
1

How to Construct Random Unitaries

Fermi Ma
(joint w/ Hsin-Yuan Huang)

2

Haar measure: unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

3

Haar measure: unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

Fundamental to understanding quantum phenomena:

4

Haar measure: unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

Fundamental to understanding quantum phenomena:

information
scrambling

random
quantum
circuits

...
quantum

crypto

quantum learning
algorithms

unitary
complexity

quantum
error

correction

entanglement

5

Challenge:
Haar-random unitaries are exponentially complex

6

Challenge:
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

7

Challenge:
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

…

exp(𝑛)

minimal circuit for 𝑈

8

Challenge:
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

…

exp(𝑛)

minimal circuit for 𝑈

This makes them impractical for most applications!

9

This motivates pseudorandom unitaries [JLS18].

10

This motivates pseudorandom unitaries [JLS18].

PRUs: efficiently-computable unitaries that
are indistinguishable from Haar-random.

11

This motivates pseudorandom unitaries [JLS18].

PRUs: efficiently-computable unitaries that
are indistinguishable from Haar-random.

Haar random
𝑈 ← SU(2!)

computationally indistinguishable

PRU
𝑈 ← {𝑈"}

≈

12

This motivates pseudorandom unitaries [JLS18].

PRUs: efficiently-computable unitaries that
are indistinguishable from Haar-random.

Haar random
𝑈 ← SU(2!)

computationally indistinguishable

PRU
𝑈 ← {𝑈"}

≈
Classical analogue: pseudorandom functions
(PRFs) or pseudorandom permutations (PRPs)

13

Open question: provably-secure PRUs

14

Open question: provably-secure PRUs

1) Many proposed constructions:

15

Open question: provably-secure PRUs

1) Many proposed constructions:

[JLS18]

×QFT PRF ×QFT PRF×

16

Open question: provably-secure PRUs

1) Many proposed constructions:

[JLS18]

×QFT PRF ×QFT PRF

[MPSY24]

×PRP PRF × C

Clifford

×

17

Open question: provably-secure PRUs

1) Many proposed constructions:

[JLS18]

2) Best-known security:
non-adaptive
[MPSY24,CBBDHX24]

×QFT PRF ×QFT PRF

[MPSY24]

×PRP PRF × C

Clifford

×

18

Open question: provably-secure PRUs

1) Many proposed constructions:

[JLS18]

×

𝑈
𝑈
𝑈

𝐴" 𝐴#

QFT PRF ×QFT PRF

[MPSY24]

×PRP PRF × C

Clifford

×

non-adaptive
distinguisher

2) Best-known security:
non-adaptive
[MPSY24,CBBDHX24]

19

This work: PRUs exist
(if one-way functions exist)

20

This work: PRUs exist
(if one-way functions exist)

Same construction
as [MPSY24]:

×PRP PRF × C

21

New technique: the path-recording oracle

This work: PRUs exist
(if one-way functions exist)

Same construction
as [MPSY24]:

×PRP PRF × C

22

New technique: the path-recording oracle
• efficient simulation of Haar-random unitaries

This work: PRUs exist
(if one-way functions exist)

Same construction
as [MPSY24]:

×PRP PRF × C

23

New technique: the path-recording oracle
• efficient simulation of Haar-random unitaries
• only uses basic quantum info (purification)

This work: PRUs exist
(if one-way functions exist)

Same construction
as [MPSY24]:

×PRP PRF × C

24

In fact, we go a step further.

25

In fact, we go a step further.
In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼#?

26

In fact, we go a step further.
In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼#?

We also prove that “strong” PRUs exist
(assuming OWFs).

27

In fact, we go a step further.
In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼#?

We also prove that “strong” PRUs exist
(assuming OWFs).

×PRP PRF × 𝐶$𝐶# ×Construction:

28

In fact, we go a step further.
In the [JLS18] PRU definition, the distinguisher
only queries 𝑈. What if it queries 𝑼 and 𝑼#?

We also prove that “strong” PRUs exist
(assuming OWFs).

