How to Construct Random Unitaries

Fermi Ma
Berkeley - NYU

joint work with Hsin-Yuan Huang

Haar measure: uniform distribution on unitaries

Haar measure: uniform distribution on unitaries

Property: for any unitary W, if U ~ Haar, W - U ~ Haar

Haar measure: uniform distribution on unitaries

Property: for any unitary W, if U ~ Haar, W - U ~ Haar

Haar-random unitaries show up everywhere:

Haar measure: uniform distribution on unitaries

Property: for any unitary W, if U ~ Haar, W - U ~ Haar

Haar-random unitaries show up everywhere:

-

.

4 D
black hole (R
o : quantum learning
LT eI entanglement algorithms
_ scrambling | \ y
\ N\ [, \ B
quantum random unitary quantum
Crypto quantum (complexity error
S circuits y kcorrection y

Challenge:

Haar-random unitaries are exponentially complex

Challenge:

Haar-random unitaries are exponentially complex

® sl >

U U ~ Haar

Challenge:

Haar-random unitaries are exponentially complex

minimal circuit for U

Tk

U ~ Haar

exp (n)

Challenge:

Haar-random unitaries are exponentially complex

minimal circuit for U

Tk

U ~ Haar

exp (n)

This makes them impractical for most applications!

There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

T | o
2 | f@
| fem

random f

There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

on

f (1)
f(2)

F(2m)

random f

minimal circuit for f

23

exp(n)

12

There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1 f(1) minimal circuit for f
2| 1@ — i
| @Y = =

random f exp(n)

There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

T | o
2 | f@ PRE £
| fem

random f

There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1 f(y
f

% f(.z) PRF f | r(x

—>

| fem

random f

There’s an analogous “problem” for functions: a random

function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

on

f (1)
f(2)

F(2m)

PRF f

random f

X

<.

f .
flx)
> ..

There’s an analogous “problem” for functions: a random
function on n bits is exponentially complex!

So in practice, we use pseudorandom functions (PRFs).

1| f@ . X
2 2 < ' <+ 4.“
B fo 3 =~ |PREf f@

> | e TN

No efficient algorithm
random f can tell the difference!

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

D)

PRUU |*

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

JP
PRUU |3,

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

D)

< 4“‘
PRU U Ulp)

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

D) D)

<+ ‘. A\ < <+,
Haar U o) 1 PRU U Ul 3

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

[P) [P)
< ‘x“ "N < ‘x“
Haar Uy ") 7% [BRUU |y

For any efficient algorithm A:

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

D) D)

< < N < <.
A N\ E

Haar U

For any efficient algorithm A:

U:l:U"Ti

= U': O

O B measure b

5 |

Pseudorandom unitaries (PRUs) [JLS18]
efficiently-computable unitaries that appear Haar-random

D) D)

< < N < <.
A N\ E

Haar U

For any efficient algorithm A:

i === =
—a ==
=1

| U« Haar| = Pr[b =1 | U « PRU|

O

measure b

U

Pr(b

Application: modeling black hole dynamics

Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:

Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:

particles in
state [)

28

Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:

o%o

':..' collapse into

black hole
>

particles in
state [)

Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:

o:o‘
Ay collapse into black hole
, , black hole evaporates
particles in > >

state [)

Application: modeling black hole dynamics

Physicists often study the dynamics of chaotic systems. Key example:

o%eo 0:0‘
':..‘ collapse into black hole %o
particles in black hole> evaporates> particles in
state |) state |y’)

Application: modeling black hole dynamics

Common practice: pretend this Haar-random

o%o o:o‘
‘:..‘ collapse into black hole %o
, , black hole evaporates . .
particles in > ,» | particles in
state |) state |y’)

32

Application: modeling black hole dynamics

Common practice: pretend this Haar-random

o%o o:o‘
‘:..‘ collapse into black hole %o
, , black hole evaporates . .
particles in > ,» | particles in
state |) state |y’)

However, Quantum Church-Turing says this has to be efficient!

