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Definition [JLS18]: a PRU is a family of efficient n-qubit unitaries
{Uk }kepxy such that no poly(n)-time algorithm A can distinguish:

« U = U, forrandom k « [K], or
« U = Haar-random unitary

given to U.

In [JLS18],
this means:
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Cryptography: PRUs - commitments, uncloneable crypto, ...
[CM22,GJMZ23,LQSYZ23,..]

Quantum gravity: model black-hole dynamics as a PRU
[KP23,EFLVY24,YE24]

Learning: low-depth PRUs — hardness of quantum learning

Algorithms: low-depth PRUs — faster quantum algorithms
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Open question: do PRUs exist? (under cryptographic assumptions)

Prior work: PRUs secure against adversaries

« [LQSYZ23,AGKL23,BM24]: non-adaptive + restricted input states
« [MPSY24]: adaptive + restricted input states

« [MPSY24,CBBDHX24|: non-adaptive
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1) adaptive PRUs [\VIH24] U :/,P : ° C\J\/PSYM]
permutation Clifford

2) low-depth PRUs [SSH24] g = Al } w(ogn)

+ simple analysis of [\VIH24] — [vily depth PRU

3) adaptive PRUs + inverse

security [VIH24] U = C-I- - P - C
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D W= ) (Z<—1>f'ex|x>) )

fefo, 13 Fe{0,13N \x€[N]

— z |x1, cee

xl,...,xtE[N]

(after _ Z |
isometry) 1

xl,...,xtE[N]

For any unitary U:

z U9 %y, o, Xp) z R.|xq, ...,

X)Xt E[N] TES
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Y WS = Y (z

fefo, 13 Fe{0,13N \x€[N]
= z | x4
xl,...,xtE[N]
(after
isometr ~ Z x4, ...
y)
xl,...,xtE[N]

For any unitary U:

z U9 %y, o, Xp) z R |xq, ...

X)Xt E[N] TES

This implies:
Er [ )y |®t

Rt
(—1)f'ex|x>) )

v Xe) |y, B - D ey,) (see whiteboard)
1 :
,xt)ﬁ ; Ry %1, o) X¢) (see whiteboard)

(by applying U®?)
) = ) ) ) Ry U, x)

X1,---XtE[N] TER

USING Seeiy U0} = Tyepul) U Ix)
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