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Haar-random unitaries are exponentially complex

minimal circuit for U
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This makes them impractical for most applications!
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There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).
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Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random
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Application: modeling black hole dynamics

Common practice: pretend this Haar-random
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particles in ‘:.
state [)

Y
size = poly(# of qubits)

However, Quantum Church-Turing says this has to be efficient!

Consequence: many physics results now rely on the assumption
that various physical processes are PRUs [KP23,YE23,EFIVY24]
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But do PRUs exist?
(under crypto assumptions)

This was left as an open problem by [JLS18].



Prior work



Prior work

1) Many proposed constructions:




Prior work

1) Many proposed constructions:

rrjx(_F . @) ¥

[JLS18]




Prior work

1) Many proposed constructions: Clifford
\

rr)x(_r ] (eerfx(r ) | (e (X ]

[JLS18] [MPSY24]




Prior work

1) Many proposed constructions: Clifford
\\
@) @) | @D
[JLS18] [MPSY24]

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]




Prior work

1) Many proposed constructions:

rrjx(_F . @) ¥

[JLS18]

Clifford
\

SIS

[MPSY24]

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

By

can analyze

U

this:

=1 U

||




Prior work

1) Many proposed constructions: Clifford
\
arrfx k] {arx (e ) | (e (e (e ]
|[JLS18] [MPSY24]
2) Proofs of non-adaptive security [MPSY24, CBBDHX24]
WUy i
can analyze 1 | but not gy =g v E=
this: gl this: = :I i ':
—u [ U




Why has it been hard to prove PRUs exist?



Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:

SEm U

i

U

U

4 W
!

.1




Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:

SEm U

i

2) Mathematics of random unitaries is complicated.

U

U

4 W
!

.1



Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:
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2) Mathematics of random unitaries is complicated.
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Theorem 3.1. Let k be a positive integer. For any permutation o € 8, and
nonnegative integer g, we have

(k—1)%P(0, |ol) < #P(a,l0] +2g) < (6k”?)%P(a, |ol).

* Weingarten calculus

o free prOb ability Theorem 3.2. Forany o € Sy and d > V6k’/*,
1 (—=1)leldk el wgY (o, d) 1
777 5= oo 18

d2 a2

In addition, the Lh.s inequality is valid for any d > k.
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Same construction
[MH24]: PRUs exist as [MPSY24]:

(if one-way functions exist) [ P ]X R ]X[ C ]

New technique: the path-recording oracle
e efficient simulation of Haar-random unitaries

 only uses basic quantum info (purification)
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Our second result

In the [JLS18] PRU definition, the distinguisher
only queries U. What if it queries U and U™?

Result #2: “Strong” PRUs exist
(assuming OWFs).

Construction: [C1 ]x[ P ]x[ F ]x[ Cz]

[SMLBH25]: same proof extends to U! and U*.

But for this talk, I'll focus on the weakest notion.
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Cartoon overview of our proof

Want to show:

For all efficient algorithms A,

U <« Haar

|4

e

Proof strategy: show that both
are indistinguishable from

] L _ (hidden
prO[ 1 |prO| state)
-+ | A,

\

(path-recording oracle)
maintains a data structure
that “lazily samples” a Haar-
random unitary

14,




most of the proof

_ (hidden
state)
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Goal: efficiently implement an algorithm that queries a
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Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that

queries a Haar-random unitary U. .
Classically, the data structure

A priori, not clear how to do this! is the set of (x, f(x)) tuples.
/
Our solution: the path-recording oracle / g@ 2
o

We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random U.

Inspiration: compressed oracle technique [Zhandry19]
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Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), U0y, «

“maximally mixed” state

(U < Haar)

Fact: this is also the
How to “spoot” it: / maximally mixed state.

Z'y alyds (S register is hidden)
y

Idea 1: entanglement with a hidden register S can simulate
one query to U.
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The algorithm:

(U < Haar)

How to “spoot” it:

|O>A U
|O>B U

0)4

0)5

Fact: this is the
maximally mixed
“symmetric” state

> 1yaly)sl s, v2))s

Y1,Y2

(S register is hidden)
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Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state

also symmetric!

> 1yaly)sl s, v2))s

Y1,Y2

How to “spoot” it:

(S register is hidden)

Idea 2: use an unordered set to spoof “swap-symmetry”.
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(14 Y 24,
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Example 3: mixed queries

The algorithm: |q), U|0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C)(

How to “spoot” it: Y\ pg
w y1)aly2)81y3)cI1(0,¥1), (0,¥2), (1, ¥3)1)s
Y1,Y2,Y3

Idea 3: use ordered pairs to simulate symmetry “structure”
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We can generate all of these examples by simply
replacing each query to U with this:

|X>A — path—
recording
ID)s < oracle

—'§E|)0A

IR |D U {(X, y)}>5

Note the similarity to classical lazy sampling:

x = classical
lazy
D — sampling

— Yy (random y)

— DU {(X,}’)}
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Recall our cartoon proof overview

Want to show:

For all efficient adversaries A,

U < Haar

:A1 u _'":At_
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U < PFC
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Proof strategy: show that both
are indistinguishable from
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Up next: prove this

_ (hidden
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Up next: prove this

_ (hidden
state)

U « PFC The same proof
HUuF {1, HUF will show this!
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1 U I PF R U

U <« Haar U <« Haar

P« Sy
F « {£1}V

Hybrid 0 = Hybrid 1

Step 1: insert random permutation P random +1 diagonal F.

o) e

125



PF R U

U <« Haar

P« Sy
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Hybrid 1 = Hybrid 2
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PF R U

U <« Haar

P« Sy
F<{x1}"

Hybrid 1 = Hybrid 2

Step 2: replace random P, F with a purification.