£S

Application: modeling black hole dynamics

Common practice: pretend this Haar-random
®
.........: ...":‘
T e
particles in

particles in
\ 1
state |) state |y’)

el -

Y
size = poly(# of qubits)

However, Quantum Church-Turing says this has to be efficient!

34

Application: modeling black hole dynamics

Common practice: pretend this Haar-random

I m—E W | %l
g igtyg
l'l'l'lF

.o.:.: = m)

particles in
state |y’)

particles in ‘:.
state [)

Y
size = poly(# of qubits)

However, Quantum Church-Turing says this has to be efficient!

Consequence: many physics results now rely on the assumption
that various physical processes are PRUs [KP23,YE23,EFIVY24]

s

But do PRUs exist?

But do PRUs exist?
(under crypto assumptions)

But do PRUs exist?
(under crypto assumptions)

This was left as an open problem by [JLS18].

Prior work

Prior work

1) Many proposed constructions:

Prior work

1) Many proposed constructions:

rrjx(_F . @) ¥

[JLS18]

Prior work

1) Many proposed constructions: Clifford
\

rr)x(_r] (eerfx(r) | (e (X]

[JLS18] [MPSY24]

Prior work

1) Many proposed constructions: Clifford
\\
@) @) | @D
[JLS18] [MPSY24]

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

Prior work

1) Many proposed constructions:

rrjx(_F . @) ¥

[JLS18]

Clifford
\

SIS

[MPSY24]

2) Proofs of non-adaptive security [MPSY24, CBBDHX24]

By

can analyze

U

this:

=1 U

||

Prior work

1) Many proposed constructions: Clifford
\
arrfx k] {arx (e) | (e (e (e]
|[JLS18] [MPSY24]
2) Proofs of non-adaptive security [MPSY24, CBBDHX24]
WUy i
can analyze 1 | but not gy =g v E=
this: gl this: = :I i ':
—u [U

Why has it been hard to prove PRUs exist?

Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:

SEm U

i

U

U

4 W
!

.1

Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:

SEm U

i

2) Mathematics of random unitaries is complicated.

U

U

4 W
!

.1

Why has it been hard to prove PRUs exist?

1) Need to understand behavior of an arbitrary algorithm:

U U

i

2) Mathematics of random unitaries is complicated.

U

4 W
!

.1

Theorem 3.1. Let k be a positive integer. For any permutation o € 8, and
nonnegative integer g, we have

(k—1)%P(0, |ol) < #P(a,l0] +2g) < (6k”?)%P(a, |ol).

* Weingarten calculus

o free prOb ability Theorem 3.2. Forany o € Sy and d > V6k’/*,
1 (—=1)leldk el wgY (o, d) 1
777 5= oo 18

d2 a2

In addition, the Lh.s inequality is valid for any d > k.

[MH24]: PRUs exist

(if one-way functions exist)

Same construction
[MH24]: PRUs exist as [MPSY24]:

(if one-way functions exist) [P]X R]X[C]

Same construction
[MH24]: PRUs exist as [MPSY24]:

(if one-way functions exist) [P]X R]X[C]

New technique: the path-recording oracle

Same construction
[MH24]: PRUs exist as [MPSY24]:

(if one-way functions exist) [P]X R]X[C]

New technique: the path-recording oracle

e efficient simulation of Haar-random unitaries

Same construction
[MH24]: PRUs exist as [MPSY24]:

(if one-way functions exist) [P]X R]X[C]

New technique: the path-recording oracle
e efficient simulation of Haar-random unitaries

 only uses basic quantum info (purification)

Our second result

Our second result

In the [JLS18] PRU definition, the distinguisher
only queries U. What if it queries U and U™?

Our second result

In the [JLS18] PRU definition, the distinguisher
only queries U. What if it queries U and U™?

Result #2: “Strong” PRUs exist
(assuming OWFs).

Construction: [C1]x[P]x[F]x[Cz]

Our second result

In the [JLS18] PRU definition, the distinguisher
only queries U. What if it queries U and U™?

