Workshop on pseudorandom unitaries

Fermi Ma

This workshop is about pseudorandom unitaries (PRUs).

This workshop is about pseudorandom unitaries (PRUs).
Definition [JLS18]: a PRU is a family of efficient n-qubit unitaries $\left\{U_{k}\right\}_{k \in[K]}$ such that no poly (n)-time algorithm A can distinguish:

This workshop is about pseudorandom unitaries (PRUs).
Definition [JLS18]: a PRU is a family of efficient n-qubit unitaries $\left\{U_{k}\right\}_{k \in[K]}$ such that no poly (n)-time algorithm A can distinguish:

- $U=U_{k}$ for random $k \leftarrow[K]$, or

This workshop is about pseudorandom unitaries (PRUs).
Definition [JLS18]: a PRU is a family of efficient n-qubit unitaries $\left\{U_{k}\right\}_{k \in[K]}$ such that no poly (n)-time algorithm A can distinguish:

- $U=U_{k}$ for random $k \leftarrow[K]$, or
- $U=$ Haar-random unitary

This workshop is about pseudorandom unitaries (PRUs).
Definition [JLS18]: a PRU is a family of efficient n-qubit unitaries $\left\{U_{k}\right\}_{k \in[K]}$ such that no poly (n)-time algorithm A can distinguish:

- $U=U_{k}$ for random $k \leftarrow[K]$, or
- $U=$ Haar-random unitary
given oracle access to U.

This workshop is about pseudorandom unitaries (PRUs).
Definition [JLS18]: a PRU is a family of efficient n-qubit unitaries $\left\{U_{k}\right\}_{k \in[K]}$ such that no poly (n)-time algorithm A can distinguish:

- $U=U_{k}$ for random $k \leftarrow[K]$, or
- $U=$ Haar-random unitary given oracle access to U.

In [JLS18], this means:

Why study PRUs?

Why study PRUs?

- Cryptography: PRUs \rightarrow commitments, uncloneable crypto, ... [CM22,GJMZ23,LQSYZ23,..]

Why study PRUs?

- Cryptography: PRUs \rightarrow commitments, uncloneable crypto, ... [CM22,GJMZ23,LQSYZ23,...]
- Quantum gravity: model black-hole dynamics as a PRU [KP23,EFLVY24,YE24]

Why study PRUs?

- Cryptography: PRUs \rightarrow commitments, uncloneable crypto, ... [CM22,GJMZ23,LQSYZ23,...]
- Quantum gravity: model black-hole dynamics as a PRU [KP23,EFLVY24,YE24]
- Learning: low-depth PRUs \rightarrow hardness of quantum learning

Why study PRUs?

- Cryptography: PRUs \rightarrow commitments, uncloneable crypto, ... [CM22,GJMZ23,LQSYZ23,...]
- Quantum gravity: model black-hole dynamics as a PRU [KP23,EFLVY24,YE24]
- Learning: low-depth PRUs \rightarrow hardness of quantum learning
- Algorithms: low-depth PRUs \rightarrow faster quantum algorithms

Open question: do PRUs exist? (under cryptographic assumptions)

Open question: do PRUs exist? (under cryptographic assumptions)

Prior work: PRUs secure against restricted adversaries

Open question: do PRUs exist? (under cryptographic assumptions)
Prior work: PRUs secure against restricted adversaries

- [LQSYZ23,AGKL23,BM24]: non-adaptive + restricted input states

Open question: do PRUs exist? (under cryptographic assumptions)
Prior work: PRUs secure against restricted adversaries

- [LQSYZ23,AGKL23,BM24]: non-adaptive + restricted input states

non-adaptive

adaptive

Open question: do PRUs exist? (under cryptographic assumptions)
Prior work: PRUs secure against restricted adversaries

- [LQSYZ23,AGKL23,BM24]: non-adaptive + restricted input states
- [MPSY24]: adaptive + restricted input states

non-adaptive

adaptive

Open question: do PRUs exist? (under cryptographic assumptions)
Prior work: PRUs secure against restricted adversaries

- [LQSYZ23,AGKL23,BM24]: non-adaptive + restricted input states
- [MPSY24]: adaptive + restricted input states
-

non-adaptive

adaptive

Why has it been so hard to build a PRU?

Why has it been so hard to build a PRU?
One reason: the math behind Haar-random unitaries is quite subtle!

