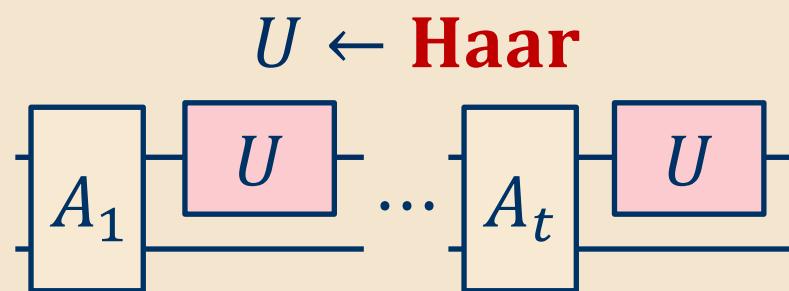
- Lazy sampling of a random function
- Lazy sampling of a random unitary
- **Proving correctness + PRUs exist**
- Applications

# Recall our cartoon proof overview

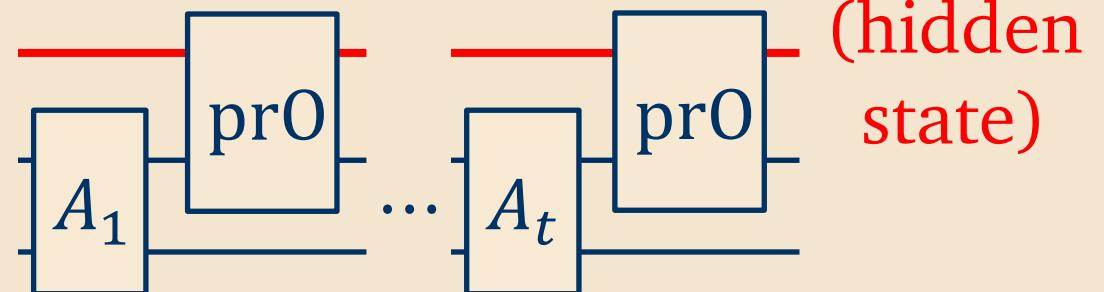
Want to show:

For all efficient adversaries  $A$ ,

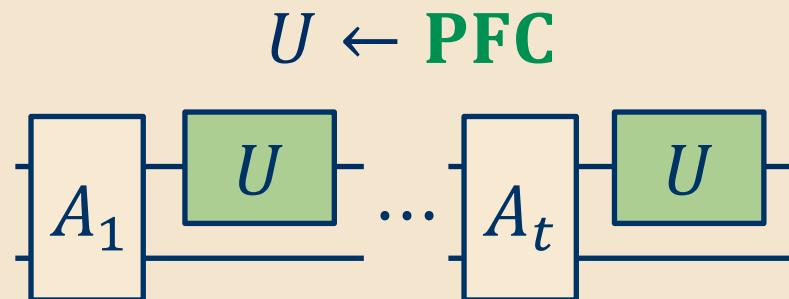
Proof strategy: show that both are indistinguishable from



$\approx$



$\approx$



$\approx$

Recall our cartoon proof overview

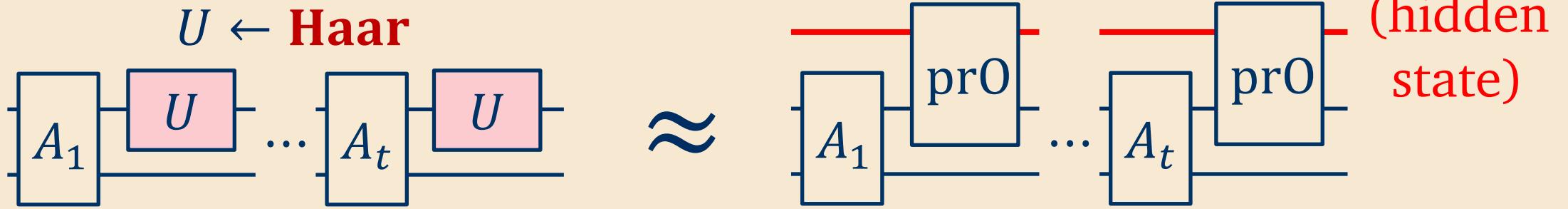
Want to show:

For all efficient adversaries  $A$ ,

Proof strategy: show that both

are indistinguishable from

## Up next: prove this



$U \leftarrow \mathbf{PFC}$



Recall our cartoon proof overview

Want to show:

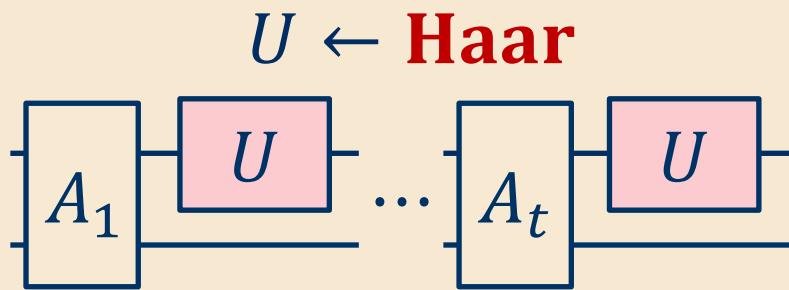
For all efficient adversaries  $A$ ,

are indistinguishable from

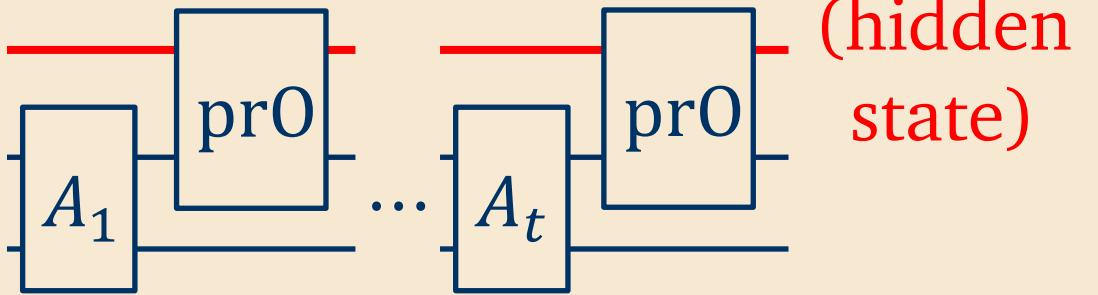
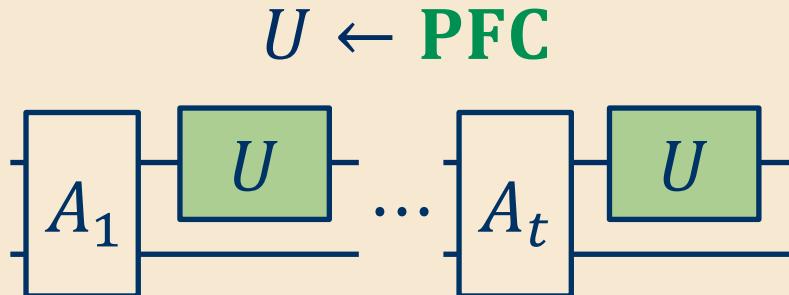
Proof strategy: show that both

are indistinguishable from

## Up next: prove this



$\approx$



$\not\approx$

The same proof  
will show this!

$$U$$

$U \leftarrow \text{Haar}$

Hybrid 0



$U \leftarrow \text{Haar}$



$U \leftarrow \text{Haar}$

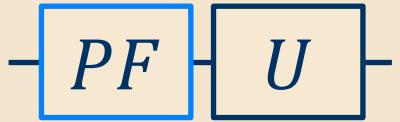
$$P \leftarrow S_N$$

$$F \leftarrow \{\pm 1\}^N$$

Hybrid 0  $\equiv$  Hybrid 1



$U \leftarrow \text{Haar}$



$U \leftarrow \text{Haar}$

$$P \leftarrow S_N$$

$$F \leftarrow \{\pm 1\}^N$$

Hybrid 0  $\equiv$  Hybrid 1

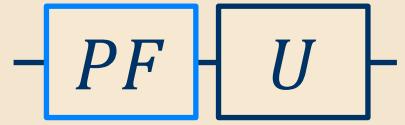
**Step 1:** insert random permutation  $P$  random  $\pm 1$  diagonal  $F$ .

