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Haar measure: unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar
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Challenge: 
Haar-random unitaries are exponentially complex
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Challenge: 
Haar-random unitaries are exponentially complex

𝑈

SU(2!)

𝑈 ∼ Haar

…

exp(𝑛)

minimal circuit for 𝑈

This makes them impractical for most applications!
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This motivates pseudorandom unitaries [JLS18].
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This motivates pseudorandom unitaries [JLS18].

PRUs: efficiently-computable unitaries that 
are indistinguishable from Haar-random.

Haar random
𝑈 ← SU(2!)

computationally indistinguishable

PRU
𝑈 ← {𝑈"}

≈
Classical analogue: pseudorandom functions 
(PRFs) or pseudorandom permutations (PRPs)
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Open question: provably-secure PRUs

1) Many proposed constructions: 

[JLS18]

2) Best-known security: 
non-adaptive
[MPSY24,CBBDHX24]

×QFT PRF ×QFT PRF

[MPSY24]

×PRP PRF × C

Clifford

×
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Open question: provably-secure PRUs

1) Many proposed constructions: 

[JLS18]

×

𝑈
𝑈
𝑈

𝐴" 𝐴#

QFT PRF ×QFT PRF

[MPSY24]

×PRP PRF × C

Clifford

×

non-adaptive 
distinguisher

2) Best-known security: 
non-adaptive
[MPSY24,CBBDHX24]
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Same construction 
as [MPSY24]:
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New technique: the path-recording oracle
• efficient simulation of Haar-random unitaries
• only uses basic quantum info (purification)

This work: PRUs exist 
(if one-way functions exist)

Same construction 
as [MPSY24]:

×PRP PRF × C
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In fact, we go a step further. 
In the [JLS18] PRU definition, the distinguisher 
only queries 𝑈. What if it queries 𝑼 and 𝑼#?

We also prove that “strong” PRUs exist 
(assuming OWFs).

×PRP PRF × 𝐶$𝐶# ×Construction: 

But for this talk, I’ll focus on the weaker notion.
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Rest of this talk

• Warmup: simulating a random function

• This work: simulating a random unitary

• Analyze PRUs
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Warmup: simulating a random function 

𝐴
𝑥

efficient simulation
If 𝑥 is new:
• sample random 𝑦
• store (𝑥, 𝑦)

If 𝑥 was seen before:
• return stored 𝑦

𝑦𝐴
𝑥
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random
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Warmup: simulating a random function 

𝐴
𝑥

efficient simulation
If 𝑥 is new:
• sample random 𝑦
• store (𝑥, 𝑦)

If 𝑥 was seen before:
• return stored 𝑦

𝑦

Clearly identical from 𝐴$𝑠 point of view!

𝐴
𝑥
𝑓(𝑥)

random
𝑓
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Note: properly simulating a random function 𝑓 is quite 
subtle if 𝐴 can query 𝑓 in superposition:
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Note: properly simulating a random function 𝑓 is quite 
subtle if 𝐴 can query 𝑓 in superposition:

"
!

𝛼!|𝑥⟩

"
!

𝛼! −1 "(!)|𝑥⟩𝐴
random
𝑓

[Z19] simulates this via the compressed oracle.
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Note: properly simulating a random function 𝑓 is quite 
subtle if 𝐴 can query 𝑓 in superposition:

"
!

𝛼!|𝑥⟩

"
!

𝛼! −1 "(!)|𝑥⟩𝐴
random
𝑓

[Z19] simulates this via the compressed oracle.
Our path-recording oracle is a unitary analog of [Z19].
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The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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• 𝑅 = (𝑥(, 𝑦( , … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

The path-recording oracle prO
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"
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44

• 𝑅 = (𝑥(, 𝑦( , … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

(actually, we should have a (
*+|'|

in front)



45

• 𝑅 = (𝑥(, 𝑦( , … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

(actually, we should have a (
*+|'|

in front)

Note: prO is an isometry.
Intuition: 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩ uniquely determines 𝑥 |𝑅⟩.
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Efficient simulation𝑈 ← Haar

• 𝑅 = (𝑥(, 𝑦( , … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

𝐴# ⋯|0⟩
prO

|∅⟩

𝐴%
prO

𝐴# ⋯|0⟩ 𝑈 𝐴%
𝑈

|𝑨𝑼⟩ 𝝆

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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Efficient simulation𝑈 ← Haar

• 𝑅 = (𝑥(, 𝑦( , … , (𝑥) , 𝑦))}
• sum over 𝑦 ∉ {𝑦(, … , 𝑦)}

𝐴# ⋯|0⟩
prO

|∅⟩

𝐴%
prO

𝐴# ⋯|0⟩ 𝑈 𝐴%
𝑈

|𝑨𝑼⟩ 𝝆

Claim: 𝔼𝑼←𝐇𝐚𝐚𝐫 |𝑨𝑼⟩⟨𝑨𝑼| and 𝝆 have trace distance ≤ 𝑡$/2!.

The path-recording oracle prO

prO|𝑥⟩
|𝑅⟩

"
%∉'

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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Up next: a few examples
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|0⟩ 𝑈|0⟩𝑈

Example 1: one query on |0⟩
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For 𝑈 ← Haar, this is maximally mixed.|0⟩ 𝑈|0⟩𝑈

Example 1: one query on |0⟩
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∑% 𝑦 ⊗ | 0, 𝑦 ⟩

For 𝑈 ← Haar, this is maximally mixed.

|0⟩

|∅⟩

|0⟩ 𝑈|0⟩𝑈

prO

Example 1: one query on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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∑% 𝑦 ⊗ | 0, 𝑦 ⟩

For 𝑈 ← Haar, this is maximally mixed.

|0⟩

|∅⟩

|0⟩ 𝑈|0⟩𝑈

prO
trace out/measure

Example 1: one query on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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∑% 𝑦 ⊗ | 0, 𝑦 ⟩

For 𝑈 ← Haar, this is maximally mixed.

|0⟩

|∅⟩

After tracing out: uniform mixture over |𝑦⟩, 
which is maximally mixed.

|0⟩ 𝑈|0⟩𝑈

prO
trace out/measure

Example 1: one query on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

Example 2: two queries on |0⟩
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|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈 For 𝑈 ← Haar, this is maximally mixed on 
the symmetric subspace (swap-invariant).