Why has it been so hard to build a PRU?

One reason: the math behind Haar-random unitaries is quite subtle!

```
Readings in Mathematies
William Fulton
Joe Harris
Representation
Theory
A First Course
```


Why has it been so hard to build a PRU?

One reason: the math behind Haar-random unitaries is quite subtle!

Readings in Mathematics
William Fulton Joe Harris

Representation Theory
A First Course

Why has it been so hard to build a PRU?

One reason: the math behind Haar-random unitaries is quite subtle!

Readings in Mathematics
William Fulton Joe Harris

Representation Theory
A First Course

Why has it been so hard to build a PRU?
One reason: the math behind Haar-random unitaries is quite subtle!

```
Readings in Mathematics
William Fulton Joe Harris
Representation Theory
A First Course
```


(just kidding, most of the reviews are very positive)

Why has it been so hard to build a PRU?
One reason: the math behind Haar-random unitaries is quite subtle!

```
Readings in Mathematics
William Fulton Joe Harris
Representation Theory
A First Course
```


(just kidding, most of the reviews are very positive)

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

1) adaptive PRUs [MH24]

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

1) adaptive PRUs [MH24]

$$
U=P \cdot F \cdot C \quad[\mathrm{MPSY} 24]
$$

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

1) adaptive PRUs [MH24]

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

1) adaptive PRUs [MH24]

2) low-depth PRUs [SSH24]

+ simple analysis of [MH24]

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

1) adaptive PRUs [MH24]

2) low-depth PRUs [SSH24] + simple analysis of [MH24]

$$
U=\frac{\begin{array}{|c|c|c|}
\hline V & V & \boxed{V} \\
\boxed{V} & \boxed{V} & \omega(\log n) \\
\text { depth PRU }
\end{array}}{\begin{array}{c}
\text { PR }
\end{array}}
$$

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

1) adaptive PRUs [MH24]

$$
\underset{\text { permutation function clifford }}{U=P \cdot F \cdot C}
$$

2) low-depth PRUs [SSH24] + simple analysis of [MH24]
3) adaptive PRUs + inverse
security [MH24]

This workshop: build secure PRUs using the purification technique [M24,MH24]; proofs only require basic quantum info.

1) adaptive PRUs [MH24]

$$
\underset{\text { permutation function Clifford }}{U=P \cdot F \cdot C}
$$

2) low-depth PRUs [SSH24] + simple analysis of [MH24]

$$
U=\frac{\begin{array}{|c|c|}
\hline V & V \\
V &] \\
& \omega(\log n) \\
\text { depth PRU }
\end{array}}{\begin{array}{l}
V \\
\hline
\end{array}}
$$

3) adaptive PRUs + inverse security [MH24]
$U=C^{\dagger} \cdot P \cdot F \cdot C$

Rest of this talk: purification for pseudorandom states [M24]

Rest of this talk: purification for pseudorandom states [M24]
We'll prove pseudorandomness of a random binary phase state

$$
\left|\psi_{f}\right\rangle=\sum_{x \in[N]}(-1)^{f(x)}|x\rangle
$$

Rest of this talk: purification for pseudorandom states [M24]
We'll prove pseudorandomness of a random binary phase state

$$
\left|\psi_{f}\right\rangle=\sum_{x \in[N]}(-1)^{f(x)}|x\rangle
$$

The high-level idea:

Rest of this talk: purification for pseudorandom states [M24]
We'll prove pseudorandomness of a random binary phase state

$$
\left|\psi_{f}\right\rangle=\sum_{x \in[N]}(-1)^{f(x)}|x\rangle
$$

The high-level idea:

1) write down a purification of $\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|$.

Rest of this talk: purification for pseudorandom states [M24]
We'll prove pseudorandomness of a random binary phase state

$$
\left|\psi_{f}\right\rangle=\sum_{x \in[N]}(-1)^{f(x)}|x\rangle
$$

The high-level idea:

1) write down a purification of $\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|$.
2) find a nice basis for the purifying register.

Rest of this talk: purification for pseudorandom states [M24]
We'll prove pseudorandomness of a random binary phase state

$$
\left|\psi_{f}\right\rangle=\sum_{x \in[N]}(-1)^{f(x)}|x\rangle
$$

The high-level idea:

1) write down a purification of $\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|$.
2) find a nice basis for the purifying register.
3) use 2) to prove closeness to $\mathbb{E}_{\psi \leftarrow \text { Haar }}|\psi\rangle\langle\psi|$.

