How to Construct Random Unitaries

Fermi Ma joint work with Hsin-Yuan Huang

Haar measure: unique unitarily invariant measure on $SU(2^n)$

Haar-random unitaries show up everywhere:

Philosophy: "When good choices abound, guessing randomly can be surprisingly fruitful" (Quanta Magazine)

minimal circuit for U

minimal circuit for U

 $\exp(n)$ depth

So even if a Haar-random unitary "solves" your problem, this often isn't good enough!

Pseudorandom unitaries (PRUs): efficient quantum circuits $\{U_k\}$ s.t. no poly-time alg A can distinguish

[JLS18]

Pseudorandom unitaries (PRUs): efficient quantum circuits $\{U_k\}$ s.t. no poly-time alg A can distinguish

• $U \leftarrow \{U_k\}$

[JLS18]

Pseudorandom unitaries (PRUs): efficient quantum circuits $\{U_k\}$ s.t. no poly-time alg *A* can distinguish

- $U \leftarrow \{U_k\}$
- $U \leftarrow$ Haar

[JLS18]

Pseudorandom unitaries (PRUs): efficient quantum circuits $\{U_k\}$ s.t. no poly-time alg A can distinguish

• $U \leftarrow \{U_k\}$

• $U \leftarrow$ Haar

Pseudorandom unitaries (PRUs): efficient quantum circuits $\{U_k\}$ s.t. no poly-time alg A can distinguish

• $U \leftarrow \{U_k\}$

• $U \leftarrow$ Haar

Classical analogue: pseudorandom functions (PRFs) or pseudorandom permutations (PRPs)

Many candidate constructions:

Many candidate constructions: $\begin{bmatrix} JLS18 \end{bmatrix}$ $F \cdot H \cdot F \cdot H$ function Hadamard

State of the art:

State of the art:

[MPSY24, CBBDHX23] obtain PRUs secure against **non-adaptive** algorithms

State of the art: [MPSY24, CBBDHX23] obtain PRUs secure against **non-adaptive** algorithms

Why has it been hard to prove PRU security?

Why has it been hard to prove PRU security?

Possible reason: we lack "user-friendly" techniques for analyzing Haar-random unitaries.
Possible reason: we lack "user-friendly" techniques for analyzing Haar-random unitaries.

Possible reason: we lack "user-friendly" techniques for analyzing Haar-random unitaries.

Goal:
$$\mathbb{E}_{U \leftarrow PRU} |A^U\rangle \langle A^U|$$

 \approx
 $\mathbb{E}_{U \leftarrow Haar} |A^U\rangle \langle A^U|$

$$|0\rangle \begin{bmatrix} U \\ A_1 \end{bmatrix} \begin{bmatrix} U \\ A_2 \end{bmatrix} \begin{bmatrix} ... \\ \vdots \end{bmatrix} = |A^U\rangle$$

bounding moments of Haar-random *U* is often quite involved!

Possible reason: we lack "user-friendly" techniques for analyzing Haar-random unitaries.

Goal:
$$\mathbb{E}_{U \leftarrow PRU} |A^U\rangle \langle A^U|$$

 \approx
 $\mathbb{E}_{U \leftarrow Haar} |A^U\rangle \langle A^U|$

$$|0\rangle \begin{bmatrix} U \\ A_1 \end{bmatrix} A_2 \begin{bmatrix} U \\ A_2 \end{bmatrix} \cdots \begin{bmatrix} J \\ J \end{bmatrix} \coloneqq |A^U\rangle$$

bounding moments of Haar-random *U* is often quite involved!

e.g., Weingarten calculus

Possible reason: we lack "user-friendly" techniques for analyzing Haar-random unitaries.