Example 2: two queries on |0⟩
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|0⟩ prO

prO
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|0⟩ 𝑈|0⟩𝑈

∑%"-%# 𝑦(, 𝑦. ⊗ | 0, 𝑦( , (0, 𝑦.) ⟩

|0⟩

|∅⟩

Remaining state: 𝑦(, 𝑦. + 𝑦., 𝑦( for random 
distinct 𝑦(, 𝑦.. This is swap-invariant + 
almost maximally random. 

|0⟩ 𝑈|0⟩𝑈

|0⟩ prO

prO
trace out/measure

For 𝑈 ← Haar, this is maximally mixed on 
the symmetric subspace (swap-invariant).

Example 2: two queries on |0⟩

prO 𝑥 𝑅 = ∑%∉'! 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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Next, we’ll sketch:
path-recording oracle prO ≈ Haar-random 𝑈
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Next, we’ll sketch:
path-recording oracle prO ≈ Haar-random 𝑈

𝐴( ⋯|0⟩ 𝐴)
𝑈 ← Haar

prO≈𝑈
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Next, we’ll sketch:
path-recording oracle prO ≈ Haar-random 𝑈

𝐴( ⋯|0⟩ 𝐴)
𝑈 ← Haar

prO≈

The plan: hybrid argument.
The same proof will also show existence of PRUs!

𝑈
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Hybrid 0

𝑈
𝑈 ← Haar
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

Step 1: insert random permutation 𝑃 random ±1 diagonal 𝐹.

𝑃 =
1

1
1

𝐹 =
+1

−1
−1
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

≡

∑!,# |𝑃, 𝐹⟩

Step 2: replace random 𝑃, 𝐹 with a purification.
• Initialize external/ancilla system to ∑/,1 |𝑃, 𝐹⟩

• On each query, apply 𝑃 ⋅ 𝐹 controlled on |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝑅 = { 𝑥(, 𝑦( , … , 𝑥) , 𝑦) } can define |Φ'⟩ s.t.
ctl-PF ⋅ 𝑥 Φ' = ∑%∉'! 𝑦 |Φ'∪{ !,% }⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝑅 = { 𝑥(, 𝑦( , … , 𝑥) , 𝑦) } can define |Φ'⟩ s.t.
ctl-PF ⋅ 𝑥 Φ' = ∑%∉'! 𝑦 |Φ'∪{ !,% }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ' ↦ |𝑅⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

≡ ≈

∑!,# |𝑃, 𝐹⟩

Step 3: For any 𝑅 = { 𝑥(, 𝑦( , … , 𝑥) , 𝑦) } can define |Φ'⟩ s.t.
ctl-PF ⋅ 𝑥 Φ' = ∑%∉'! 𝑦 |Φ'∪{ !,% }⟩

• Intuition: ctl-PF behaves like prO, up to relabeling Φ' ↦ |𝑅⟩
• Actually, Φ' ' aren’t fully orthogonal. But composing with 
𝑈 ← (2-design) makes the “non-orthogonal” ones hard to find.
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following magical property:
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following magical property:

𝑈prO𝑡 queries to 
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

Step 4: Turns out prO has the following magical property:

𝑈prO =𝑡 queries to prO𝑡 queries to apply 𝑈⊗) to the 
purifying register+
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𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩
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𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: 
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𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: Hybrid 2 ≈ Hybrid 4 works for any 𝟐-design. 
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So by a triangle inequality: 

𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈
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Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: Hybrid 2 ≈ Hybrid 4 works for any 𝟐-design. 
So by a triangle inequality: 

𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈



82

Hybrid 0

𝑈
𝑈 ← Haar 𝑈 ← Haar

𝑃 ← 𝑆*
𝐹 ← ±1 *

Hybrid 1

𝑃𝐹 𝑈

≡

𝑈 ← Haar

Hybrid 2

𝑃𝐹 𝑈

𝑈 ← Haar

Hybrid 3

𝑈prO

Hybrid 4

prO

≡ ≈ ≡

∑!,# |𝑃, 𝐹⟩

How we get PRUs: Hybrid 2 ≈ Hybrid 4 works for any 𝟐-design. 
So by a triangle inequality: 

𝑃𝐹 ⋅ (Clifford C) ≈ 𝑃𝐹 ⋅ Haar 𝑈 ≡ Haar 𝑈
Finally, replace 𝑃 and 𝐹 with pseudorandom.
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to analyze Haar-random unitaries.
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The path-recording oracle gives a new way 
to analyze Haar-random unitaries.

Meta-approach: to prove a statement about algorithms 
that use a Haar-random 𝑈, just prove it with prO!
Can be significantly easier than bounding moments of 𝑈.

Already several applications:
• [MH24]: elementary proof of [SHH24] gluing lemma 
• [ABGL24]: compress PRU key length + other results
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PRU future directions

• Complexity: unitary natural proofs barrier? 
• Math: implications for random matrix theory?
• Physics: are random circuits PRUs?
• Cryptography: 

- relationship to PRPs?
- applications to uncloneable crypto? 
- PRUs without one-way functions?

Thanks!


