Pseudorandom Unitaries and Compressed Purifications

Fermi Ma joint work with Hsin-Yuan Huang

family of $\overline{\text{poly}(n)}$ -size *n*-qubit circuits $\{U_k\}$

family of $\text{poly}(n)$ -size *n*-qubit circuits $\{U_k\}$

indistinguishable from a Haar-random unitary

family of $\overline{\text{poly}(n)}$ -size *n*-qubit circuits $\{U_k\}$

indistinguishable from a Haar-random unitary

family of $\overline{\text{poly}(n)}$ -size *n*-qubit circuits $\{U_k\}$

indistinguishable from a Haar-random unitary

 $A_2 \sqrt{\frac{1}{n} \cdot \frac{1}{n}}$ $A_t \sqrt{\frac{1}{n}}$ No efficient A^U can distinguish • $U \leftarrow \{U_k\}$ • $U \leftarrow \text{Haar}$

family of $\text{poly}(n)$ -size *n*-qubit circuits $\{U_k\}$

indistinguishable from a Haar-random unitary

 A_2 $\underbrace{P \cup F}$... $\overline{\bigcup_{A_t} F}$ No efficient A^U can distinguish • $U \leftarrow \{U_k\}$ • $U \leftarrow \text{Haar}$

${U_k}$ is a **pseudorandom unitary (PRU)**.
(as defined by JLS18)

• **Physics:** model highly scrambling physical processes [KP23,EFLVY24,YE24]

- **Physics:** model highly scrambling physical processes [KP23,EFLVY24,YE24]
- **Cryptography:** quantum analog of pseudorandom functions

- **Physics:** model highly scrambling physical processes [KP23,EFLVY24,YE24]
- **Cryptography:** quantum analog of pseudorandom functions
- Implications for quantum algorithms and learning

- **Physics:** model highly scrambling physical processes [KP23,EFLVY24,YE24]
- **Cryptography:** quantum analog of pseudorandom functions
- Implications for quantum algorithms and learning
- New perspectives on random unitaries

Open question: do PRUs exist? (under cryptographic assumptions)

Open question: do PRUs exist? (under cryptographic assumptions)

Prior work: PRUs secure against **restricted** adversaries [LQSYZ23,AGKL23,BM24,MPSY24,CBBDHX24,…]

What makes PRUs tricky?

Usual approach: Weingarten calculus from representation theory

Usual approach: Weingarten calculus from representation theory

$$
\begin{aligned} &\int_{U_d} dU U_{ij} \bar U_{k\ell} = \delta_{ik} \delta_{j\ell} \ \mathrm{Wg}(1,d) = \frac{\delta_{ik} \delta_{j\ell}}{d}. \\ &\int_{U_d} dU U_{ij} U_{k\ell} \bar U_{mn} \bar U_{pq} = \left(\delta_{im} \delta_{jn} \delta_{kp} \delta_{\ell q} + \delta_{ip} \delta_{jq} \delta_{km} \delta_{\ell n}\right) \mathrm{Wg}(1^2,d) + \left(\delta_{im} \delta_{jq} \delta_{kp} \delta_{\ell n} + \delta_{ip} \delta_{jn} \delta_{km} \delta_{\ell q}\right) \mathrm{Wg}(2,d). \end{aligned}
$$

Usual approach: Weingarten calculus from representation theory

$$
\mathit{Wg}(\sigma, d) = \frac{1}{q!^2} \sum_{\lambda} \frac{\chi^{\lambda}(1)^2 \chi^{\lambda}(\sigma)}{s_{\lambda, d}(1)}
$$

$$
\begin{aligned} \int_{U_d} dU U_{ij} \bar U_{k\ell} &= \delta_{ik} \delta_{j\ell} \ \mathrm{Wg}(1,d) = \frac{\delta_{ik} \delta_{j\ell}}{d}. \\ \int \ dU U_{ij} U_{k\ell} \bar U_{mn} \bar U_{pq} &= (\delta_{im} \delta_{in} \delta_{kn} \delta_{\ell q} + \delta_{ij} \end{aligned}
$$

where the sum is over all partitions λ of q (Collins 2003). Here χ^{λ} is the character of S_q corresponding to the partition λ and s is the Schur polynomial of λ , so that $s_{\lambda d}(1)$ is the dimension of the representation of U_d corresponding to λ .