Goal:
$$\mathbb{E}_{U \leftarrow PRU} |A^U\rangle \langle A^U|$$

 \approx
 $\mathbb{E}_{U \leftarrow Haar} |A^U\rangle \langle A^U|$

$$0\rangle \begin{bmatrix} U \\ A_1 \end{bmatrix} A_2 \begin{bmatrix} ... \\ ... \end{bmatrix} + := |A^U\rangle$$

bounding moments of Haar-random *U* is often quite involved!

e.g., Weingarten calculus

Theorem 3.1. Let k be a positive integer. For any permutation $\sigma \in S_k$ and nonnegative integer g, we have

$$(k-1)^g \# \mathsf{P}(\sigma, |\sigma|) \le \# \mathsf{P}(\sigma, |\sigma| + 2g) \le (6k^{7/2})^g \# \mathsf{P}(\sigma, |\sigma|).$$

Theorem 3.2. For any $\sigma \in S_k$ and $d > \sqrt{6}k^{7/4}$,

$$\frac{1}{1-\frac{k-1}{d^2}} \leq \frac{(-1)^{|\sigma|} d^{k+|\sigma|} \operatorname{Wg}^{U}(\sigma, d)}{\# P(\sigma, |\sigma|)} \leq \frac{1}{1-\frac{6k^{7/2}}{d^2}}.$$

In addition, the l.h.s inequality is valid for any $d \ge k$.

Theorem: PRUs exist (assuming one-way functions)

$$U = P \cdot F \cdot C \text{[MPSY24]}$$
permutation function Clifford

Theorem: PRUs exist (assuming one-way functions)

$$U = P \cdot F \cdot C \text{[MPSY24]}$$
permutation function Clifford

We prove this via a new technique: **the path-recording oracle**.

Theorem: PRUs exist (assuming one-way functions)

$$U = P \cdot F \cdot C \text{[MPSY24]}$$
permutation function Clifford

We prove this via a new technique: the path-recording oracle.

• analyze random unitaries using purification

Theorem: PRUs exist (assuming one-way functions)

$$U = P \cdot F \cdot C \text{[MPSY24]}$$
permutation function Clifford

We prove this via a new technique: the path-recording oracle.

- analyze random unitaries using purification
- we also show: any algorithm that queries a Haar-random U can be efficiently implemented (to inverse-exp error)

In fact, we go a step further.

In fact, we go a step further. In the [JLS18] PRU definition, the distinguisher can only query U.

In fact, we go a step further. In the [JLS18] PRU definition, the distinguisher can only query U. What if it queries both U and U^{\dagger} ?

In fact, we go a step further. In the [JLS18] PRU definition, the distinguisher can only query U. What if it queries both U and U^{\dagger} ?

Standard PRU distinguisher

In fact, we go a step further. In the [JLS18] PRU definition, the distinguisher can only query U. What if it queries both U and U^{\dagger} ?

Standard PRU distinguisher

Strong PRU distinguisher

In fact, we go a step further. In the [JLS18] PRU definition, the distinguisher can only query U. What if it queries both U and U^{\dagger} ?

Standard PRU distinguisher

Strong PRU distinguisher

Theorem: Strong PRUs exist (assuming one-way functions)

$$U = C_1 \cdot P \cdot F \cdot C_2$$

In fact, we go a step further. In the [JLS18] PRU definition, the distinguisher can only query *U*. What if it queries both *U* and *U*[†]?

Standard PRU distinguisher

Strong PRU distinguisher

This talk Theorem: *Strong* **PRUs exist
(assuming one-way functions)**

 $U = C_1 \cdot P \cdot F \cdot C_2$

Plan:

Plan:

(1) efficiently simulating a random **function**

Plan:

(1) efficiently simulating a random function(2) efficiently simulating a Haar-random unitary

Plan:

(1) efficiently simulating a random function

(2) efficiently simulating a Haar-random **unitary**

(3) two proofs at once:

- our simulator works
- PRUs exist

Up next:

How to simulate a random function

Warmup: A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$.

Warmup: A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$. Standard

Warmup: A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$. **Standard**

A f random f

Warmup: A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$. **Standard**

Warmup: A^f is a **classical** alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$. **Standard**

Warmup: A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$. **Standard**

(exponential time)

Simulating a random function **Warmup:** A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$. **Standard** Simulation $A \quad f(x) \quad f$ random f(exponential time)

Warmup: A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$.