$$P = \begin{pmatrix} & & 1 \\ 1 & & \\ & & 1 \end{pmatrix} \quad F = \begin{pmatrix} +1 & & \\ & -1 & \\ & & -1 \end{pmatrix}$$



$U \leftarrow \text{Haar}$

Hybrid 0



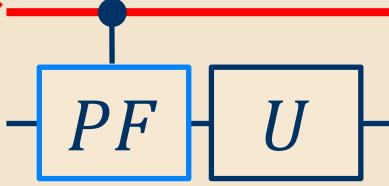
$U \leftarrow \text{Haar}$

$P \leftarrow S_N$

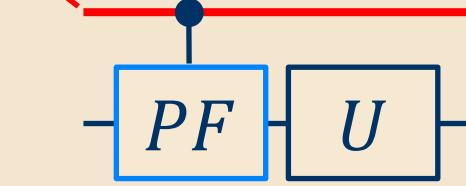
$F \leftarrow \{\pm 1\}^N$

Hybrid 1

$\sum_{P,F} |P, F\rangle$



$U \leftarrow \text{Haar}$



$U \leftarrow \text{Haar}$

Hybrid 2



$U \leftarrow \text{Haar}$

Hybrid 0



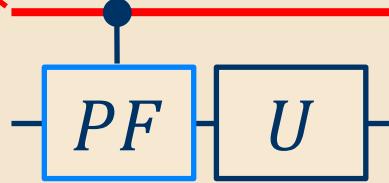
$U \leftarrow \text{Haar}$

$P \leftarrow S_N$

$F \leftarrow \{\pm 1\}^N$

$\equiv$  Hybrid 1  $\equiv$  Hybrid 2

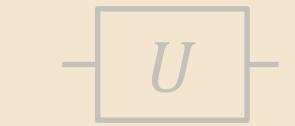
$\sum_{P,F} |P,F\rangle$



$U \leftarrow \text{Haar}$

**Step 2:** replace random  $P, F$  with a purification.

- Initialize external/ancilla system to  $\sum_{P,F} |P,F\rangle$
- On each query, apply  $P \cdot F$  **controlled** on  $|P,F\rangle$



$U \leftarrow \text{Haar}$



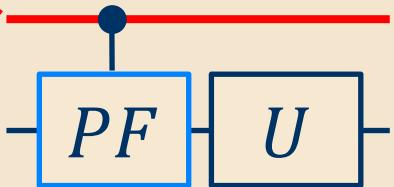
$U \leftarrow \text{Haar}$

$$P \leftarrow S_N$$

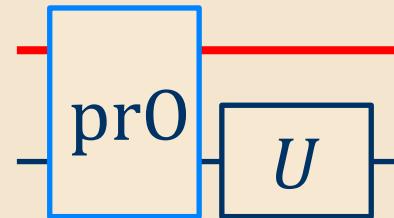
$$F \leftarrow \{\pm 1\}^N$$

$$\text{Hybrid 0} \equiv \text{Hybrid 1}$$

$$\sum_{P,F} |P,F\rangle$$



$U \leftarrow \text{Haar}$



$U \leftarrow \text{Haar}$

## Hybrid 2 $\approx$ Hybrid 3



$U \leftarrow \text{Haar}$

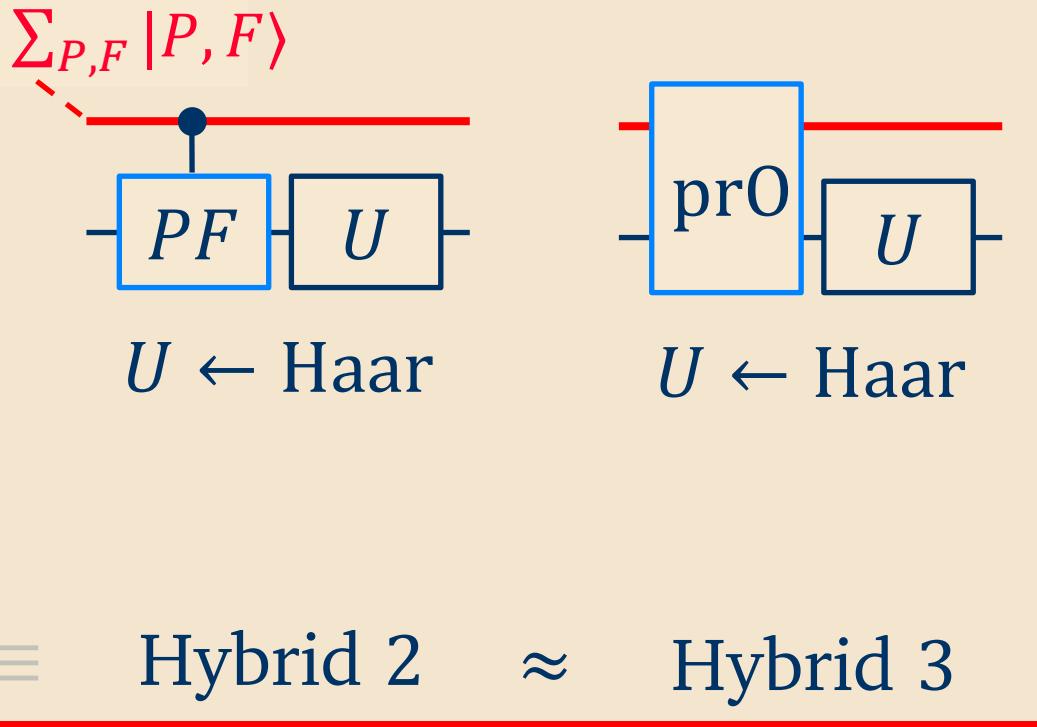


$U \leftarrow \text{Haar}$

$$P \leftarrow S_N$$

$$F \leftarrow \{\pm 1\}^N$$

Hybrid 0  $\equiv$  Hybrid 1



**Step 3:** Key idea: analyze ctl-PF in a different basis.

Let's see how this works...

$$(1) \text{ ctl-}PF: \quad |x\rangle \otimes |P, F\rangle \mapsto (-1)^{F(x)} |P(x)\rangle \otimes |P, F\rangle$$

$$(1) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto (-1)^{F(x)} |P(x)\rangle \otimes |P, F\rangle$$

$$(2) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto \sum_y |y\rangle \otimes (-1)^{F(x)} \cdot \delta_{P(x)=y} |P, F\rangle$$

$$(1) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto (-1)^{F(x)} |P(x)\rangle \otimes |P, F\rangle$$

$$(2) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto \sum_y |y\rangle \otimes (-1)^{F(x)} \cdot \delta_{P(x)=y} |P, F\rangle$$

**Definition:** for  $D = \{(x_1, y_1), \dots, (x_t, y_t)\}$ ,

$$|\Phi_D\rangle := \sum_{P,F} (-1)^{F(x_1) + \dots + F(x_t)} \cdot \delta_{P(x_1)=y_1} \dots \delta_{P(x_t)=y_t} |P, F\rangle$$

$$(1) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto (-1)^{F(x)} |P(x)\rangle \otimes |P, F\rangle$$

$$(2) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto \sum_y |y\rangle \otimes (-1)^{F(x)} \cdot \delta_{P(x)=y} |P, F\rangle$$

**Definition:** for  $D = \{(x_1, y_1), \dots, (x_t, y_t)\}$ ,

$$|\Phi_D\rangle := \sum_{P,F} (-1)^{F(x_1) + \dots + F(x_t)} \cdot \delta_{P(x_1)=y_1} \dots \delta_{P(x_t)=y_t} |P, F\rangle$$

$$\text{ctl-}PF: |x\rangle \otimes |\Phi_D\rangle \mapsto \sum_y |y\rangle \otimes |\Phi_{D \cup \{(x,y)\}}\rangle$$

$$(1) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto (-1)^{F(x)} |P(x)\rangle \otimes |P, F\rangle$$

$$(2) \text{ ctl-}PF: |x\rangle \otimes |P, F\rangle \mapsto \sum_y |y\rangle \otimes (-1)^{F(x)} \cdot \delta_{P(x)=y} |P, F\rangle$$

