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𝑈
𝐴!

𝑈
𝐴" 𝐴# ⋯ No efficient 𝐴" can distinguish

• 𝑈 ← {𝑈!}
• 𝑈 ← Haar

𝐴$

Can an efficient circuit look random?

family of poly 𝑛 -size 
𝑛-qubit circuits {𝑈!}

indistinguishable from a 
Haar-random unitary

{𝑈!} is a pseudorandom unitary (PRU).
(as defined by JLS18)
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Why study pseudorandom unitaries (PRUs)?

• Physics: model highly scrambling physical processes 
[KP23,EFLVY24,YE24]

• Cryptography: quantum analog of pseudorandom functions

• Implications for quantum algorithms and learning

• New perspectives on random unitaries
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Open question: do PRUs exist? (under cryptographic assumptions)

Prior work: PRUs secure against restricted adversaries
[LQSYZ23,AGKL23,BM24,MPSY24,CBBDHX24,…]
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𝑈
𝐴" 𝐴# ⋯|0⟩ ≔ |𝐴$⟩What makes 

PRUs tricky?
Goal: 𝔼$←&'( 𝐴$ 𝐴$ ≈ 𝔼$←)**+ 𝐴$ 𝐴$

Usual approach: Weingarten calculus from representation theory

... but even this only gives you entries of the RHS!
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“strong” PRUs: adversary 
queries 𝑈 and 𝑈, adaptively 𝑈 = 𝐶! ⋅ 𝑃 ⋅ 𝐹 ⋅ 𝐶

“standard” PRUs: adversary 
queries 𝑈 adaptively

𝑈 = 𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

(this talk)

[Ma-Huang24]: first provably-secure PRUs 
We achieve two different notions:
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random matrices: under mild 
conditions, matrices with i.i.d. 
entries look Haar-random

𝑈≈1 −1
−1⋱

Main idea: compressed purifications, an elementary method to 
analyze random unitaries

This has many other applications:

low-depth random circuits: 
simplify proof of [SHH24] 
“gluing” lemma

𝑈" 𝑈# 𝑈≈
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The plan: prove that mixed states 𝜌- , 𝜎- are close using purification.
1) Construct purifications Φ/ -. , Φ" -. of 𝜌, 𝜎.
2) Find an isometry 𝑉 such that 𝑉. ⋅ Φ/ -. ≈ Φ" -. .

Overview: compressed purifications
[M24, MH24] + [Z18]

• Any mixed state 𝜌- has a purification Φ -. , i.e., Tr. |Φ⟩⟨Φ| = 𝜌-
• Φ -. is not unique! Can always apply an isometry on 𝐸

But how do we find 𝑉? 
Philosophy: try to compress the purification.
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Let’s do a simple example.
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𝜙1 = <
0∈ /," "

−1 0⋅8! 𝑓

Next, let’s try to compress the 𝑁-qubit state |𝜙!⟩
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So |𝜙1⟩’s are orthogonal
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Step 2: Apply the isometry that maps |𝜙1⟩ ↦ |𝑥⟩. We get

#
&∈[(]

𝑥 |𝑥⟩

Since this is a purification of 𝜌, this means 𝜌 is maximally mixed!



61

Rest of today: [MH24] PRU proof on the blackboard
Preliminary draft of the paper:

fermima.com/pru.pdf