Result #2: “Strong” PRUs exist
(assuming OWFs).

Construction: [C1]x[P]x[F]x[Cz]

[SMLBH25]: same proof extends to U! and U*.

Our second result

In the [JLS18] PRU definition, the distinguisher
only queries U. What if it queries U and U™?

Result #2: “Strong” PRUs exist
(assuming OWFs).

Construction: [C1]x[P]x[F]x[Cz]

[SMLBH25]: same proof extends to U! and U*.

But for this talk, I'll focus on the weakest notion.

Cartoon overview of our proof

Cartoon overview of our proof

Want to show:
For all efficient algorithms A,

Cartoon overview of our proof

Want to show:
For all efficient algorithms A,

U <« Haar

14, LY T, (LY T

Cartoon overview of our proof

Want to show:
For all efficient algorithms A,

U <« Haar

14, LY T, (LY T

NS
NS

Cartoon overview of our proof

Want to show:
For all efficient algorithms A,

U <« Haar

14, LY T, (LY T

Cartoon overview of our proof

Want to show:

For all efficient algorithms A,

U < Haar

[T |
~

U < PFC

L

Proof strategy: show that both
are indistinguishable from

Cartoon overview of our proof

Want to show:

For all efficient algorithms A,

U < Haar

:A1 u _'":At_
~

U < PFC

[T Ja]

e

14,

prO

"':At

prO

Proof strategy: show that both
are indistinguishable from

_ (hidden

state)

Cartoon overview of our proof

Want to show:

For all efficient algorithms A,

U <« Haar

|4

e

Proof strategy: show that both
are indistinguishable from

] L _ (hidden
prO[1 |prO| state)
-+ | A,

\

(path-recording oracle)
maintains a data structure
that “lazily samples” a Haar-
random unitary

14,

most of the proof

_ (hidden
state)

74

Rest of this talk
Lazy sampling of a random function
Lazy sampling of a random unitary
Proving correctness + PRUs exist

Applications

Lazy sampling of a random function

/6

Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

77

Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

Solution: °* only sample f(x) when needed, “on the fly”

/8

Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

/79

Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

80

Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

81

Lazy sampling of a random function
Goal: efficiently implement an algorithm that queries a
random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

82

Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a

random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

Hidden state

x; | f(x1)

83

Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a

random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

Hidden state

x; | f(x1)

xy | f(x2)

84

Lazy sampling of a random function

Goal: efficiently implement an algorithm that queries a

random function f.

Solution: < only sample f(x) when needed, “on the fly”
« remember what you sampled (for consistency)

Hidden state

xy | f(xq)

Hidden state

x; | f(x1)

xy | f(x2)

85

Rest of this talk
Lazy sampling of a random function
Lazy sampling of a random unitary
Proving correctness + PRUs exist

Applications

Lazy sampling of a random unitary

87

Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

Our solution: the path-recording oracle

0.

Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that
queries a Haar-random unitary U.

A priori, not clear how to do this!

Our solution: the path-recording oracle i
@)

We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a

Haar-random U.

Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that

queries a Haar-random unitary U. .
Classically, the data structure

A priori, not clear how to do this! is the set of (x, f(x)) tuples.
/
Our solution: the path-recording oracle / (/; 2
<

We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random U.

Lazy sampling of a random unitary

Goal: efficiently implement a quantum algorithm that

queries a Haar-random unitary U. .
Classically, the data structure

A priori, not clear how to do this! is the set of (x, f(x)) tuples.
/
Our solution: the path-recording oracle / g@ 2
o

We use entanglement with a hidden data structure that
succinctly “remembers” enough information to spoof a
Haar-random U.

Inspiration: compressed oracle technique [Zhandry19]

Up next:

“Derive” the path-recording oracle
through simple examples

Example 1: one query on |0)

Example 1: one query on |0)

The algorithm: |g), U|0),

(U < Haar)

Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), Uloy, «

“maximally mixed” state

(U < Haar)

Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), Uloy, «

“maximally mixed” state

(U < Haar)

How to “spoot” it:

Z'y aly)s (S register is hidden)
y

98

Example 1: one query on |0)

. Fact: this is the
The algorithm: |g), U0y, «

“maximally mixed” state

(U < Haar)

Fact: this is also the
How to “spoot” it: / maximally mixed state.