**Definition:** for  $D = \{(x_1, y_1), \dots, (x_t, y_t)\}$ ,

$$|\Phi_D\rangle := \sum_{P, F} (-1)^{F(x_1) + \dots + F(x_t)} \cdot \delta_{P(x_1)=y_1} \dots \delta_{P(x_t)=y_t} |P, F\rangle$$

$$\text{ctl-}PF: |x\rangle \otimes |\Phi_D\rangle \mapsto \sum_y |y\rangle \otimes |\Phi_{D \cup \{(x, y)\}}\rangle$$

$$\text{pr0: } |x\rangle \otimes |D\rangle \mapsto \sum_y |y\rangle \otimes |D \cup \{(x, y)\}\rangle$$



$U \leftarrow \text{Haar}$

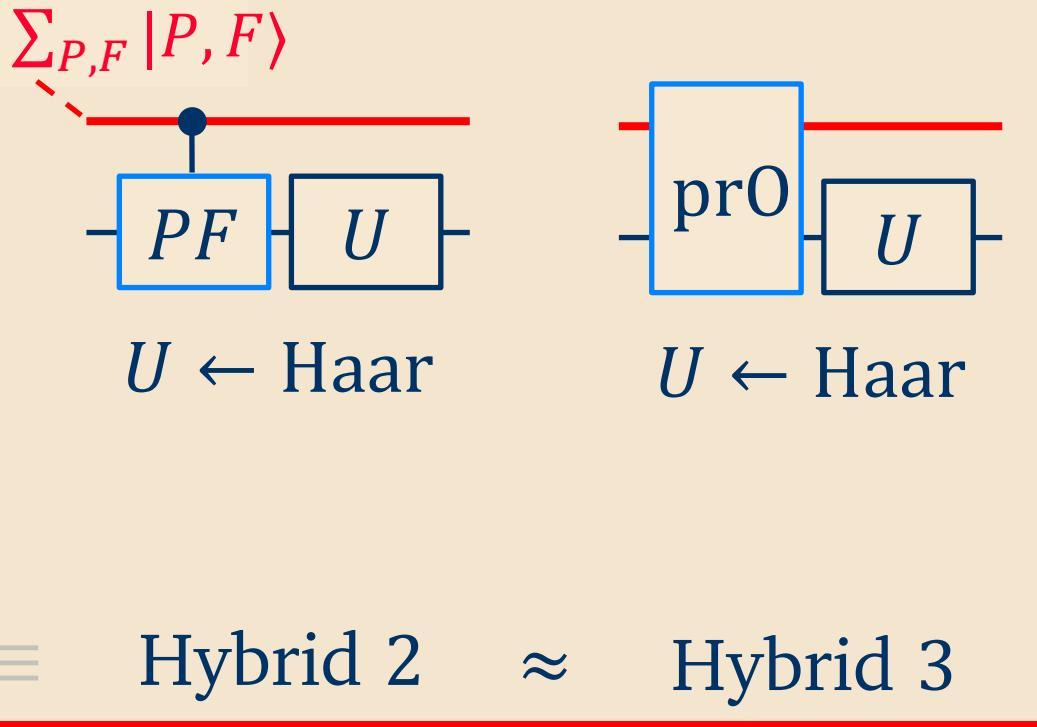


$U \leftarrow \text{Haar}$

$$P \leftarrow S_N$$

$$F \leftarrow \{\pm 1\}^N$$

Hybrid 0  $\equiv$  Hybrid 1

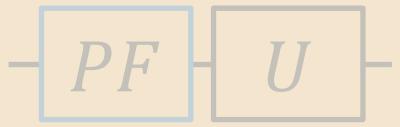


**Step 3:** For any  $D = \{(x_1, y_1), \dots, (x_t, y_t)\}$  can define  $|\Phi_D\rangle$  s.t.

$$\text{ctl-PF} \cdot |x\rangle |\Phi_D\rangle = \sum_y |y\rangle |\Phi_{D \cup \{(x,y)\}}\rangle$$



$U \leftarrow \text{Haar}$

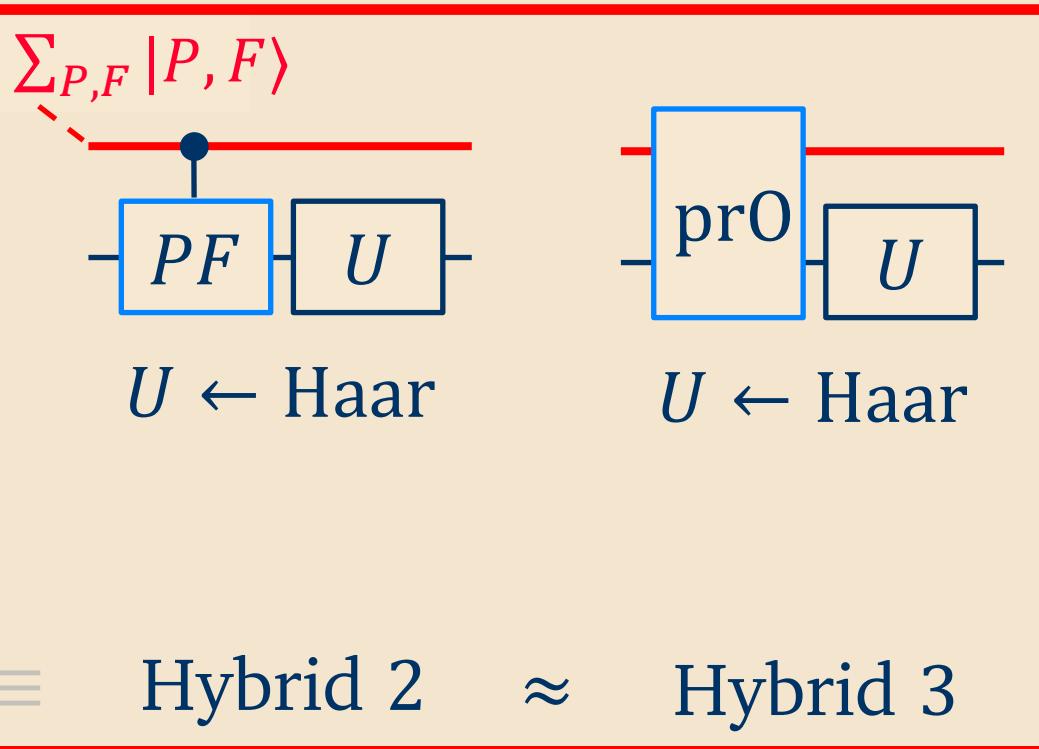


$U \leftarrow \text{Haar}$

$$P \leftarrow S_N$$

$$F \leftarrow \{\pm 1\}^N$$

Hybrid 0  $\equiv$  Hybrid 1



**Step 3:** For any  $D = \{(x_1, y_1), \dots, (x_t, y_t)\}$  can define  $|\Phi_D\rangle$  s.t.

$$\text{ctl-PF} \cdot |x\rangle |\Phi_D\rangle = \sum_y |y\rangle |\Phi_{D \cup \{(x,y)\}}\rangle$$

- **Intuition:** ctl-PF behaves like pr0, up to relabeling  $|\Phi_D\rangle \mapsto |D\rangle$