×PRP PRF × 𝐶$𝐶# ×Construction:

But for this talk, I’ll focus on the weaker notion.

29

Rest of this talk

• Warmup: simulating a random function

• This work: simulating a random unitary

• Analyze PRUs

30

Warmup: simulating a random function

31

Warmup: simulating a random function

𝐴
𝑥
𝑓(𝑥)

random
𝑓

32

Warmup: simulating a random function

efficient simulation

𝐴
𝑥
𝑓(𝑥)

random
𝑓

33

Warmup: simulating a random function

𝐴
𝑥

efficient simulation

𝐴
𝑥
𝑓(𝑥)

random
𝑓

34

Warmup: simulating a random function

𝐴
𝑥

efficient simulation
If 𝑥 is new:
• sample random 𝑦
• store (𝑥, 𝑦)𝐴

𝑥
𝑓(𝑥)

random
𝑓

35

Warmup: simulating a random function

𝐴
𝑥

efficient simulation
If 𝑥 is new:
• sample random 𝑦
• store (𝑥, 𝑦)

If 𝑥 was seen before:
• return stored 𝑦

𝐴
𝑥
𝑓(𝑥)

random
𝑓

36

Warmup: simulating a random function

𝐴
𝑥

efficient simulation
If 𝑥 is new:
• sample random 𝑦
• store (𝑥, 𝑦)

If 𝑥 was seen before:
• return stored 𝑦

𝑦𝐴
𝑥
𝑓(𝑥)

random
𝑓

37

Warmup: simulating a random function

𝐴
𝑥

efficient simulation
If 𝑥 is new:
• sample random 𝑦
• store (𝑥, 𝑦)

If 𝑥 was seen before:
• return stored 𝑦

𝑦

Clearly identical from 𝐴$𝑠 point of view!

𝐴
𝑥
𝑓(𝑥)

random
𝑓

38

Note: properly simulating a random function 𝑓 is quite
subtle if 𝐴 can query 𝑓 in superposition:

39

Note: properly simulating a random function 𝑓 is quite
subtle if 𝐴 can query 𝑓 in superposition:

"
!

𝛼!|𝑥⟩

"
!

𝛼! −1 "(!)|𝑥⟩𝐴
random
𝑓

40

Note: properly simulating a random function 𝑓 is quite
subtle if 𝐴 can query 𝑓 in superposition:

"
!

𝛼!|𝑥⟩

"
!

𝛼! −1 "(!)|𝑥⟩𝐴
random
𝑓

[Z19] simulates this via the compressed oracle.

41

Note: properly simulating a random function 𝑓 is quite
subtle if 𝐴 can query 𝑓 in superposition:

"
!

𝛼!|𝑥⟩

"
!

𝛼! −1 "(!)|𝑥⟩𝐴
random
𝑓

[Z19] simulates this via the compressed oracle.
Our path-recording oracle is a unitary analog of [Z19].

42

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

43

• 𝑅 = (𝑥(, 𝑦(, … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

44

• 𝑅 = (𝑥(, 𝑦(, … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

(actually, we should have a (
*+|'|

in front)

45

• 𝑅 = (𝑥(, 𝑦(, … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

(actually, we should have a (
*+|'|

in front)

Note: prO is an isometry.
Intuition: 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩ uniquely determines 𝑥 |𝑅⟩.

46

Efficient simulation𝑈 ← Haar

• 𝑅 = (𝑥(, 𝑦(, … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

𝐴# ⋯|0⟩
prO

|∅⟩

𝐴%
prO

𝐴# ⋯|0⟩ 𝑈 𝐴%
𝑈

|𝑨𝑼⟩ 𝝆

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

47

Efficient simulation𝑈 ← Haar

• 𝑅 = (𝑥(, 𝑦(, … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

𝐴# ⋯|0⟩
prO

|∅⟩

𝐴%
prO

𝐴# ⋯|0⟩ 𝑈 𝐴%
𝑈

|𝑨𝑼⟩ 𝝆

Claim: 𝔼𝑼←𝐇𝐚𝐚𝐫 |𝑨𝑼⟩⟨𝑨𝑼| and 𝝆 have trace distance ≤ 𝑡$/2!.