Z'y alyds (S register is hidden)
y

99

Example 1: one query on |0)

: Fact: this is the
The algorithm: |g), U0y, «

“maximally mixed” state

(U < Haar)

Fact: this is also the
How to “spoot” it: / maximally mixed state.

Z'y alyds (S register is hidden)
y

Idea 1: entanglement with a hidden register S can simulate
one query to U.

100

Example 2: two queries on |0)

Example 2: two queries on |0)

The algorithm: |q), U|0),
(U < Haar) 10)5 U|0)g

Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state

Example 2: two queries on |0)

The algorithm:

(U < Haar)

How to “spoot” it:

|O>A U
|O>B U

0)4

0)5

Fact: this is the
maximally mixed
“symmetric” state

> 1yaly)sl s, v2))s

Y1,Y2

(S register is hidden)

104

Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state

also symmetric!

> 1yaly)sl s, v2))s

Y1,Y2

How to “spoot” it:

(S register is hidden)

105

Example 2: two queries on |0)
The algorithm: 10) U|0), Fact: this is the

maximally mixed

(U < Haar) 10)5 U|0)5 “symmetric” state

also symmetric!

> 1yaly)sl s, v2))s

Y1,Y2

How to “spoot” it:

(S register is hidden)

Idea 2: use an unordered set to spoof “swap-symmetry”.

106

Example 3: mixed queries

Example 3: mixed queries
The algorithm: |q), _._ U|0),,

(U « Haar) 0)p -.- Ul0)p
e v F o

Example 3: mixed queries
The algorithm: |q), _._ U|0),,

) symmetric
(U « Haar) 0)p -.- Ul0)p
e v F o

Example 3: mixed queries

The algorithm: 10),, U]0) , ,
1) symimetric
(U < Haar) 10)5 U0)g

not symmetric
1)c U|1>C>(

Example 3: mixed queries

The algorithm: 10),, U]0) , ,
) symimetric
(U < Haar) 10)5 U0)g

not symmetric
1)c U|1>C)(

How to “spoot” it:

z V1) aly22ely3)cl{(0,y1), (0,¥2), (1,y3) s

Y1,Y2,¥Y3

111

Example 3: mixed queries

The algorithm: |q), U|0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C)(

(14 Y 24,
How to spoof it: N

V1) aly22ely3)cl{(0,y1), (0,¥2), (1,y3) s
Y1,Y2,Y3

112

Example 3: mixed queries

The algorithm: |q), U|0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
11)c U|1>c)

How to “spoot” it: Y\ pg
w z y1)aly2)81y3)cI1(0,¥1), (0,¥2), (1, ¥3)1)s

Y1,Y2,¥Y3

113

Example 3: mixed queries

The algorithm: |q), U|0),
) symmetric
(U < Haar) 10)5 U|0)g

not symmetric
1)c U|1>C)(

How to “spoot” it: Y\ pg
w y1)aly2)81y3)cI1(0,¥1), (0,¥2), (1, ¥3)1)s
Y1,Y2,Y3

Idea 3: use ordered pairs to simulate symmetry “structure”

114

We can generate all of these examples by simply
replacing each query to U with this:

We can generate all of these examples by simply
replacing each query to U with this:

[x)a 4 path- —ZIWA
recording| v

ID)s 9 oracle | [IDU{(x,y)}s

We can generate all of these examples by simply
replacing each query to U with this:

[x)a 4 path- —ZIWA
recording| v

ID)s 9 oracle | [IDU{(x,y)}s

Note the similarity to classical lazy sampling:

We can generate all of these examples by simply
replacing each query to U with this:

|X>A — path—
recording
ID)s < oracle

—'§E|)0A

IR |D U {(X, y)}>5

Note the similarity to classical lazy sampling:

x = classical
lazy
D — sampling

— Yy (random y)