 $\operatorname{pm} f$

A

(exponential time)

Simulation

Initialization: $R = \emptyset$

If *x* was not queried before:

- sample $y \leftarrow \{0,1\}$
- insert (x, y) into R If x was queried before:
Warmup: A^f is a classical alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$.

A

A

Standard

random *f*

(exponential time)

Simulation

Initialization: $R = \emptyset$

If *x* was not queried before:

- sample $y \leftarrow \{0,1\}$
- insert (x, y) into R If *x* was queried before:
 - look up (x, y), return y

Warmup: A^f is a **classical** alg querying a random $f: \{0,1\}^n \rightarrow \{0,1\}$.

A

(exponential time)

Simulation

Initialization: $R = \emptyset$

If *x* was not queried before:

- sample $y \leftarrow \{0,1\}$
- insert (x, y) into R

If *x* was queried before:

• look up (x, y), return y

(polynomial-time + stateful)

What if A^f is quantum and queries f in superposition?

What if A^f is quantum and queries f in **superposition**?

What if A^f is quantum and queries f in **superposition**?

What if A^{f} is quantum and queries f in **superposition**?

What if A^f is quantum and queries f in **superposition**?

Unclear how to sample f(x) "on the fly."

What if A^{f} is quantum and queries f in **superposition**?

Unclear how to sample f(x) "on the fly."

Simulation seems to require knowing *x*, but measuring *x* destroys the superposition!

What if A^{f} is quantum and queries f in **superposition**?

Unclear how to sample f(x) "on the fly."

Simulation seems to require knowing *x*, but measuring *x* destroys the superposition!

Solution: the compressed oracle [Zhandry18]

$$\begin{array}{c} |R\rangle \\ |c0\rangle \\ |x\rangle \end{array}$$

Compressed oracle [Z18]: $R = \{x_1, \dots, x_t\}$ is a set $\begin{vmatrix} R \\ - \end{vmatrix} = c0$ Compressed oracle [Z18]: $R = \{x_1, ..., x_t\}$ is a set $R = \{x_1, ..., x_t\}$ is a set $R = \{x_1, ..., x_t\}$ is a set $R \ge R$ is a unit vector labeled by R Compressed oracle [Z18]: $R = \{x_1, ..., x_t\}$ is a set $R = \{x_1, ..., x_t\}$ is a set R

$$\begin{vmatrix} R \\ x \end{vmatrix} - \begin{bmatrix} c \\ - \end{bmatrix} \begin{vmatrix} R \\ x \end{vmatrix}$$

- $R = \{x_1, ..., x_t\}$ is a **set**
- $|R\rangle$ is a unit vector labeled by R
- \bigoplus is symmetric difference

$$\begin{vmatrix} R \\ x \end{vmatrix} - \begin{bmatrix} c0 \\ - \end{bmatrix} \begin{vmatrix} R \oplus \{x\} \\ x \end{vmatrix}$$

$$R = \{x_1, ..., x_t\}$$
 is a **set**

- $|R\rangle$ is a unit vector labeled by R
- \oplus is symmetric difference

Intuition: think of cO as "recording" x onto the $|R\rangle$ register

$$\begin{vmatrix} R \\ x \end{vmatrix} - \begin{bmatrix} c \\ - \end{bmatrix} \begin{vmatrix} R \\ x \end{vmatrix}$$

- $R = \{x_1, ..., x_t\}$ is a **set**
- $|R\rangle$ is a unit vector labeled by R
- \oplus is symmetric difference

Intuition: think of cO as "recording" x onto the $|R\rangle$ register

$$\begin{vmatrix} R \\ R \end{vmatrix} - \begin{bmatrix} c \\ R \\ R \\ R \\ R \end{vmatrix}$$

• $R = \{x_1, ..., x_t\}$ is a **set**

- $|R\rangle$ is a unit vector labeled by R
- \oplus is symmetric difference

$$\begin{vmatrix} R \\ x \end{vmatrix} - \begin{bmatrix} c \\ - \end{bmatrix} \begin{vmatrix} R \\ x \end{vmatrix}$$

