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Can an efficient circuit look random?
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n-qubit circuits {U, } Haar-random unitary
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No efficient AY can distinguish
* U« {Uy}

Ay

AU

e U « Haar

{U,} is a pseudorandom unitary (PRU).

(as defined by JLS18)




Why study pseudorandom unitaries (PRUs)?



Why study pseudorandom unitaries (PRUs)?

« Physics: model highly scrambling physical processes
[KP23,EFLVY24,YE24]



Why study pseudorandom unitaries (PRUs)?

Physics: model highly scrambling physical processes
[KP23,EFLVY?24,YE24]

Cryptography: quantum analog of pseudorandom functions

10



Why study pseudorandom unitaries (PRUs)?

Physics: model highly scrambling physical processes
[KP23,EFLVY?24,YE24]

Cryptography: quantum analog of pseudorandom functions

Implications for quantum algorithms and learning

11



Why study pseudorandom unitaries (PRUs)?

Physics: model highly scrambling physical processes
[KP23,EFLVY?24,YE24]

Cryptography: quantum analog of pseudorandom functions
Implications for quantum algorithms and learning

New perspectives on random unitaries
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Open question: do PRUs exist? (under cryptographic assumptions)

Prior work: PRUs secure against restricted adversaries
ILQSYZ23,AGKL23,BM24 MPSY24,CBBDHX24,...]
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... but even this only gives you of the RHS!
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[Ma-Huang?24]: first provably-secure PRUs

We achieve two different notions:

(this talk)

“standard” PRUs: adversary U=P-F- C IMPSY24]
— X ~

queries U adaptively permutation function Clifford

“strong” PRUs: adversar
0 o U=Ct-P-F-C

queries U and UT adaptively
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This has many other applications:

random matrices: under mild

— .
conditions, matrices with 1.i.d. —_-. = U
entries look Haar-random - _ -
low-depth random circuits: N L
simplify proof of [SHH24] Uy ® U

‘gluing” lemma
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IM24, MH24] + [Z18]

« Any mixed state py has a purification |®)yg, i.€., Trg |PHP| = py

e |®)y, is not unique! Can always apply anisometry on E

The plan: prove that mixed states py, oy are close using purification.
1) Construct purifications |®y)yg, |P )y Of p, 0.

2) Find an isometry V such that Vi - |®g)ye = [P ) yE.

But how do we find IV?
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Overview: compressed purifications
IM24, MH24] + [Z18]

« Any mixed state py has a purification |®)yg, i.€., Trg |PHP| = py

o |®P)yg is nNOt unique! Can always apply an isometry on E

The plan: prove that mixed states py, oy are close using purification.
1) Construct purifications |®y)yg, |P{ )y Of p, 0.

But how do we find IV?
Philosophy: try to compress the purification.
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Let's do a simple example.
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Define the phase state [1;) = X, cp(—1)7>1x).
Goal: show that p := E;_ o 13| | is maximally mixed.

Step 1: Write down an “obvious” purification of p:

D)o ) pIf) = Z|x> > DRI

fef{o, 13V / €[N]  fefo, 1}V

Expand |®) as

D ( Z( 1)fx|x>)|f> Z|x> PIRGLS

fe{0,1}N \x€[N €[N]  fefo, 13V
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D)o > pIf) = Z|x> > (DRI = Z|x>|¢x

fe{o, 1}V €[N]  fefo, 1}V

Next, let’s try to compress the N-qubit state [¢,)

|$x) = Z (—=1)fex [f) = H®N |e,) SO |@x)'s are orthogonal
FElON and we can map |¢,) — |x)
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Define the phase state [1;) = X, cp(—1)7>1x).
Goal: show that p := E;_ o 13| | is maximally mixed.

Step 1: Write down an “obvious” purification of p:

D)o > pIf) = Z|x> > (DRI = Z|x>|¢x

fe{o, 1}V €[N]  fefo, 1}V

Step 2: Apply the isometry that maps |¢,) — |x).
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Define the phase state [1;) = X, cp(—1)7>1x).
Goal: show that p := E;_ o 13| | is maximally mixed.

Step 1: Write down an “obvious” purification of p:

D) Dl = D) 1 ) DEIN= D 10
X XE[N]

Fe{o,1}V €[N]  fe{o1}N

Step 2: Apply the isometry that maps |¢, ) — |x). We get
z |2} )
X€E[N]

Since this is a purification of p, this means p is maximally mixed!
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Rest of today: [MH24| PRU proof on the blackboard
Preliminary draft of the paper:

fermima.com/pru.pdf
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