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Haar-random unitaries show up everywhere:
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Challenge: 
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

…

exp(𝑛)

minimal circuit for 𝑈

This makes them impractical for most applications!
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function on 𝑛 bits is exponentially complex!
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There’s an analogous “problem” for functions: a random 
function on 𝑛 bits is exponentially complex!

1 𝑓(1)

2! 𝑓(2!)

2 𝑓(2)

⋮ ⋮

𝑥

𝑓(𝑥) PRF 𝑓

So in practice, we use pseudorandom functions (PRFs).

≈
random 𝑓

𝑥

𝑓(𝑥)

No efficient algorithm 
can tell the difference!
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Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random
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Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

𝑈 𝑈 𝑈
measure 𝑏

Pr[𝑏 = 1 ∣ 𝑈 ← Haar] ≈ Pr[𝑏 = 1 ∣ 𝑈 ← PRU]

For any efficient algorithm 𝐴:

Haar 𝑈 PRU 𝑈≈|𝜓⟩

𝑈|𝜓⟩

|𝜓⟩

𝑈|𝜓⟩
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particles in 
state 𝜓

particles in 
state 𝜓!

However, Quantum Church-Turing says this has to be efficient!
Consequence: many physics results now rely on the assumption 
that various physical processes are PRUs [KP23,YE23,EFLVY24]

size = poly(# of qubits)

Common practice: pretend this Haar-random

Application: modeling black hole dynamics
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But do PRUs exist?
(under crypto assumptions) 

This was left as an open problem by [JLS18].
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1) Many proposed constructions: 

[JLS18]

×QFT F ×QFT F

[MPSY24]

×P F × C

Clifford

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

𝑈 𝑈 𝑈
𝑈

can analyze 
this: 𝑈

𝑈

but not
this:

…

Prior work
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1) Need to understand behavior of an arbitrary algorithm:

2) Mathematics of random unitaries is complicated.

• Weingarten calculus
• free probability
• ???

𝑈 𝑈 𝑈

Why has it been hard to prove PRUs exist?
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[MH24]: PRUs exist 
(if one-way functions exist)
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New technique: the path-recording oracle
• efficient simulation of Haar-random unitaries
• only uses basic quantum info (purification)

Same construction 
as [MPSY24]:

×P F × C

[MH24]: PRUs exist 
(if one-way functions exist)
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Our second result
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In the [JLS18] PRU definition, the distinguisher 
only queries 𝑈. What if it queries 𝑼 and 𝑼!?

Our second result

But for this talk, I’ll focus on the weakest notion.

Result #2: “Strong” PRUs exist 
(assuming OWFs).

×P F × 𝐶"𝐶# ×Construction: 

[SMLBH25]: same proof extends to 𝑈" and 𝑈∗.
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Want to show: 
For all efficient algorithms 𝐴,

Cartoon overview of our proof
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Cartoon overview of our proof

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐑𝐔

Proof strategy: show that both 
are indistinguishable from

≈

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

most of the proof
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Rest of this talk

• Lazy sampling of a random function

• Lazy sampling of a random unitary

• Proving correctness + PRUs exist

• Applications
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Lazy sampling of a random unitary
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Our solution: the path-recording oracle
We use entanglement with a hidden data structure that 
succinctly “remembers” enough information to spoof a 
Haar-random 𝑈.

Goal: efficiently implement a quantum algorithm that 
queries a Haar-random unitary 𝑈.

A priori, not clear how to do this!
Classically, the data structure 
is the set of (𝑥, 𝑓(𝑥)) tuples.

Lazy sampling of a random unitary

Inspiration: compressed oracle technique [Zhandry19]
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Up next:
“Derive” the path-recording oracle 

through simple examples 



95

Example 1: one query on |0⟩



96

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)



97

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the 
“maximally mixed” state



98

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the 
“maximally mixed” state

How to “spoof” it:
E
&

𝑦 % 𝑦 ' (S register is hidden)



99

Example 1: one query on |0⟩

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)
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Example 1: one query on |0⟩

How to “spoof” it:
E
&

𝑦 % 𝑦 '

Idea 1: entanglement with a hidden register 𝑆 can simulate 
one query to 𝑈.

Fact: this is also the 
maximally mixed state.

0 % 𝑈 0 %𝑈The algorithm:

(𝑈 ← Haar)

Fact: this is the 
“maximally mixed” state

(S register is hidden)
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Example 2: two queries on |0⟩

How to “spoof” it:
E
&!,&"

𝑦" % 𝑦$ ( 𝑦", 𝑦$ '

Idea 2: use an unordered set to spoof “swap-symmetry”.

