Pseudorandom Unitaries and Compressed Purifications

Fermi Ma joint work with Hsin-Yuan Huang

family of poly(n)-size
n-qubit circuits {U_k}

family of poly(n)-size
n-qubit circuits {U_k}

indistinguishable from a Haar-random unitary

family of poly(n)-size
n-qubit circuits {U_k}

indistinguishable from a Haar-random unitary

family of poly(n)-size
n-qubit circuits {U_k}

indistinguishable from a Haar-random unitary

No efficient A^U can distinguish • $U \leftarrow \{U_k\}$ • $U \leftarrow$ Haar

family of poly(n)-size
n-qubit circuits {U_k}

indistinguishable from a Haar-random unitary

No efficient A^U can distinguish • $U \leftarrow \{U_k\}$ • $U \leftarrow$ Haar

$\{U_k\}$ is a pseudorandom unitary (PRU). (as defined by JLS18)

• **Physics:** model highly scrambling physical processes [KP23,EFLVY24,YE24]

- **Physics:** model highly scrambling physical processes [KP23,EFLVY24,YE24]
- Cryptography: quantum analog of pseudorandom functions

- Physics: model highly scrambling physical processes [KP23,EFLVY24,YE24]
- Cryptography: quantum analog of pseudorandom functions
- Implications for quantum algorithms and learning

- Physics: model highly scrambling physical processes [KP23,EFLVY24,YE24]
- **Cryptography:** quantum analog of pseudorandom functions
- Implications for quantum algorithms and learning
- New perspectives on random unitaries

Open question: do PRUs exist? (under cryptographic assumptions)

Open question: do PRUs exist? (under cryptographic assumptions)

Prior work: PRUs secure against **restricted** adversaries [LQSYZ23,AGKL23,BM24,MPSY24,CBBDHX24,...]

Usual approach: Weingarten calculus from representation theory

Usual approach: Weingarten calculus from representation theory

$$egin{aligned} &\int_{U_d} dU U_{ij} ar{U}_{k\ell} = \delta_{ik} \delta_{j\ell} \operatorname{Wg}(1,d) = rac{\delta_{ik} \delta_{j\ell}}{d}. \ &\int_{U_d} dU U_{ij} U_{k\ell} ar{U}_{mn} ar{U}_{pq} = (\delta_{im} \delta_{jn} \delta_{kp} \delta_{\ell q} + \delta_{ip} \delta_{jq} \delta_{km} \delta_{\ell n}) \operatorname{Wg}(1^2,d) + (\delta_{im} \delta_{jq} \delta_{kp} \delta_{\ell n} + \delta_{ip} \delta_{jn} \delta_{km} \delta_{\ell q}) \operatorname{Wg}(2,d). \end{aligned}$$

Usual approach: Weingarten calculus from representation theory

$$Wg(\sigma,d) = rac{1}{q!^2}\sum_\lambda rac{\chi^\lambda(1)^2\chi^\lambda(\sigma)}{s_{\lambda,d}(1)}$$

$$\int_{U_d} dU U_{ij} ar{U}_{k\ell} = \delta_{ik} \delta_{j\ell} \operatorname{Wg}(1,d) = rac{\delta_{ik} \delta_{j\ell}}{d}.$$

where the sum is over all partitions λ of q (Collins 2003). Here χ^{λ} is the character of S_q corresponding to the partition λ and s is the Schur polynomial of λ , so that $s_{\lambda d}(1)$ is the dimension of the representation of U_d corresponding to λ .

$$U_{M_d} = (\delta_{im}\delta_{jn}\delta_{kp}\delta_{\ell q} + \delta_{ip}\overline{\delta_{jq}\delta_{km}\delta_{\ell n}}) \operatorname{Wg}(1^2, d) + (\delta_{im}\delta_{jq}\delta_{kp}\delta_{\ell n} + \delta_{ip}\delta_{jn}\delta_{km}\delta_{\ell q}) \operatorname{Wg}(2, d)$$