$U \leftarrow \text{Haar}$

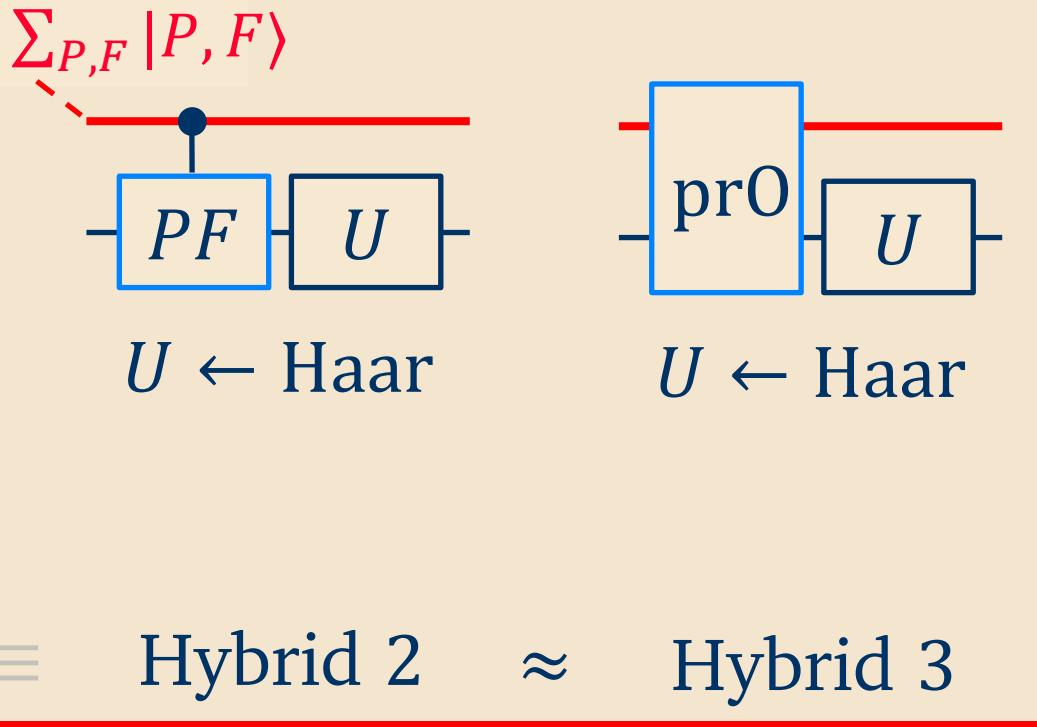


$U \leftarrow \text{Haar}$

$$P \leftarrow S_N$$

$$F \leftarrow \{\pm 1\}^N$$

Hybrid 0  $\equiv$  Hybrid 1



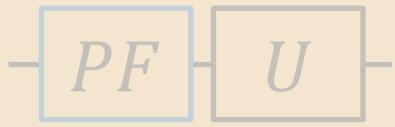
**Step 3:** For any  $D = \{(x_1, y_1), \dots, (x_t, y_t)\}$  can define  $|\Phi_D\rangle$  s.t.

$$\text{ctl-PF} \cdot |x\rangle |\Phi_D\rangle = \sum_y |y\rangle |\Phi_{D \cup \{(x,y)\}}\rangle$$

- **Intuition:** ctl-PF behaves like pr0, up to relabeling  $|\Phi_D\rangle \mapsto |D\rangle$
- Actually,  $\{|\Phi_D\rangle\}_D$  aren't fully orthogonal. But composing with  $U \leftarrow (2\text{-design})$  makes the “non-orthogonal” ones hard to find.