$$
\int_{U_d}dU U_{ij}U_{k\ell}\bar{U}_{mn}\bar{U}_{pq}=\left(\delta_{im}\delta_{jn}\delta_{kp}\delta_{\ell q}+\delta_{ip}\overline{\delta_{jq}\delta_{km}\delta_{\ell n}}\right)\mathrm{Wg}(1^2,d)+\left(\delta_{im}\delta_{jq}\delta_{kp}\delta_{\ell n}+\delta_{ip}\delta_{jn}\delta_{km}\delta_{\ell q}\right)\mathrm{Wg}(2,d)
$$

Usual approach: Weingarten calculus from representation theory

$$
\mathit{Wg}(\sigma, d) = \frac{1}{q!^2} \sum_{\lambda} \frac{\chi^{\lambda}(1)^2 \chi^{\lambda}(\sigma)}{s_{\lambda, d}(1)}
$$

$$
\boxed{\int_{U_d} dU U_{ij} \bar U_{k\ell} = \delta_{ik} \delta_{j\ell} \ \text{Wg}(1,d) = \frac{\delta_{ik} \delta_{j\ell}}{d}}.
$$
\n
$$
\int_{U_d} dU U_{ij} U_{k\ell} \bar U_{mn} \bar U_{pq} = (\delta_{im} \delta_{jn} \delta_{kp} \delta_{\ell q} + \delta_{ip})
$$

where the sum is over all partitions λ of q (Collins 2003). Here χ^{λ} is the character of S_q corresponding to the partition λ and s is the Schur polynomial of λ , so that $s_{\lambda d}(1)$ is the dimension of the representation of U_d corresponding to λ .

 $\delta_{\alpha\delta\delta\delta\delta\delta\delta\delta}(\delta_{\ell m}\delta_{\ell m})\,\mathrm{Wg}(1^2,d)+(\delta_{im}\delta_{jq}\delta_{kp}\delta_{\ell n}+\delta_{ip}\delta_{jn}\delta_{km}\delta_{\ell q})\,\mathrm{Wg}(2,d).$ $J U_d$

... but even this only gives you *entries* of the RHS!

[Ma-Huang24]: first provably-secure PRUs

"standard" PRUs: adversary queries U adaptively

"standard" PRUs: adversary queries U adaptively

$$
U = P \cdot F \cdot C
$$
^[MPSY24]
permutation function Clifford

"standard" PRUs: adversary queries U adaptively

$$
U = P \cdot F \cdot C
$$
^[MPSY24]
permutation function Clifford

"strong" PRUs: adversary queries U and U^{\dagger} adaptively

"standard" PRUs: adversary queries U adaptively

$$
U = P \cdot F \cdot C
$$
^[MPSY24]
permutation function Clifford

"strong" PRUs: adversary queries U and U^{\dagger} adaptively

$$
U = C^{\dagger} \cdot P \cdot F \cdot C
$$

(this talk)

"standard" PRUs: adversary queries U adaptively

$$
U = P \cdot F \cdot C
$$
^[MPSY24]
permutation function Clifford

"strong" PRUs: adversary queries U and U^{\dagger} adaptively

$$
U = C^{\dagger} \cdot P \cdot F \cdot C
$$

This has many other applications:

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random

low-depth random circuits: simplify proof of [SHH24] "gluing" lemma

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random

 $\frac{1}{\cdot 1}$ $\left.\begin{matrix} \sim \end{matrix}\right$ $\frac{1}{\cdot}$ $\frac{1}{\cdot}$ $\left.\begin{matrix} \sim \end{matrix}\right$ $\frac{1}{\cdot}$ −1⋱

low-depth random circuits: simplify proof of [SHH24] "gluing" lemma

• Any mixed state ρ_H^- has a *purification* $|\Phi\rangle_{HE}$, i.e., $\text{Tr}_E^- |\Phi\rangle\langle\Phi| = \rho_H^-$

- Any mixed state ρ_H has a *purification* $|\Phi\rangle_{HE}$, i.e., $Tr_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HF}$ is not unique! Can always apply an isometry on E

- Any mixed state ρ_H has a *purification* $|\Phi\rangle_{HF}$, i.e., $Tr_E |\Phi\rangle\langle\Phi| = \rho_H$
- $\overline{(\Phi)_{HF}}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification.