Usual approach: Weingarten calculus from representation theory

$$Wg(\sigma,d) = rac{1}{q!^2}\sum_\lambda rac{\chi^\lambda(1)^2\chi^\lambda(\sigma)}{s_{\lambda,d}(1)}$$

$$egin{aligned} &\int_{U_d} dU U_{ij} ar{U}_{k\ell} = \delta_{ik} \delta_{j\ell} \operatorname{Wg}(1,d) = rac{\delta_{ik} \delta_{j\ell}}{d}. \ &\int dU U_{ij} U_{k\ell} ar{U}_{mn} ar{U}_{pq} = (\delta_{im} \delta_{jn} \delta_{kp} \delta_{\ell q} + \delta_{ip}). \end{aligned}$$

where the sum is over all partitions λ of q (Collins 2003). Here χ^{λ} is the character of S_q corresponding to the partition λ and s is the Schur polynomial of λ , so that $s_{\lambda d}(1)$ is the dimension of the representation of U_d corresponding to λ .

 $\int_{U_d} dU U_{ij} U_{k\ell} ar{U}_{mn} ar{U}_{pq} = (\delta_{im} \delta_{jn} \delta_{kp} \delta_{\ell q} + \delta_{ip} \overline{\delta_{jq}} \delta_{km} \delta_{\ell n}) \operatorname{Wg}(1^2, d) + (\delta_{im} \delta_{jq} \delta_{kp} \delta_{\ell n} + \delta_{ip} \delta_{jn} \delta_{km} \delta_{\ell q}) \operatorname{Wg}(2, d).$

.. but even this only gives you entries of the RHS!

[Ma-Huang24]: first provably-secure PRUs

"standard" PRUs: adversary queries *U* adaptively

"standard" PRUs: adversary queries *U* adaptively

$$U = P \cdot F \cdot C \text{[MPSY24]}$$
permutation function Clifford

"standard" PRUs: adversary queries U adaptively

$$U = P \cdot F \cdot C \text{[MPSY24]}$$
permutation function Clifford

"strong" PRUs: adversary queries *U* and *U*[†] adaptively

"standard" PRUs: adversary queries U adaptively

$$U = P \cdot F \cdot C$$
 [MPSY24]
permutation function Clifford

"strong" PRUs: adversary queries *U* and *U*[†] adaptively

$$U = C^{\dagger} \cdot P \cdot F \cdot C$$

(this talk)

"standard" PRUs: adversary queries U adaptively

$$U = P \cdot F \cdot C \text{[MPSY24]}$$
permutation function Clifford

"strong" PRUs: adversary queries U and U[†] adaptively

$$U = C^{\dagger} \cdot P \cdot F \cdot C$$

This has many other applications:

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random

low-depth random circuits: simplify proof of [SHH24] "gluing" lemma

This has many other applications:

random matrices: under mild conditions, matrices with i.i.d. entries look Haar-random $\frac{1-1}{-1} \approx \frac{1}{-1} U$

low-depth random circuits: simplify proof of [SHH24] "gluing" lemma

• Any mixed state ρ_H has a purification $|\Phi\rangle_{HE}$, i.e., $\mathrm{Tr}_E |\Phi\rangle\langle\Phi| = \rho_H$

- Any mixed state ρ_H has a purification $|\Phi\rangle_{HE}$, i.e., $\mathrm{Tr}_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HE}$ is not unique! Can always apply an isometry on E

- Any mixed state ρ_H has a purification $|\Phi\rangle_{HE}$, i.e., $\mathrm{Tr}_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HE}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification.

- Any mixed state ρ_H has a purification $|\Phi\rangle_{HE}$, i.e., $\mathrm{Tr}_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HE}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $|\Phi_0\rangle_{HE}$, $|\Phi_1\rangle_{HE}$ of ρ , σ .

- Any mixed state ρ_H has a purification $|\Phi\rangle_{HE}$, i.e., $\mathrm{Tr}_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HE}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $|\Phi_0\rangle_{HE}$, $|\Phi_1\rangle_{HE}$ of ρ , σ . 2) Find an isometry *V* such that $V_E \cdot |\Phi_0\rangle_{HE} \approx |\Phi_1\rangle_{HE}$.

- Any mixed state ρ_H has a purification $|\Phi\rangle_{HE}$, i.e., $\mathrm{Tr}_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HE}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $|\Phi_0\rangle_{HE}$, $|\Phi_1\rangle_{HE}$ of ρ , σ . 2) Find an isometry V such that $V_E \cdot |\Phi_0\rangle_{HE} \approx |\Phi_1\rangle_{HE}$.