• $R = \{x_1, ..., x_t\}$ is a **set**

• $|R\rangle$ is a unit vector labeled by R

• \oplus is symmetric difference

$$|0\rangle = \begin{bmatrix} A_1 \\ A_1 \end{bmatrix} = \begin{bmatrix} O_f \\ A_t \end{bmatrix} = \begin{bmatrix} O_f \\ A_t \end{bmatrix}$$

Standard (exp-time)

$$\begin{vmatrix} R \\ x \end{vmatrix} - \begin{bmatrix} c \\ - \end{bmatrix} \begin{vmatrix} R \\ x \end{vmatrix}$$

$$|x\rangle - O_f - (-1)^{f(x)}|x\rangle$$
$$|0\rangle - A_1 - O_f - \dots - A_t - O_f$$

Standard (exp-time)

- $R = \{x_1, ..., x_t\}$ is a **set**
- $|R\rangle$ is a unit vector labeled by R
- \oplus is symmetric difference

$$\begin{vmatrix} R \\ x \end{vmatrix} = \begin{bmatrix} c0 \\ x \end{vmatrix} = \begin{vmatrix} R \oplus \{x\} \\ x \end{vmatrix}$$

- $R = \{x_1, ..., x_t\}$ is a **set**
- $|R\rangle$ is a unit vector labeled by R
- \oplus is symmetric difference

$$\begin{vmatrix} R \\ x \end{vmatrix} - \begin{bmatrix} c0 \\ x \end{vmatrix} - \begin{vmatrix} R \oplus \{x\} \\ x \end{vmatrix}$$

• $R = \{x_1, ..., x_t\}$ is a **set**

- $|R\rangle$ is a unit vector labeled by R
- \oplus is symmetric difference

[Z18] proves cO is a perfect simulation: $\mathbb{E}_f |A^f\rangle \langle A^f| = \rho$

$$\begin{vmatrix} R \\ x \end{vmatrix} = \begin{bmatrix} c0 \\ x \end{vmatrix} = \begin{vmatrix} R \oplus \{x\} \\ x \end{vmatrix}$$

• $R = \{x_1, ..., x_t\}$ is a **set**

- $|R\rangle$ is a unit vector labeled by R
- \oplus is symmetric difference

How [Z18] proves it:

[Z18] proves cO is a perfect simulation: $\mathbb{E}_f |A^f\rangle\langle A^f| = \rho$

Compressed oracle [Z18]: $R = \{x_1, \dots, x_t\}$ is a set $|R\rangle - c0 - |R \oplus \{x\}\rangle$ $|R\rangle$ is a unit vector labeled by R $|x\rangle - c0 - |x\rangle$ \oplus is symmetric difference

How [Z18] proves it: Replace random function f with purification

 $\sum_{f} |A^{f}\rangle \otimes |f\rangle,$

[Z18] proves cO is a perfect simulation: $\mathbb{E}_f |A^f\rangle\langle A^f| = \rho$

Compressed oracle [Z18]: $R = \{x_1, \dots, x_t\}$ is a set $|R\rangle - c0 - |R \oplus \{x\}\rangle$ $|R\rangle$ is a unit vector labeled by R $|x\rangle - c0 - |x\rangle$ \oplus is symmetric difference

How [Z18] proves it: Replace random function f with purification

 $\sum_{f} |A^{f}\rangle \otimes |f\rangle$,

and view $|f\rangle$ in the Fourier basis.

[Z18] proves c0 is a perfect simulation: $\mathbb{E}_f |A^f\rangle \langle A^f| = \rho$

This work:

Simulate queries to **Haar-random unitaries**

$O_f = \begin{pmatrix} +1 & & \\ & -1 & \\ & \ddots & \\ & & -1 \end{pmatrix}$

This work:

Simulate queries to **Haar-random unitaries**

$$U = \begin{pmatrix} U_{11} & U_{12} & \cdots & U_{1N} \\ U_{21} & U_{22} & & \\ \vdots & & \ddots & \\ U_{N1} & & & U_{NN} \end{pmatrix}$$

This work:

Simulate queries to **Haar-random unitaries**

Up next: the path-recording oracle (our simulator for Haar-random unitaries)