Rest of this talk: purification for pseudorandom states [M24]
We'll prove pseudorandomness of a random binary phase state

$$
\left|\psi_{f}\right\rangle=\sum_{x \in[N]}(-1)^{f(x)}|x\rangle
$$

The high-level idea:

1) write down a purification of $\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|$.
2) find a nice basis for the purifying register.
3) use 2) to prove closeness to $\mathbb{E}_{\psi \leftarrow \text { Haar }}|\psi\rangle\langle\psi|$.

Recap of whiteboard proof

$$
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle
$$

Recap of whiteboard proof

$$
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle=\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot \cdot e_{x}|x\rangle}\right)^{\otimes t}|f\rangle
$$

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[\mathbb{N}]}(-1)^{f \cdot e_{x}|x\rangle}\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1} \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \quad \text { (see whiteboard) }
\end{aligned}
$$

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}}|x\rangle\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \quad \text { (see whiteboard) } \\
\begin{array}{c}
\text { (after } \\
\text { isometry) }
\end{array} & \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) }
\end{aligned}
$$

Recap of whiteboard proof

$$
\begin{array}{rlr}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[\mathbb{N}]}(-1)^{f \cdot e_{x}|x\rangle}\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle & \text { (see whiteboard) } \\
\text { (after } \\
\text { isometry) } & \approx \sum_{x_{1}, \ldots, x_{t}[[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) }
\end{array}
$$

For any unitary U :

Recap of whiteboard proof

$\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle=\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}}|x\rangle\right)^{\otimes t}|f\rangle$

$$
\begin{align*}
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
& \text { (after } \tag{seewhiteboard}\\
& \text { isometry) } \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle
\end{align*}
$$

(see whiteboard)

For any unitary U :
$\sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle$

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}}|x\rangle\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
\begin{array}{c}
\text { (after } \\
\text { isometry) }
\end{array} & \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) }
\end{aligned}
$$

For any unitary U :

$$
\sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle=\sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}\right\rangle \cdots\left|x_{t}\right\rangle \sum_{\pi \in R_{\pi}} R_{\pi} \cdot U^{\top, \otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle
$$

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}|x\rangle}\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
\text { (after } & \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) }
\end{aligned}
$$

For any unitary U :

$$
\begin{array}{r}
\sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle=\sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}\right\rangle \cdots\left|x_{t}\right\rangle \sum_{\pi \in R_{\pi}} R_{\pi} \cdot U^{\top, \otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \\
\text { using } \sum_{x \in[N]} U|x\rangle|x\rangle=\sum_{x \in[N]}|x\rangle U^{\top}|x\rangle
\end{array}
$$

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}|x\rangle}\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
\begin{array}{c}
\text { (after } \\
\text { isometry) }
\end{array} & \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle
\end{aligned}
$$

(see whiteboard)
(see whiteboard)

For any unitary U :
(by applying $\bar{U}^{\otimes t}$)

$$
\begin{array}{r}
\sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle=\sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}\right\rangle \cdots\left|x_{t}\right\rangle \sum_{\pi \in R_{\pi}} R_{\pi} \cdot U^{\top} \otimes t\left|x_{1}, \ldots, x_{t}\right\rangle \\
\text { using } \sum_{x \in[N]} U|x\rangle|x\rangle=\sum_{x \in[N]}|x\rangle U^{\top}|x\rangle
\end{array}
$$

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}}|x\rangle\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
\text { (after } & \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) }
\end{aligned}
$$

For any unitary U :
(by applying $\bar{U}^{\otimes t}$)

$$
\sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle=\sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}\right\rangle \cdots\left|x_{t}\right\rangle \sum_{\pi \in R_{\pi}} R_{\pi} \cdot U^{\top} \otimes t\left|x_{1}, \ldots, x_{t}\right\rangle
$$

This implies:
using $\sum_{x \in[N]} U|x\rangle|x\rangle=\sum_{x \in[N]}|x\rangle U^{\top}|x\rangle$

$$
\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\left.\psi_{f}\right|^{\otimes t}\right.
$$

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}}|x\rangle\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
\begin{array}{c}
\text { (after } \\
\text { isometry) }
\end{array} & \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) } \quad \text { (see whiteboard) }
\end{aligned}
$$