$U \leftarrow \text{Haar}$



$U \leftarrow \text{Haar}$

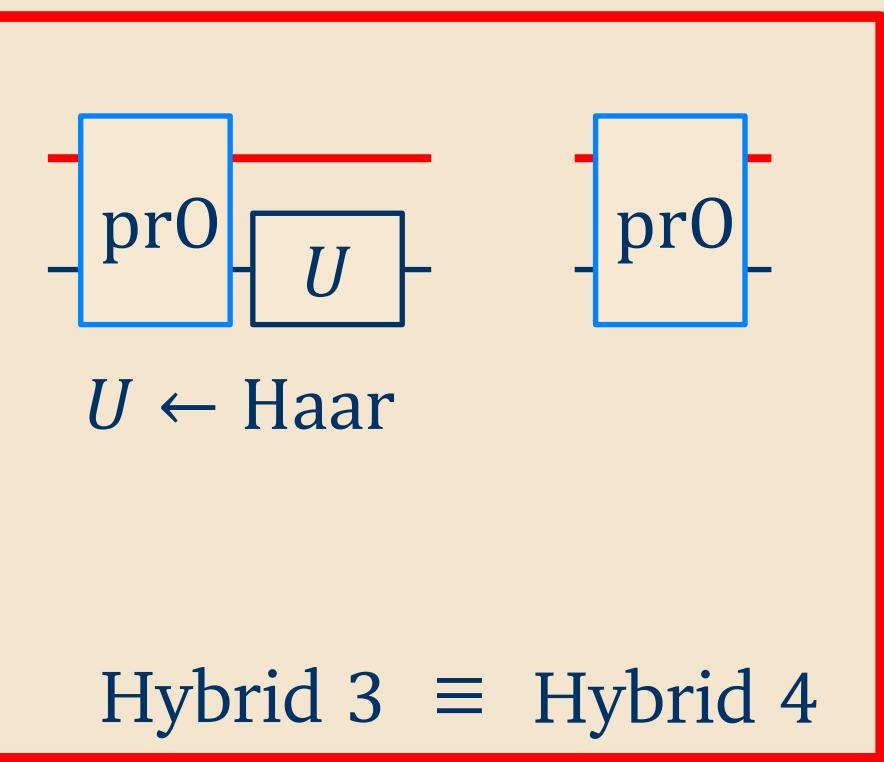
$P \leftarrow S_N$

$F \leftarrow \{\pm 1\}^N$

Hybrid 0  $\equiv$  Hybrid 1  $\equiv$  Hybrid 2



$U \leftarrow \text{Haar}$



Hybrid 3  $\equiv$  Hybrid 4



$U \leftarrow \text{Haar}$

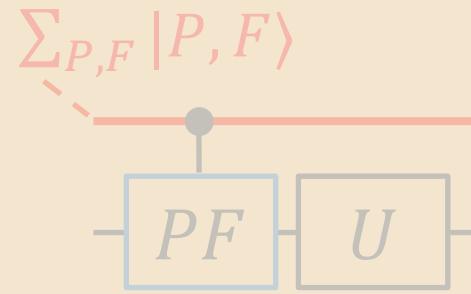


$U \leftarrow \text{Haar}$

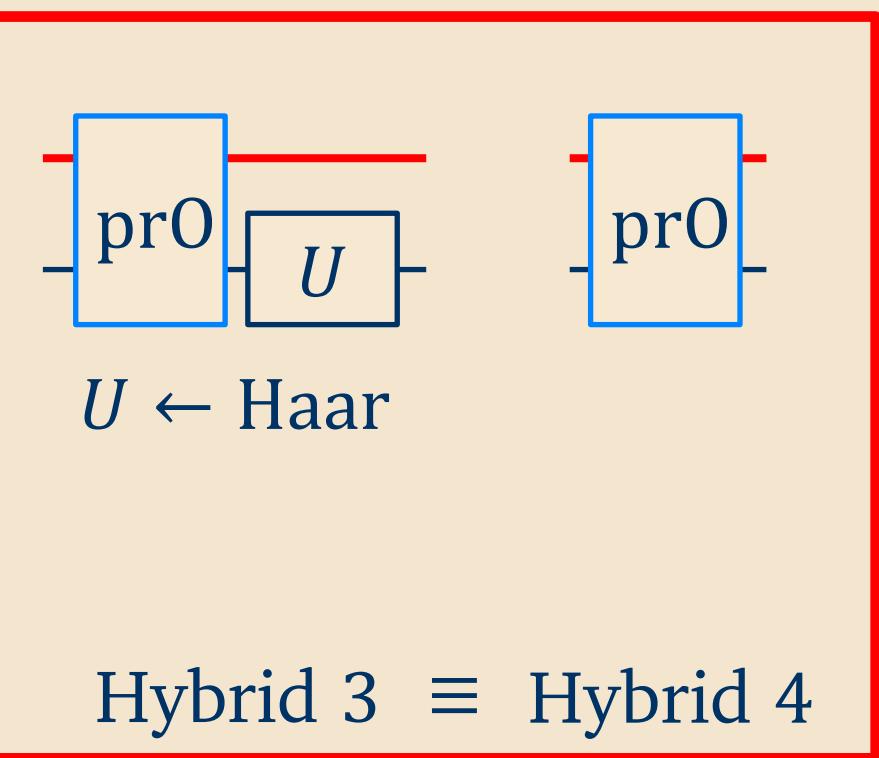
$$P \leftarrow S_N$$

$$F \leftarrow \{\pm 1\}^N$$

Hybrid 0  $\equiv$  Hybrid 1  $\equiv$  Hybrid 2



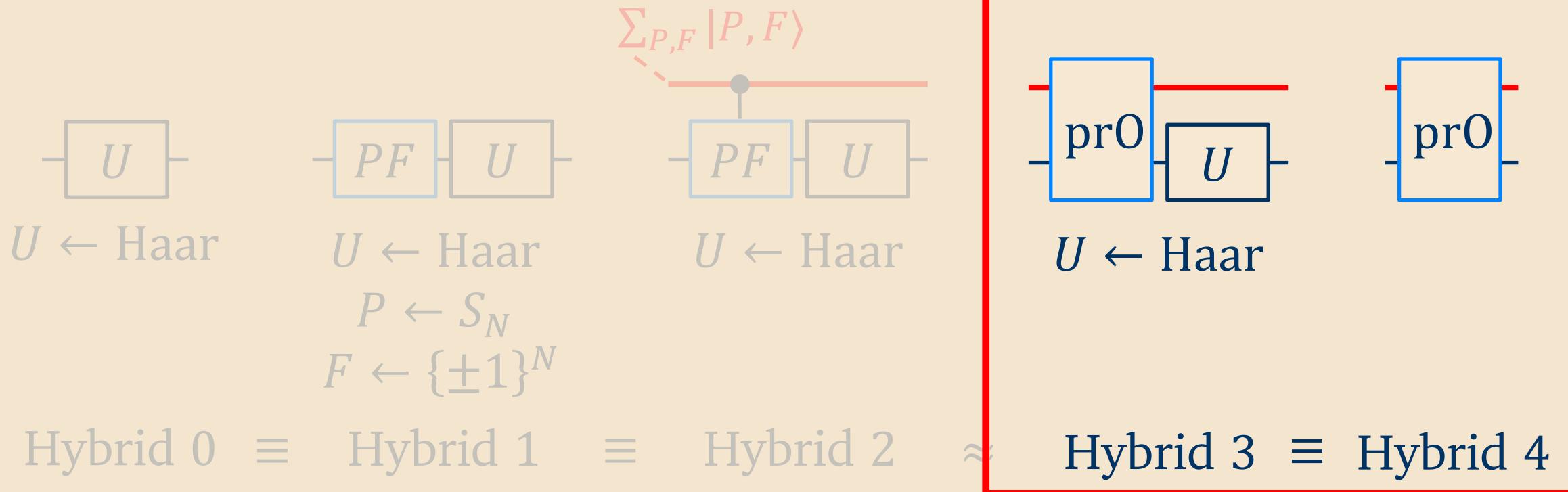
$U \leftarrow \text{Haar}$