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

48

Up next: a few examples

49

|0⟩ 𝑈|0⟩𝑈

Example 1: one query on |0⟩

50

For 𝑈 ← Haar, this is maximally mixed.|0⟩ 𝑈|0⟩𝑈

Example 1: one query on |0⟩

51

∑% 𝑦 ⊗ | 0, 𝑦 ⟩

For 𝑈 ← Haar, this is maximally mixed.

|0⟩

|∅⟩

|0⟩ 𝑈|0⟩𝑈

prO

Example 1: one query on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

52

∑% 𝑦 ⊗ | 0, 𝑦 ⟩

For 𝑈 ← Haar, this is maximally mixed.

|0⟩

|∅⟩

|0⟩ 𝑈|0⟩𝑈

prO
trace out/measure

Example 1: one query on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

53

∑% 𝑦 ⊗ | 0, 𝑦 ⟩

For 𝑈 ← Haar, this is maximally mixed.

|0⟩

|∅⟩

After tracing out: uniform mixture over |𝑦⟩,
which is maximally mixed.

|0⟩ 𝑈|0⟩𝑈

prO
trace out/measure

Example 1: one query on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

54

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

Example 2: two queries on |0⟩

55

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈 For 𝑈 ← Haar, this is maximally mixed on
the symmetric subspace (swap-invariant).

Example 2: two queries on |0⟩

56

|0⟩ 𝑈|0⟩𝑈

|0⟩

|∅⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ prO

prO

For 𝑈 ← Haar, this is maximally mixed on
the symmetric subspace (swap-invariant).

Example 2: two queries on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

57

|0⟩ 𝑈|0⟩𝑈

∑%"-%# 𝑦(, 𝑦. ⊗ | 0, 𝑦(, (0, 𝑦.) ⟩

|0⟩

|∅⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ prO

prO

For 𝑈 ← Haar, this is maximally mixed on
the symmetric subspace (swap-invariant).

Example 2: two queries on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

58

|0⟩ 𝑈|0⟩𝑈

∑%"-%# 𝑦(, 𝑦. ⊗ | 0, 𝑦(, (0, 𝑦.) ⟩

|0⟩

|∅⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ prO

prO
trace out/measure

For 𝑈 ← Haar, this is maximally mixed on
the symmetric subspace (swap-invariant).

Example 2: two queries on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

59

|0⟩ 𝑈|0⟩𝑈

∑%"-%# 𝑦(, 𝑦. ⊗ | 0, 𝑦(, (0, 𝑦.) ⟩

|0⟩

|∅⟩

Remaining state: 𝑦(, 𝑦. + 𝑦., 𝑦(for random
distinct 𝑦(, 𝑦.. This is swap-invariant +
almost maximally random.

|0⟩ 𝑈|0⟩𝑈

|0⟩ prO

prO
trace out/measure

For 𝑈 ← Haar, this is maximally mixed on
the symmetric subspace (swap-invariant).

Example 2: two queries on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

60

Next, we’ll sketch:
path-recording oracle prO ≈ Haar-random 𝑈

61

Next, we’ll sketch:
path-recording oracle prO ≈ Haar-random 𝑈

𝐴(⋯|0⟩ 𝐴)

62

Next, we’ll sketch:
path-recording oracle prO ≈ Haar-random 𝑈

𝐴(⋯|0⟩ 𝐴)
𝑈 ← Haar

prO≈𝑈

63

Next, we’ll sketch:
path-recording oracle prO ≈ Haar-random 𝑈

𝐴(⋯|0⟩ 𝐴)
𝑈 ← Haar

prO≈

The plan: hybrid argument.
The same proof will also show existence of PRUs!

𝑈

64

Hybrid 0

𝑈
𝑈 ← Haar

65

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

66

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

Step 1: insert random permutation 𝑃 random ±1 diagonal 𝐹.