- Initialize external/ancilla system to }.p ¢ | P, F)

* On each query, apply P - F controlled on |P, F)
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Hybrid 2 =~ Hybrid 3

Step 3: Key idea: analyze ctl-PF in a different basis.

Let’s see how this works...
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) ctlPF: )@ IPF) = ) 19) @ (~1) D 60y [P, F)
y

Definition: for D = {(x{,v{), ..., (X¢, V¢) 1,

|Pp) = z(—l)F(x1)+"'+F(xt) * Op(xy)=y, *** OP(xp)=y, |P)F)
P,F
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) ctlPF: )@ IPF) = ) 19) @ (~1) D 60y [P, F)
y

Definition: for D = {(x{,v{), ..., (X¢, V¢) 1,

|CDD> = 2(_1)F(x1)+.”+F(xt) . 6P(X1)=y1 o 6P(xt)=yt |P’ F)
P,F
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y

58




(1) ctl-PF: 1x) ® |P,F) » (—1)F®|P(x)) ® |P, F)

) ctlPF: )@ IPF) = ) 19) @ (~1) D 60y [P, F)
y

Definition: for D = {(x{,v{), ..., (X¢, V¢) 1,

|CDD> — 2(_1)F(x1)+---+F(xt) ' 5P(x1)=y1 5P(xt)=yt |P:F>
P,F

ctl-PF: |x) ® |®,) & Zly> ® |Ppugxy)
y

pro: 1) @ D) = ) 1) ® 1D U {(x, 7))
y
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Hybrid 2 =~ Hybrid 3

Step 3: For any D = {(x4,y1), ..., (X, ¥;)} can define |®}) s.t.
ctl-PF - |x)|Pp) = Zy|Y>|CDDU{(x,y)}>
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Step 3: For any D = {(x4,y1), ..., (X, ¥;)} can define |®}) s.t.
ctl-PF - |x)|Pp) = Zy|Y>|CDDU{(x,y)}>
* Intuition: ctl-PF behaves like prO, up to relabeling |®,) - |D)
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Hybrid 2 =~ Hybrid 3

Step 3: For any D = {(x4,y1), ..., (X, ¥;)} can define |®}) s.t.
ctl-PF - |x)|Pp) = Zy|Y>|CDDU{(x,y)}>

* Intuition: ctl-PF behaves like prO, up to relabeling |®,) - |D)

o Actually, {|®p)}p aren’t fully orthogonal. But composing with
U < (2-design) makes the “non-orthogonal” ones hard to find.
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Hybrid 3 = Hybrid 4

Step 4: Turns out prO has the following unitary invariance property:
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Hybrid 3 = Hybrid 4

1 [ . apply U®! to the
- ! purifying register




1 i ro - I‘O-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F « {1}V

Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4
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1 i ro - I‘O-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F « {1}V

Hybrid 0 = Hybrid 1 Hybrid 2 =~ Hybrid 3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design.
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= | ro - rO-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F e {£1}"
Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design. So
PF - (Clifford C) = PF - (Haar U)
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= | ro - rO-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F e {£1}"
Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design. So
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= | ro - rO-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F e {£1}"
Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design. So
PF - (Clifford C) = PF - (Haar U) = Haar U

Finally, replace P and F with pseudorandom.
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Rest of this talk
Lazy sampling of a random function
Lazy sampling of a random unitary
Proving correctness + PRUs exist

Applications



The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.




The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

L _ (hidden
:Al_ Y _o--:At_ Ur —_— prO prO| state)
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The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

14

U

"':At

14,

U « Haar

prO

"':At

prO

_ (hidden

state)

Many statements about Haar-random U can be reduced to
simple claims about this data structure

 [MH24]: elementary proof of [SHH24] gluing lemma
» [SMLBH25]: existence of low-depth PRUs




Let’s see an example.
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Application: a simpler proof of the “gluing” lemma

Gluing lemma [SHH24]:

A — - -
If U; and U, overlap on B, I U L ~ - U, F
|B| = w(logn) qubits, then c - "t J L

U2 .Ul ~ U3.



Application: a simpler proof of the “gluing” lemma

Gluing lemma [SHH24]:

A - - -
If U; and U, overlap on B — U [ U2 | ~ | Uz
|B| = w(logn) qubits, then e i B
U, - Uy = Us. I ! I
R1>|R2> |R3>
- B A/ [ 1/
New proof: combinatorial @) -
claim about path-recording A 5 prO; b ~4pr0; |
oracle. B 4P} = A2 - 3
C’ _ - -
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Future directions

1) Is a random quantum circuit a PRU?
2) Unitary natural proof barrier?

3) Cryptographic applications of PRUSs?
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