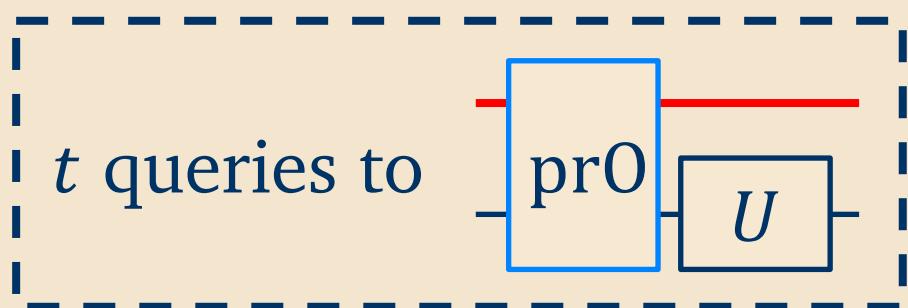
$U \leftarrow \text{Haar}$

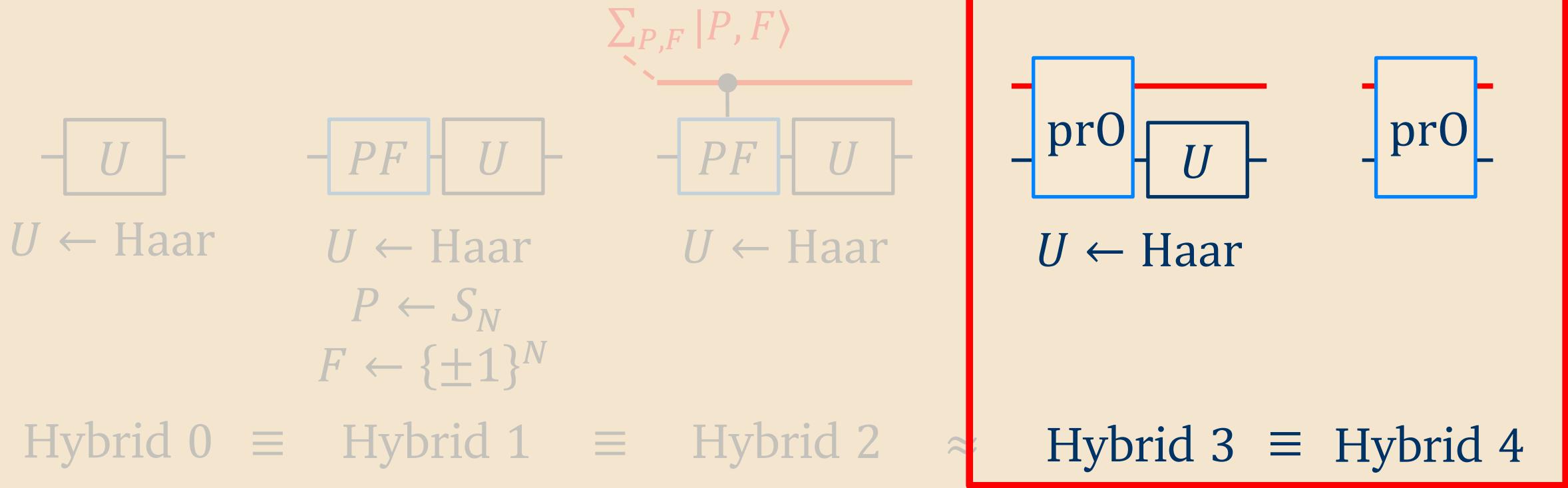
Hybrid 3  $\equiv$  Hybrid 4

**Step 4:** Turns out pr0 has the following unitary invariance property:

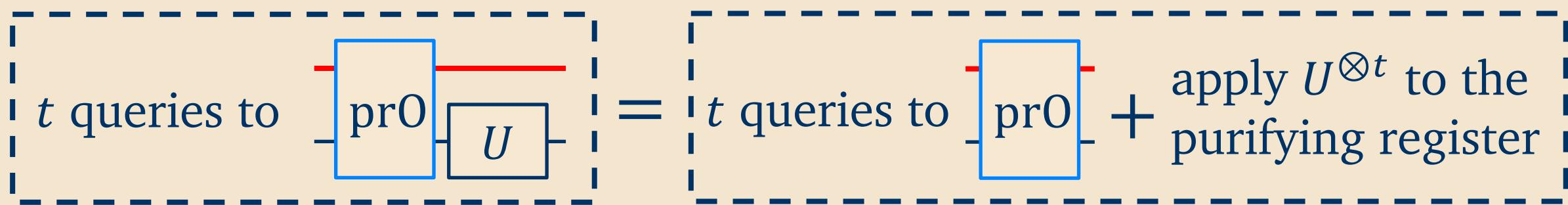


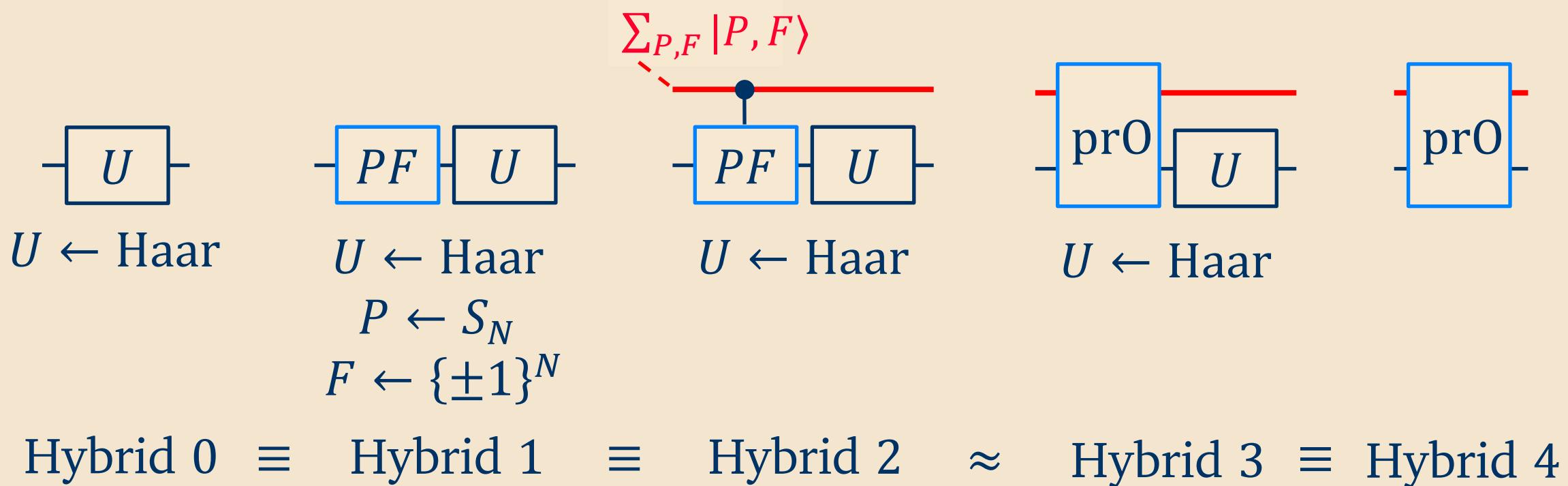
**Step 4:** Turns out  $\text{pr0}$  has the following unitary invariance property:

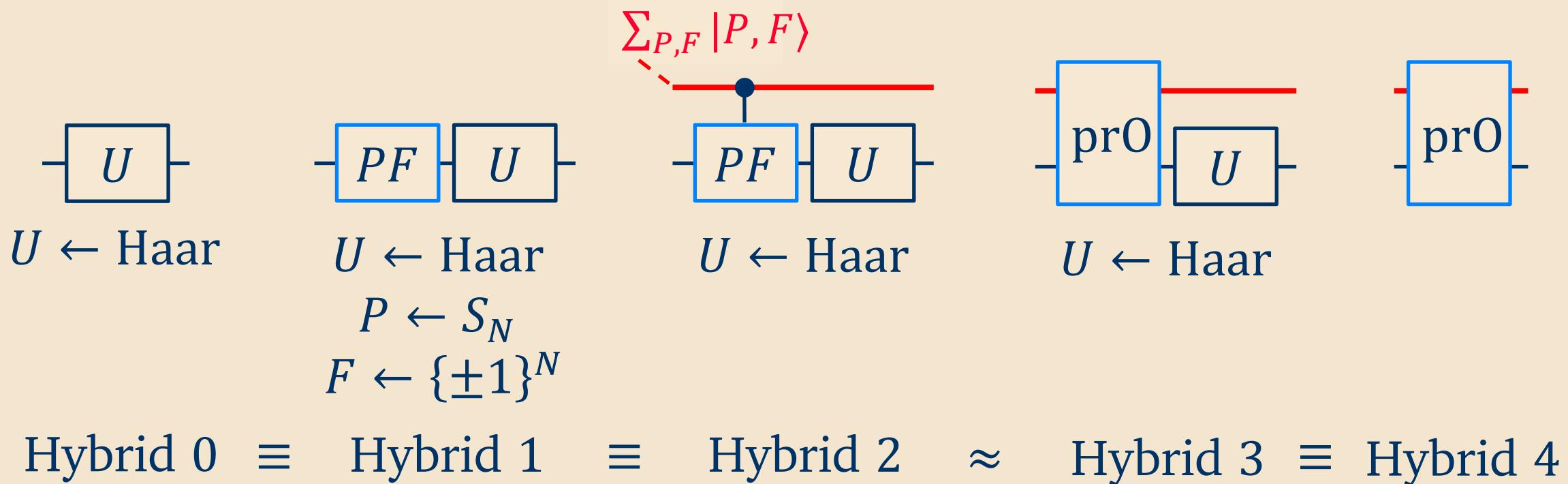




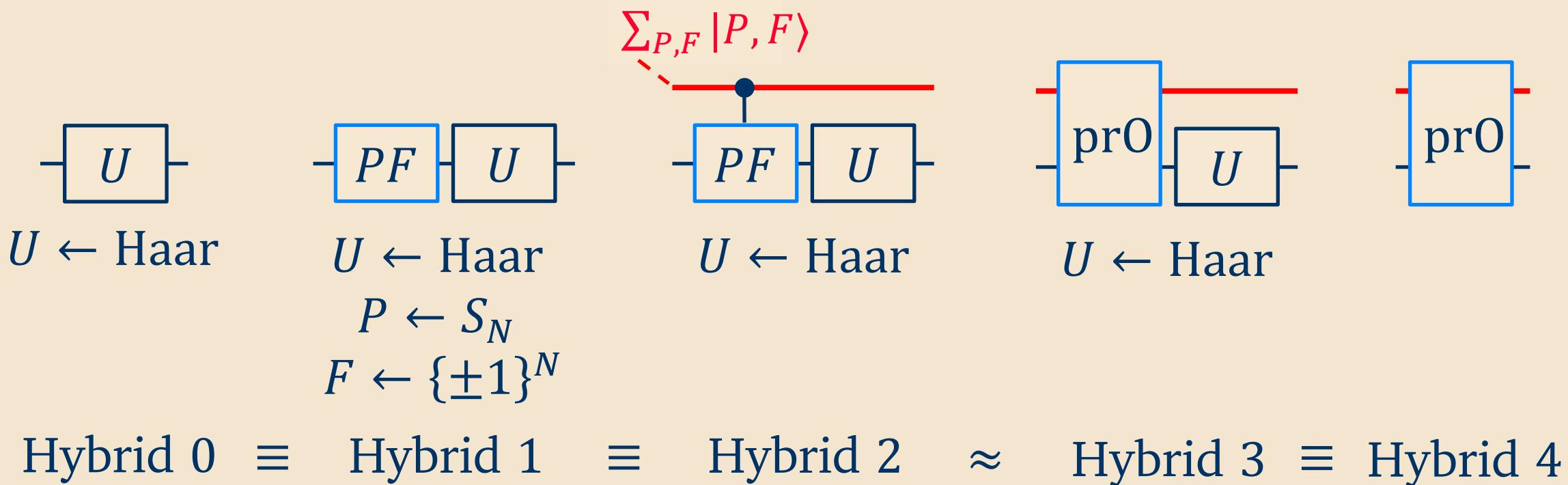
**Step 4:** Turns out  $\text{pr0}$  has the following unitary invariance property:





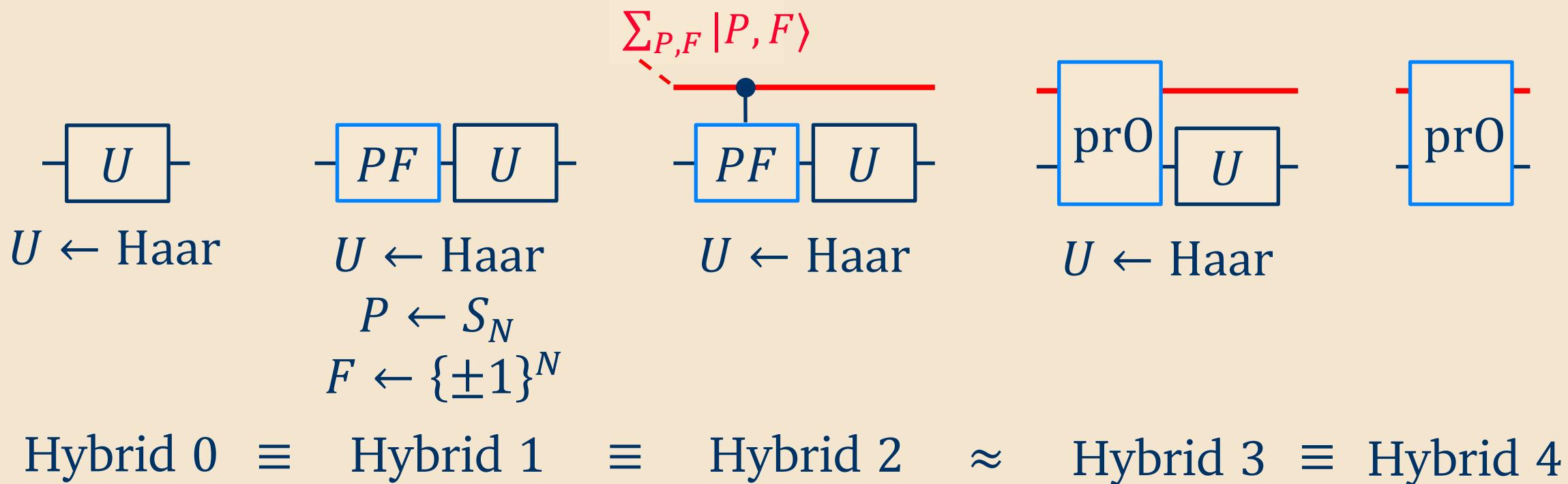


The PRU proof: Hybrid 2  $\approx$  Hybrid 4 holds for any **2-design**.



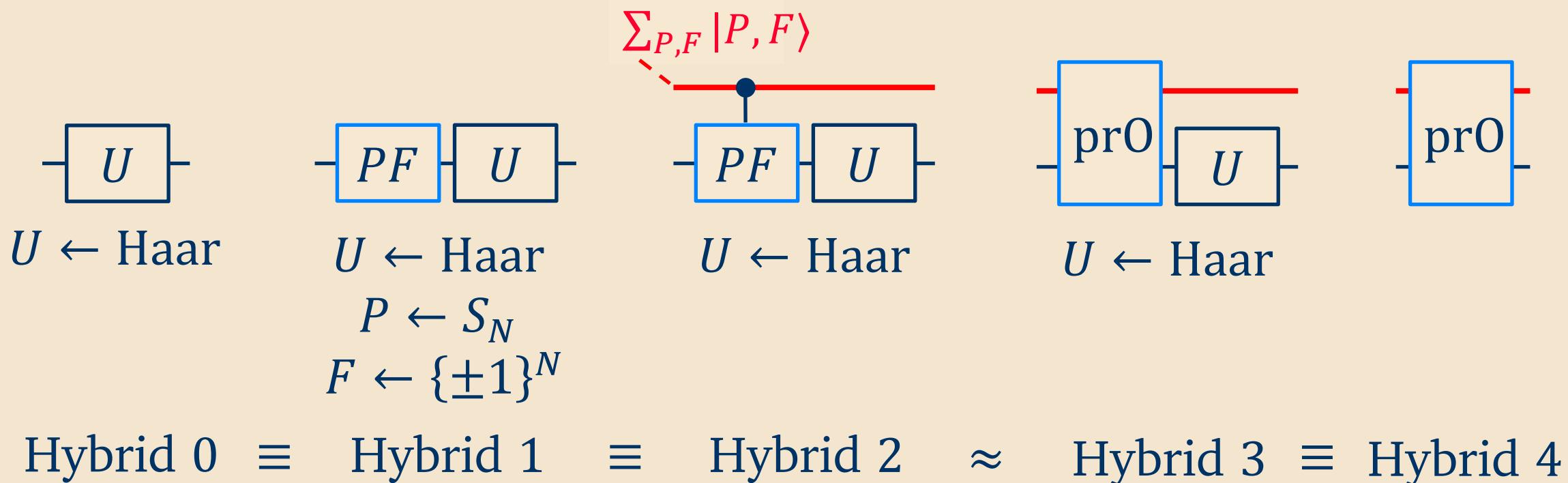
The PRU proof: Hybrid 2  $\approx$  Hybrid 4 holds for any **2-design**. So

$$PF \cdot (\text{Clifford C}) \approx PF \cdot (\text{Haar } U)$$



The PRU proof: Hybrid 2  $\approx$  Hybrid 4 holds for any **2-design**. So

$$PF \cdot (\text{Clifford C}) \approx PF \cdot (\text{Haar } U) \equiv \text{Haar } U$$



The PRU proof: Hybrid 2  $\approx$  Hybrid 4 holds for any **2-design**. So

$$PF \cdot (\text{Clifford C}) \approx PF \cdot (\text{Haar } U) \equiv \text{Haar } U$$

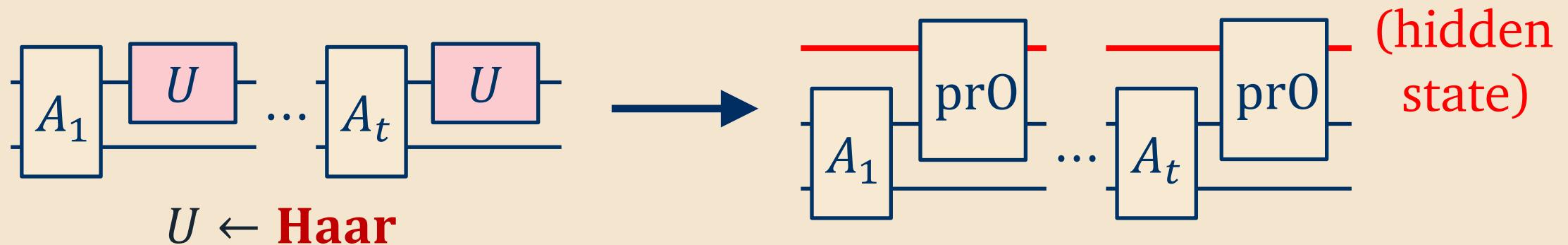
Finally, replace  $P$  and  $F$  with pseudorandom.

## Rest of this talk

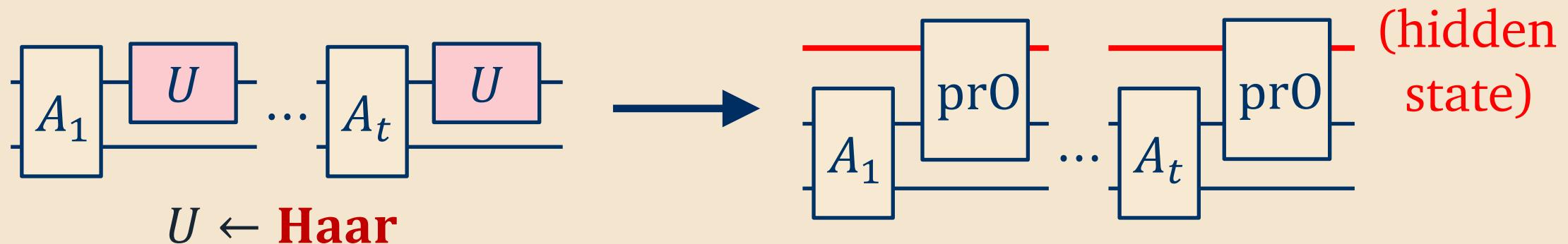
- Lazy sampling of a random function
- Lazy sampling of a random unitary
- Proving correctness + PRUs exist
- **Applications**

The path-recording oracle is a general-purpose tool for analyzing Haar-random unitaries.

The path-recording oracle is a general-purpose tool for analyzing Haar-random unitaries.

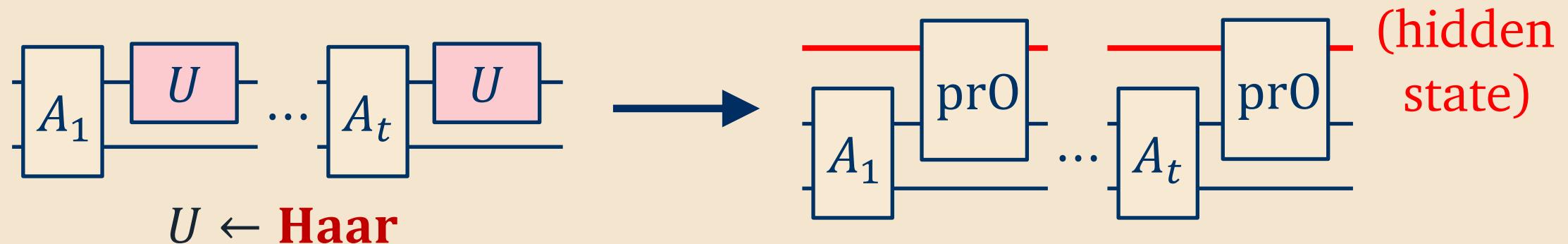


The path-recording oracle is a general-purpose tool for analyzing Haar-random unitaries.