— DU {(X,}’)}

118

Rest of this talk
Lazy sampling of a random function
Lazy sampling of a random unitary
Proving correctness + PRUs exist

Applications

Recall our cartoon proof overview

Want to show:

For all efficient adversaries A,

U < Haar

:A1 u _'":At_
~

U < PFC

[T Ja]

e

14,

prO

"':At

prO

Proof strategy: show that both
are indistinguishable from

_ (hidden

state)

Up next: prove this

_ (hidden
state)

121

Up next: prove this

_ (hidden
state)

U « PFC The same proof
HUuF {1, HUF will show this!

122

U <« Haar

Hybrid 0

PF R U

U <« Haar

P« Sy
F « {£1}V

Hybrid 0 = Hybrid 1

124

1 U I PF R U

U <« Haar U <« Haar

P« Sy
F « {£1}V

Hybrid 0 = Hybrid 1

Step 1: insert random permutation P random +1 diagonal F.

o) e

125

PF R U

U <« Haar

P« Sy
F « {£1}V

Hybrid 1 = Hybrid 2

126

PF R U

U <« Haar

P« Sy
F<{x1}"

Hybrid 1 = Hybrid 2

Step 2: replace random P, F with a purification.

- Initialize external/ancilla system to }.p ¢ | P, F)

* On each query, apply P - F controlled on |P, F)

127

Hybrid 2 =~ Hybrid 3

128

Hybrid 2 =~ Hybrid 3

Step 3: Key idea: analyze ctl-PF in a different basis.

Let’s see how this works...

129

(1) ctl-PF: 1x) ® |P,F) » (—1)F®|P(x)) ® |P, F)

(1) ctl-PF: 1x) ® |P,F) » (—1)F®|P(x)) ® |P, F)

) ctlPF:)@ IPF) =) 19) @ (~1) D 60y [P, F)
y

(1) ctl-PF: 1x) ® |P,F) » (—1)F®|P(x)) ® |P, F)

) ctlPF:)@ IPF) =) 19) @ (~1) D 60y [P, F)
y

Definition: for D = {(x{,v{), ..., (X¢, V¢) 1,

|Pp) = z(—l)F(x1)+"'+F(xt) * Op(xy)=y, *** OP(xp)=y, |P)F)
P,F

132

(1) ctl-PF: 1x) ® |P,F) » (—1)F®|P(x)) ® |P, F)

) ctlPF:)@ IPF) =) 19) @ (~1) D 60y [P, F)
y

Definition: for D = {(x{,v{), ..., (X¢, V¢) 1,

|CDD> = 2(_1)F(x1)+.”+F(xt) . 6P(X1)=y1 o 6P(xt)=yt |P’ F)
P,F

ctl-PF: |x) ® |®,) & Zly> ® |Ppugxy)
y

58

(1) ctl-PF: 1x) ® |P,F) » (—1)F®|P(x)) ® |P, F)

) ctlPF:)@ IPF) =) 19) @ (~1) D 60y [P, F)
y

Definition: for D = {(x{,v{), ..., (X¢, V¢) 1,

|CDD> — 2(_1)F(x1)+---+F(xt) ' 5P(x1)=y1 5P(xt)=yt |P:F>
P,F

ctl-PF: |x) ® |®,) & Zly> ® |Ppugxy)
y

pro: 1) @ D) =) 1) ® 1D U {(x, 7))
y

134

Hybrid 2 =~ Hybrid 3

Step 3: For any D = {(x4,y1), ..., (X, ¥;)} can define |®}) s.t.
ctl-PF - |x)|Pp) = Zy|Y>|CDDU{(x,y)}>

135

Hybrid 2 =~ Hybrid 3

Step 3: For any D = {(x4,y1), ..., (X, ¥;)} can define |®}) s.t.
ctl-PF - |x)|Pp) = Zy|Y>|CDDU{(x,y)}>
* Intuition: ctl-PF behaves like prO, up to relabeling |®,) - |D)

136

Hybrid 2 =~ Hybrid 3

Step 3: For any D = {(x4,y1), ..., (X, ¥;)} can define |®}) s.t.
ctl-PF - |x)|Pp) = Zy|Y>|CDDU{(x,y)}>

* Intuition: ctl-PF behaves like prO, up to relabeling |®,) - |D)

o Actually, {|®p)}p aren’t fully orthogonal. But composing with
U < (2-design) makes the “non-orthogonal” ones hard to find.