- Any mixed state ρ_H has a *purification* $|\Phi\rangle_{HF}$, i.e., $Tr_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HF}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $\overline{\Phi_0}_{HE}$, $\overline{\Phi_1}_{HE}$ of $\overline{\rho}$, σ .

- Any mixed state ρ_H has a *purification* $|\Phi\rangle_{HF}$, i.e., $Tr_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HF}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $|\Phi_0\rangle_{HE}$, $|\Phi_1\rangle_{HE}$ of ρ , σ . 2) Find an isometry V such that $V_E \cdot |\Phi_0\rangle_{HE} \approx |\Phi_1\rangle_{HE}$.

- Any mixed state ρ_H has a *purification* $|\Phi\rangle_{HF}$, i.e., $Tr_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HF}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $|\Phi_0\rangle_{HE}$, $|\Phi_1\rangle_{HE}$ of ρ , σ . 2) Find an isometry V such that $V_E \cdot |\Phi_0\rangle_{HE} \approx |\Phi_1\rangle_{HE}$.

But how do we find V ?

- Any mixed state ρ_H has a *purification* $|\Phi\rangle_{HF}$, i.e., $Tr_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HF}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $|\Phi_0\rangle_{HE}$, $|\Phi_1\rangle_{HE}$ of ρ , σ . 2) Find an isometry V such that $V_E \cdot |\Phi_0\rangle_{HE} \approx |\Phi_1\rangle_{HE}$.

But how do we find V ?

Philosophy: try to *compress* the purification.

Let's do a simple example.

Define the phase state $|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$.

Define the phase state $|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$.

Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.

Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle
$$

Expand $|\Phi\rangle$ as

$$
\sum_{f \in \{0,1\}^N} \left(\sum_{x \in [N]} (-1)^{f_x} |x\rangle \right) |f\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle
$$

Expand $|\Phi\rangle$ as

$$
\sum_{f \in \{0,1\}^N} \left(\sum_{x \in [N]} (-1)^{f_x} |x\rangle\right) |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle
$$

Expand
$$
|\Phi\rangle
$$
 as

$$
\sum_{f \in \{0,1\}^N} \left(\sum_{x \in [N]} (-1)^{f_x} |x\rangle\right) |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle
$$

$$
|\phi_x\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Next, let's try to compress the *N*-qubit state $|\phi_x\rangle$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Next, let's try to compress the *N*-qubit state $|\phi_x\rangle$

$$
|\phi_x\rangle = \sum_{f \in \{0,1\}^N} (-1)^{f \cdot e_x} |f\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Next, let's try to compress the N-qubit state $|\phi_x\rangle$

$$
|\phi_x\rangle = \sum_{f \in \{0,1\}^N} (-1)^{f \cdot e_x} |f\rangle = H^{\otimes N} |e_x\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Next, let's try to compress the N-qubit state $|\phi_x\rangle$

$$
|\phi_x\rangle = \sum_{f \in \{0,1\}^N} (-1)^{f \cdot e_x} |f\rangle = H^{\otimes N} |e_x\rangle
$$

So $|\phi_x\rangle$'s are **orthogonal** and we can map $|\phi_x\rangle \mapsto |x\rangle$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Step 2: Apply the isometry that maps $|\phi_x\rangle \mapsto |x\rangle$.

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Step 2: Apply the isometry that maps $|\phi_x\rangle \mapsto |x\rangle$. We get

$$
\sum_{x\in [N]}|x\rangle|x\rangle
$$

Define the phase state
$$
|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle
$$
.
Goal: show that $\rho := \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$
|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle
$$

Step 2: Apply the isometry that maps $|\phi_x\rangle \mapsto |x\rangle$. We get

$$
\sum_{x\in [N]}|x\rangle|x\rangle
$$

Since this is a purification of ρ , this means ρ is maximally mixed!

Rest of today: [MH24] PRU proof on the blackboard Preliminary draft of the paper:

fermima.com/pru.pdf