Many statements about Haar-random  $U$  can be reduced to simple claims about this data structure

The path-recording oracle is a general-purpose tool for analyzing Haar-random unitaries.



Many statements about Haar-random  $U$  can be reduced to simple claims about this data structure

- [MH24]: elementary proof of [SHH24] gluing lemma
- [SMLBH25]: existence of low-depth PRUs

Let's see an example.

# Application: a simpler proof of the “gluing” lemma

# Application: a simpler proof of the “gluing” lemma

**Gluing lemma [SHH24]:**

If  $U_1$  and  $U_2$  overlap on  
 $|B| = \omega(\log n)$  qubits, then

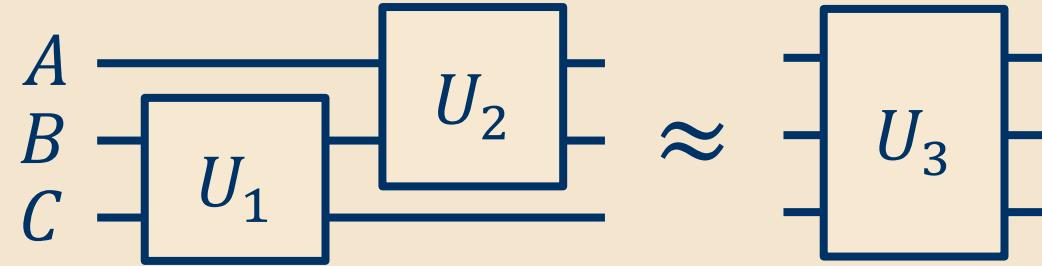
$$U_2 \cdot U_1 \approx U_3.$$

# Application: a simpler proof of the “gluing” lemma

**Gluing lemma [SHH24]:**

If  $U_1$  and  $U_2$  overlap on  $|B| = \omega(\log n)$  qubits, then

$$U_2 \cdot U_1 \approx U_3.$$



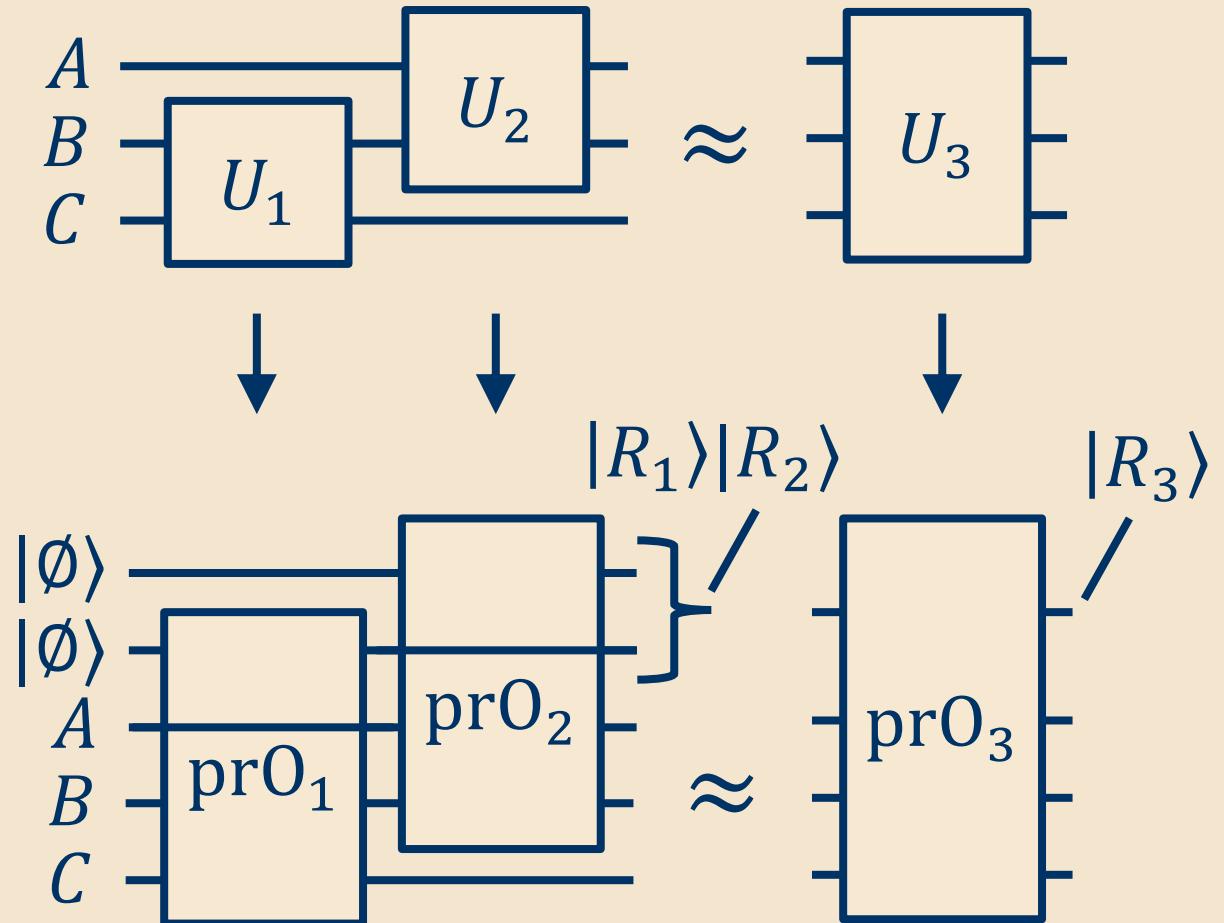
# Application: a simpler proof of the “gluing” lemma

**Gluing lemma [SHH24]:**

If  $U_1$  and  $U_2$  overlap on  $|B| = \omega(\log n)$  qubits, then

$$U_2 \cdot U_1 \approx U_3.$$

**New proof:** combinatorial claim about path-recording oracle.



# Future directions

# Future directions

1) Is a random quantum circuit a PRU?

# Future directions

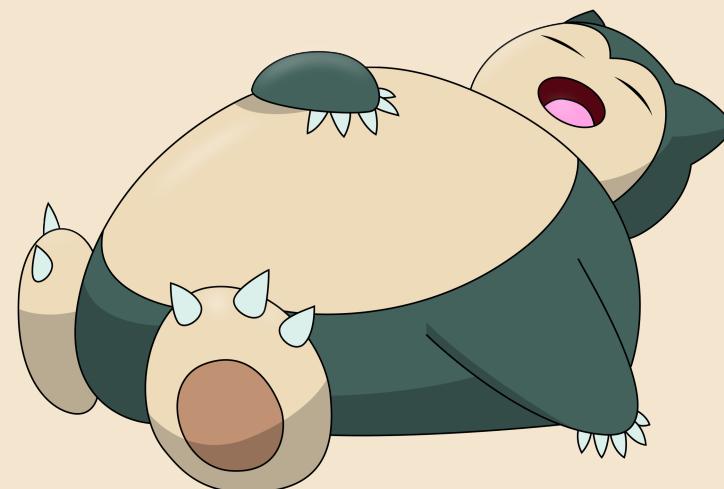
- 1) Is a random quantum circuit a PRU?
- 2) Unitary natural proof barrier?

# Future directions

- 1) Is a random quantum circuit a PRU?
- 2) Unitary natural proof barrier?
- 3) Cryptographic applications of PRUs?

# Future directions

- 1) Is a random quantum circuit a PRU?
- 2) Unitary natural proof barrier?
- 3) Cryptographic applications of PRUs?



Thanks!