For any unitary U :
(by applying $\bar{U}^{\otimes t}$)

$$
\begin{aligned}
& \qquad \sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle=\sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}\right\rangle \cdots\left|x_{t}\right\rangle \sum_{\pi \in R_{\pi}} R_{\pi} \cdot U^{\top} \otimes t\left|x_{1}, \ldots, x_{t}\right\rangle \\
& \text { This implies: } \\
& \text { using } \sum_{x \in[N]} U|x\rangle|x\rangle=\sum_{x \in[N]}|x\rangle U^{\top}|x\rangle
\end{aligned}
$$

$$
\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\left.\psi_{f}\right|^{\otimes t} \approx \mathbb{E}_{U \leftarrow \text { Haar }} \mathbb{E}_{f}\left(U\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| U^{\dagger}\right)^{\otimes t}\right.
$$

(true for any U)

Recap of whiteboard proof

$$
\begin{aligned}
\sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle & =\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}}|x\rangle\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
\begin{array}{c}
\text { (after } \\
\text { isometry) }
\end{array} & \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) } \quad \text { (see whiteboard) }
\end{aligned}
$$

For any unitary U :
(by applying $\bar{U}^{\otimes t}$)

$$
\begin{aligned}
& \qquad \sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle=\sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}\right\rangle \cdots\left|x_{t}\right\rangle \sum_{\pi \in R_{\pi}} R_{\pi} \cdot U^{\top} \otimes t\left|x_{1}, \ldots, x_{t}\right\rangle \\
& \text { This implies: } \\
& \text { using } \sum_{x \in[N]} U|x\rangle|x\rangle=\sum_{x \in[N]}|x\rangle U^{\top}|x\rangle
\end{aligned}
$$

$$
\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\left.\psi_{f}\right|^{\otimes t} \approx \mathbb{E}_{U \leftarrow \text { Haar }} \mathbb{E}_{f}\left(U\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| U^{\dagger}\right)^{\otimes t}=\mathbb{E}_{|\psi\rangle \leftarrow \text { Haar }} \mid \psi\right\rangle\left\langle\left.\psi\right|^{\otimes t}\right.
$$

(true for any U)

Recap of whiteboard proof

$$
\begin{aligned}
& \sum_{f \in\{0,1\}^{N}}\left|\psi_{f}\right\rangle^{\otimes t}|f\rangle=\sum_{f \in\{0,1\}^{N}}\left(\sum_{x \in[N]}(-1)^{f \cdot e_{x}}|x\rangle\right)^{\otimes t}|f\rangle \\
& \equiv \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle\left|e_{x_{1}} \oplus \cdots \oplus e_{x_{t}}\right\rangle \\
& \begin{aligned}
& \text { (after } \\
& \text { isometry) } \approx \sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}, \ldots, x_{t}\right\rangle \frac{1}{\sqrt{t!}} \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle \quad \text { (see whiteboard) } \quad \text { (see whiteboard) }
\end{aligned} \text { (s) }
\end{aligned}
$$

For any unitary U :
(by applying $\bar{U}^{\otimes t}$)

$$
\begin{aligned}
& \quad \sum_{x_{1}, \ldots, x_{t} \in[N]} U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle \sum_{\pi \in S_{t}} R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle=\sum_{x_{1}, \ldots, x_{t} \in[N]}\left|x_{1}\right\rangle \cdots\left|x_{t}\right\rangle \sum_{\pi \in R_{\pi}} R_{\pi} \cdot U^{\top} \otimes t\left|x_{1}, \ldots, x_{t}\right\rangle \\
& \text { This implies: } \\
& \text { using } \sum_{x \in[N]} U|x\rangle|x\rangle=\sum_{x \in[N]}|x\rangle U^{\top}|x\rangle
\end{aligned}
$$

$$
\mathbb{E}_{f}\left|\psi_{f}\right\rangle\left\langle\left.\psi_{f}\right|^{\otimes t} \approx \mathbb{E}_{U \leftarrow \text { Haar }} \mathbb{E}_{f}\left(U\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| U^{\dagger}\right)^{\otimes t}=\mathbb{E}_{|\psi\rangle \leftarrow \text { Haar }} \mid \psi\right\rangle\left\langle\left.\psi\right|^{\otimes t}\right.
$$