137

Hybrid 3 = Hybrid 4

138

Hybrid 3 = Hybrid 4

Step 4: Turns out prO has the following unitary invariance property:

139

Hybrid 3 = Hybrid 4

140

Hybrid 3 = Hybrid 4

1 [. apply U®! to the
- ! purifying register

1 i ro - I‘O-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F « {1}V

Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4

142

1 i ro - I‘O-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F « {1}V

Hybrid 0 = Hybrid 1 Hybrid 2 =~ Hybrid 3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design.

143

= | ro - rO-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F e {£1}"
Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design. So
PF - (Clifford C) = PF - (Haar U)

144

= | ro - rO-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F e {£1}"
Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design. So
PF - (Clifford C) = PF - (Haar U) = Haar U

145

= | ro - rO-
Hvl AHprHu}l Aqerfu b APHU B O{PTH
U < Haar U < Haar U < Haar U < Haar
P« Sy
F e {£1}"
Hybrid 0 = Hybrid1 = Hybrid2 =~ Hybrid3 = Hybrid 4

The PRU proof: Hybrid 2 = Hybrid 4 holds for any 2-design. So
PF - (Clifford C) = PF - (Haar U) = Haar U

Finally, replace P and F with pseudorandom.

146

Rest of this talk
Lazy sampling of a random function
Lazy sampling of a random unitary
Proving correctness + PRUs exist

Applications

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

L _ (hidden
:Al_ Y _o--:At_ Ur —_— prO prO| state)

149

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

L _ (hidden
:Al_ Y _o--:At_ Ur —_— prO prO| state)

| A, | Ay

U « Haar

Many statements about Haar-random U can be reduced to
simple claims about this data structure

The path-recording oracle is a general-purpose tool for
analyzing Haar-random unitaries.

14

U

"':At

14,

U « Haar

prO

"':At

prO

_ (hidden

state)

Many statements about Haar-random U can be reduced to
simple claims about this data structure

 [MH24]: elementary proof of [SHH24] gluing lemma
» [SMLBH25]: existence of low-depth PRUs

Let’s see an example.

Application: a simpler proof of the “gluing” lemma

Application: a simpler proof of the “gluing” lemma

Gluing lemma [SHH24]:

If U; and U, overlap on
|B| = w(logn) qubits, then

U2 .Ul ~ U3.

Application: a simpler proof of the “gluing” lemma

Gluing lemma [SHH24]:

A — - -
If U; and U, overlap on B, I U L ~ - U, F
|B| = w(logn) qubits, then c - "t J L

U2 .Ul ~ U3.

Application: a simpler proof of the “gluing” lemma

Gluing lemma [SHH24]:

A - - -
If U; and U, overlap on B — U [U2 | ~ | Uz
|B| = w(logn) qubits, then e i B
U, - Uy = Us. I ! I
R1>|R2> |R3>
- B A/ [1/
New proof: combinatorial @) -
claim about path-recording A 5 prO; b ~4pr0; |
oracle. B 4P} = A2 - 3
C’ _ - -

Future directions

Future directions

1) Is a random quantum circuit a PRU?

Future directions

1) Is a random quantum circuit a PRU?

2) Unitary natural proof barrier?

Future directions

1) Is a random quantum circuit a PRU?
2) Unitary natural proof barrier?

3) Cryptographic applications of PRUs?

Future directions

1) Is a random quantum circuit a PRU?
2) Unitary natural proof barrier?

3) Cryptographic applications of PRUSs?

161