0 % 𝑈 0 %𝑈

0 ( 𝑈 0 (𝑈

The algorithm:

(𝑈 ← Haar)

(S register is hidden)

Fact: this is the 
maximally mixed 
“symmetric” state

also symmetric! 
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The algorithm:

(𝑈 ← Haar)
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Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 ( 𝑈 0 (𝑈

1 * 𝑈 1 *𝑈

The algorithm:

(𝑈 ← Haar)
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Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 ( 𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)
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E
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0 % 𝑈 0 %𝑈

0 ( 𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
E

&!,&",&#

𝑦" % 𝑦$ ( 𝑦+ * (0, 𝑦"), 0, 𝑦$ , (1, 𝑦+) '
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Example 3: mixed queries

symmetric
0 % 𝑈 0 %𝑈

0 ( 𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)

How to “spoof” it:
E

&!,&",&#

𝑦" % 𝑦$ ( 𝑦+ * (0, 𝑦"), 0, 𝑦$ , (1, 𝑦+) '



114

Example 3: mixed queries

How to “spoof” it:
E

&!,&",&#

𝑦" % 𝑦$ ( 𝑦+ * (0, 𝑦"), 0, 𝑦$ , (1, 𝑦+) '

symmetric

Idea 3: use ordered pairs to simulate symmetry “structure”

0 % 𝑈 0 %𝑈

0 ( 𝑈 0 (𝑈

1 * 𝑈 1 *𝑈
not symmetric

The algorithm:

(𝑈 ← Haar)
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We can generate all of these examples by simply 
replacing each query to 𝑈 with this:



116

We can generate all of these examples by simply 
replacing each query to 𝑈 with this:

path-
recording 

oracle

𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

E
&
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path-
recording 

oracle

𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

We can generate all of these examples by simply 
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:

E
&
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We can generate all of these examples by simply 
replacing each query to 𝑈 with this:

Note the similarity to classical lazy sampling:

classical 
lazy 

sampling

(random 𝑦)𝑥

𝐷

𝑦

𝐷 ∪ { 𝑥, 𝑦 }

path-
recording 

oracle

𝑥 $

𝐷 %

𝑦 $

𝐷 ∪ { 𝑥, 𝑦 } %

E
&
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Rest of this talk

• Lazy sampling of a random function

• Lazy sampling of a random unitary

• Proving correctness + PRUs exist

• Applications
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≈

Recall our cartoon proof overview
Want to show: 
For all efficient adversaries 𝐴,

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐅𝐂

Proof strategy: show that both 
are indistinguishable from

≈

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈



𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐅𝐂
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≈

Recall our cartoon proof overview
Want to show: 
For all efficient adversaries 𝐴,

Proof strategy: show that both 
are indistinguishable from

≈

Up next: prove this

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈
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≈

Recall our cartoon proof overview
Want to show: 
For all efficient adversaries 𝐴,

Proof strategy: show that both 
are indistinguishable fromUp next: prove this

𝐴" ⋯ 𝐴#
𝑈 𝑈
𝑈 ← 𝐇𝐚𝐚𝐫

𝐴" ⋯ 𝐴#
prO prO

(hidden
state)≈

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐏𝐅𝐂 ≈ The same proof 
will show this!
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Hybrid 0

𝑈
𝑈 ← Haar
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

Step 1: insert random permutation 𝑃 random ±1 diagonal 𝐹.

𝑃 =
1

1
1

𝐹 =
+1

−1
−1
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩

Step 2: replace random 𝑃, 𝐹 with a purification.
• Initialize external/ancilla system to ∑-,. |𝑃, 𝐹⟩

• On each query, apply 𝑃 ⋅ 𝐹 controlled on |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: Key idea: analyze ctl-PF in a different basis.

Let’s see how this works…
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(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹
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(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *( |𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹
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(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *( |𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

Φ+ ≔8
),&

−1 & '! -⋯-& '" ⋅ 𝛿) '! *(!⋯𝛿) '" *(" |𝑃, 𝐹⟩

Definition: for 𝐷 = 𝑥#, 𝑦# , … , 𝑥/ , 𝑦/ ,
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𝑥 ⊗ Φ+ ↦8
(

𝑦 ⊗ Φ+∪{ ',( }ctl-𝑃𝐹:

(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *( |𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

Φ+ ≔8
),&

−1 & '! -⋯-& '" ⋅ 𝛿) '! *(!⋯𝛿) '" *(" |𝑃, 𝐹⟩

Definition: for 𝐷 = 𝑥#, 𝑦# , … , 𝑥/ , 𝑦/ ,



134

𝑥 ⊗ Φ+ ↦8
(

𝑦 ⊗ Φ+∪{ ',( }ctl-𝑃𝐹:

(2) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦8
(

𝑦 ⊗ −1 & ' ⋅ 𝛿) ' *( |𝑃, 𝐹⟩

(1) ctl-𝑃𝐹: 𝑥 ⊗ 𝑃, 𝐹 ↦ −1 & ' 𝑃(𝑥) ⊗ 𝑃, 𝐹

Φ+ ≔8
),&

−1 & '! -⋯-& '" ⋅ 𝛿) '! *(!⋯𝛿) '" *(" |𝑃, 𝐹⟩

Definition: for 𝐷 = 𝑥#, 𝑦# , … , 𝑥/ , 𝑦/ ,

prO: 𝑥 ⊗ 𝐷 ↦8
(

𝑦 ⊗ 𝐷 ∪ {(𝑥, 𝑦)}
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝐷 = { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } can define |Φ/⟩ s.t.
ctl-PF ⋅ 𝑥 Φ/ = ∑& 𝑦 |Φ/∪{ 2,& }⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝐷 = { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } can define |Φ/⟩ s.t.
ctl-PF ⋅ 𝑥 Φ/ = ∑& 𝑦 |Φ/∪{ 2,& }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ/ ↦ |𝐷⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝐷 = { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } can define |Φ/⟩ s.t.
ctl-PF ⋅ 𝑥 Φ/ = ∑& 𝑦 |Φ/∪{ 2,& }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ/ ↦ |𝐷⟩
• Actually, Φ/ / aren’t fully orthogonal. But composing with 
𝑈 ← (2-design) makes the “non-orthogonal” ones hard to find.
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following unitary invariance property:
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

𝑈prO𝑡 queries to 

Step 4: Turns out prO has the following unitary invariance property:
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

𝑈prO =𝑡 queries to prO𝑡 queries to apply 𝑈⊗# to the 
purifying register+

Step 4: Turns out prO has the following unitary invariance property:
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design. 
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design. So 
𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design. So 
𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆,
𝐹 ← ±1 ,

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

The PRU proof: Hybrid 2 ≈ Hybrid 4 holds for any 𝟐-design. So 
𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈

Finally, replace 𝑃 and 𝐹 with pseudorandom.
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Rest of this talk

• Lazy sampling of a random function

• Lazy sampling of a random unitary

• Proving correctness + PRUs exist

• Applications
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The path-recording oracle is a general-purpose tool for 
analyzing Haar-random unitaries.
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𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴" ⋯ 𝐴#

prO prO
(hidden

state)

The path-recording oracle is a general-purpose tool for 
analyzing Haar-random unitaries.
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The path-recording oracle is a general-purpose tool for 
analyzing Haar-random unitaries.

𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴" ⋯ 𝐴#

prO prO
(hidden

state)

Many statements about Haar-random 𝑈 can be reduced to 
simple claims about this data structure
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𝐴" ⋯ 𝐴#
𝑈 𝑈

𝑈 ← 𝐇𝐚𝐚𝐫
𝐴" ⋯ 𝐴#

prO prO
(hidden

state)

Many statements about Haar-random 𝑈 can be reduced to 
simple claims about this data structure

• [MH24]: elementary proof of [SHH24] gluing lemma 
• [SMLBH25]: existence of low-depth PRUs

The path-recording oracle is a general-purpose tool for 
analyzing Haar-random unitaries.
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Let’s see an example.
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Application: a simpler proof of the “gluing” lemma
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Gluing lemma [SHH24]: 
If 𝑈" and 𝑈$ overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈$ ⋅ 𝑈" ≈ 𝑈+.

Application: a simpler proof of the “gluing” lemma
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𝑈"
≈

𝐶

𝐴
𝐵 𝑈$ 𝑈+

Gluing lemma [SHH24]: 
If 𝑈" and 𝑈$ overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈$ ⋅ 𝑈" ≈ 𝑈+.

Application: a simpler proof of the “gluing” lemma
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𝑈"
≈

𝐶

𝐴
𝐵 𝑈$ 𝑈+

𝐶

𝐴
𝐵 prO"

prO$ prO+

|∅⟩
|∅⟩

𝑅" |𝑅$⟩ 𝑅+

Gluing lemma [SHH24]: 
If 𝑈" and 𝑈$ overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈$ ⋅ 𝑈" ≈ 𝑈+.

New proof: combinatorial 
claim about path-recording 
oracle. ≈

Application: a simpler proof of the “gluing” lemma
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Future directions
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Future directions

1) Is a random quantum circuit a PRU?
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Future directions

1) Is a random quantum circuit a PRU?

2) Unitary natural proof barrier? 



160

Future directions

1) Is a random quantum circuit a PRU?

2) Unitary natural proof barrier? 

3) Cryptographic applications of PRUs?
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Future directions

1) Is a random quantum circuit a PRU?

2) Unitary natural proof barrier? 

3) Cryptographic applications of PRUs?

Thanks!