But how do we find *V*?

- Any mixed state ρ_H has a purification $|\Phi\rangle_{HE}$, i.e., $\mathrm{Tr}_E |\Phi\rangle\langle\Phi| = \rho_H$
- $|\Phi\rangle_{HE}$ is not unique! Can always apply an isometry on E

The plan: prove that mixed states ρ_H , σ_H are close using purification. 1) Construct purifications $|\Phi_0\rangle_{HE}$, $|\Phi_1\rangle_{HE}$ of ρ , σ . 2) Find an isometry *V* such that $V_E \cdot |\Phi_0\rangle_{HE} \approx |\Phi_1\rangle_{HE}$.

But how do we find *V*?

Philosophy: try to compress the purification.

Let's do a simple example.

Define the phase state $|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$.

Define the phase state $|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$. **Goal:** show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f\in\{0,1\}^N} |\psi_f\rangle |f\rangle$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed

$$\begin{split} |\Phi\rangle &\propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle \\ & \text{Expand } |\Phi\rangle \text{ as} \\ & \sum_{f \in \{0,1\}^N} \left(\sum_{x \in [N]} (-1)^{f_x} |x\rangle\right) |f\rangle \end{split}$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed

$$\begin{split} |\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle \\ \text{Expand } |\Phi\rangle \text{ as} \\ \sum_{f \in \{0,1\}^N} \left(\sum_{x \in [N]} (-1)^{f_x} |x\rangle\right) |f\rangle &= \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle \end{split}$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$\begin{split} |\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle &= \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle \\ \\ \text{Expand } |\Phi\rangle \text{ as} \\ &\sum_{f \in \{0,1\}^N} \left(\sum_{x \in [N]} (-1)^{f_x} |x\rangle\right) |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle \end{split}$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{\substack{f \in \{0,1\}^N \\ |\phi_x\rangle}} (-1)^{f_x} |f\rangle$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Next, let's try to compress the N-qubit state $|\phi_x\rangle$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Next, let's try to compress the N-qubit state $|\phi_x\rangle$

$$|\phi_x\rangle = \sum_{f \in \{0,1\}^N} (-1)^{f \cdot e_x} |f\rangle$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Next, let's try to compress the N-qubit state $|\phi_x\rangle$

$$|\phi_{x}\rangle = \sum_{f \in \{0,1\}^{N}} (-1)^{f \cdot e_{x}} |f\rangle = H^{\bigotimes N} |e_{x}\rangle$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Next, let's try to compress the N-qubit state $|\phi_x\rangle$

$$|\phi_x\rangle = \sum_{f \in \{0,1\}^N} (-1)^{f \cdot e_x} |f\rangle = H^{\bigotimes N} |e_x\rangle$$

So $|\phi_x\rangle$'s are **orthogonal** and we can map $|\phi_x\rangle \mapsto |x\rangle$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Step 2: Apply the isometry that maps $|\phi_x\rangle \mapsto |x\rangle$.

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Step 2: Apply the isometry that maps $|\phi_x\rangle \mapsto |x\rangle$. We get

 $\sum_{x \in [N]} |x\rangle |x\rangle$

Define the phase state
$$|\psi_f\rangle = \sum_{x \in [N]} (-1)^{f_x} |x\rangle$$
.
Goal: show that $\rho \coloneqq \mathbb{E}_{f \leftarrow \{0,1\}^N} |\psi_f\rangle \langle \psi_f|$ is maximally mixed.

$$|\Phi\rangle \propto \sum_{f \in \{0,1\}^N} |\psi_f\rangle |f\rangle = \sum_{x \in [N]} |x\rangle \sum_{f \in \{0,1\}^N} (-1)^{f_x} |f\rangle = \sum_{x \in [N]} |x\rangle |\phi_x\rangle$$

Step 2: Apply the isometry that maps $|\phi_x\rangle \mapsto |x\rangle$. We get

$$\sum_{x \in [N]} |x\rangle |x\rangle$$

Since this is a purification of ρ , this means ρ is maximally mixed!

Rest of today: [MH24] PRU proof on the blackboard Preliminary draft of the paper:

fermima.com/pru.pdf