𝑃 =
1

1
1

𝐹 =
+1

−1
−1

67

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩

68

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩

Step 2: replace random 𝑃, 𝐹 with a purification.
• Initialize external/ancilla system to ∑/,1 |𝑃, 𝐹⟩

• On each query, apply 𝑃 ⋅ 𝐹 controlled on |𝑃, 𝐹⟩

69

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

70

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝑅 = { 𝑥(, 𝑦(, … , 𝑥) , 𝑦) } can define |Φ'⟩ s.t.
ctl-PF ⋅ 𝑥 Φ' = ∑%∉'! 𝑦 |Φ'∪{ !,% }⟩

71

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝑅 = { 𝑥(, 𝑦(, … , 𝑥) , 𝑦) } can define |Φ'⟩ s.t.
ctl-PF ⋅ 𝑥 Φ' = ∑%∉'! 𝑦 |Φ'∪{ !,% }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ' ↦ |𝑅⟩

72

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝑅 = { 𝑥(, 𝑦(, … , 𝑥) , 𝑦) } can define |Φ'⟩ s.t.
ctl-PF ⋅ 𝑥 Φ' = ∑%∉'! 𝑦 |Φ'∪{ !,% }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ' ↦ |𝑅⟩
• Actually, Φ' ' aren’t fully orthogonal. But composing with
𝑈 ← (2-design) makes the “non-orthogonal” ones hard to find.

73

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

74

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following magical property:

75

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following magical property:

𝑈prO𝑡 queries to

76

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following magical property:

𝑈prO =𝑡 queries to prO𝑡 queries to apply 𝑈⊗) to the
purifying register+

77

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

78

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs:

79

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: Hybrid 2 ≈ Hybrid 4 works for any 𝟐-design.

80

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: Hybrid 2 ≈ Hybrid 4 works for any 𝟐-design.
So by a triangle inequality:

𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈

81

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: Hybrid 2 ≈ Hybrid 4 works for any 𝟐-design.
So by a triangle inequality:

𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈

82

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: Hybrid 2 ≈ Hybrid 4 works for any 𝟐-design.
So by a triangle inequality:

𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈
Finally, replace 𝑃 and 𝐹 with pseudorandom.

83

The path-recording oracle gives a new way
to analyze Haar-random unitaries.

84

The path-recording oracle gives a new way
to analyze Haar-random unitaries.

Meta-approach: to prove a statement about algorithms
that use a Haar-random 𝑈, just prove it with prO!

85

The path-recording oracle gives a new way
to analyze Haar-random unitaries.

Meta-approach: to prove a statement about algorithms
that use a Haar-random 𝑈, just prove it with prO!
Can be significantly easier than bounding moments of 𝑈.

86

The path-recording oracle gives a new way
to analyze Haar-random unitaries.

Meta-approach: to prove a statement about algorithms
that use a Haar-random 𝑈, just prove it with prO!
Can be significantly easier than bounding moments of 𝑈.

Already several applications:
• [MH24]: elementary proof of [SHH24] gluing lemma
• [ABGL24]: compress PRU key length + other results

87

PRU future directions

88

PRU future directions

• Complexity: unitary natural proofs barrier?

89

PRU future directions

• Complexity: unitary natural proofs barrier?
• Math: implications for random matrix theory?

90

PRU future directions

• Complexity: unitary natural proofs barrier?
• Math: implications for random matrix theory?
• Physics: are random circuits PRUs?

91

PRU future directions

• Complexity: unitary natural proofs barrier?
• Math: implications for random matrix theory?
• Physics: are random circuits PRUs?
• Cryptography:

- relationship to PRPs?
- applications to uncloneable crypto?
- PRUs without one-way functions?

92

PRU future directions

• Complexity: unitary natural proofs barrier?
• Math: implications for random matrix theory?
• Physics: are random circuits PRUs?
• Cryptography:

- relationship to PRPs?
- applications to uncloneable crypto?
- PRUs without one-way functions?

Thanks!