The path-recording oracle prO

The path-recording oracle prO

The path-recording oracle prO $\begin{array}{c} R \\ R \\ x \\ \end{array} \\ \begin{array}{c} R \\ prO \end{array}$ • $R = \{(x_1, y_1), \dots, (x_t, y_t)\} \text{ is a set of ordered pairs} \\ a \text{ set of ordered pairs} \end{array}$

The path-recording oracle prO $|R\rangle = prO = \sum_{y \notin R} |y\rangle |R \cup \{(x, y)\}\rangle$

• $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is a set of ordered pairs
The path-recording oracle prO $|R\rangle = prO = \sum_{y \notin R} |y\rangle |R \cup \{(x, y)\} \}$

• $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is a set of ordered pairs

• sum over $y \notin \{y_1, \dots, y_t\}$

The path-recording oracle pro $|R\rangle = pro \int_{y \notin R} |y\rangle |R \cup \{(x, y)\} \rangle$

• $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is a set of ordered pairs

• sum over
$$y \notin \{y_1, \dots, y_t\}$$

(actually, we should have a $\frac{1}{\sqrt{N-|R|}}$ in front)

The path-recording oracle prO $|R\rangle = pr0 \left[\sum_{y \notin R} |y\rangle | R \cup \{(x, y)\} \right)$ a set of ordered pairs sum over $y \notin \{y_1, \dots, y_t\}$

- $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is

(actually, we should have a $\frac{1}{\sqrt{N-|R|}}$ in front)

Note: prO is an isometry.

The path-recording oracle prO $|R\rangle - prO \left[\sum_{y \notin R} |y\rangle|R \cup \{(x, y)\} \right)$ a set of ordered pairs sum over $y \notin \{y_1, \dots, y_t\}$

- $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is

(actually, we should have a $\frac{1}{\sqrt{N-|R|}}$ in front)

Note: prO is an isometry. Intuition: $|y\rangle|R \cup \{(x,y)\}\rangle$ uniquely determines $|x\rangle|R\rangle$.

The path-recording oracle prO $|R\rangle = prO = \sum_{y \notin R} |y\rangle |R \cup \{(x, y)\} \}$

• $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is a set of ordered pairs

• sum over $y \notin \{y_1, \dots, y_t\}$

The path-recording oracle pro $|R\rangle = pro + \sum_{y \notin R} |y\rangle |R \cup \{(x, y)\} \rangle$

- $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is a set of ordered pairs
- sum over $y \notin \{y_1, \dots, y_t\}$

Standard (exp-time)

- $R = \{(x_1, y_1), \dots, (x_t, y_t)\}$ is a set of ordered pairs
- sum over $y \notin \{y_1, \dots, y_t\}$

Efficient simulation

Standard (exp-time)

Up next: a few examples

$$|0\rangle - U - U|0\rangle$$

Average over $U \leftarrow$ Haar: $U|0\rangle$ becomes the maximally mixed state.

pro $|x\rangle|R\rangle = \sum_{y \notin R} |y\rangle|R \cup \{(x, y)\}\rangle$

$$|0\rangle - U - U|0\rangle$$
$$|0\rangle - U - U|0\rangle$$

Average over $U \leftarrow$ Haar: $U|0\rangle \otimes U|0\rangle$ is maximally mixed on the symmetric subspace.

pro $|x\rangle|R\rangle = \sum_{y \notin R} |y\rangle|R \cup \{(x, y)\}\rangle$

Average over $U \leftarrow$ Haar: $U|0\rangle \otimes U|0\rangle$ is maximally mixed on the symmetric subspace.

$$\sum_{y_1 \neq y_2} |y_1, y_2\rangle \otimes |\{(0, y_1), (0, y_2)\}\rangle$$

trace out/measure

After tracing out: mixture of $|y_1, y_2\rangle + |y_2, y_1\rangle$ for random distinct y_1, y_2 . This is almost maximally mixed on the symmetric subspace.

pro $|x\rangle|R\rangle = \sum_{y \notin R} |y\rangle|R \cup \{(x, y)\}\rangle$

Up next:

Prove two claims simultaneously

Up next:

Prove two claims simultaneously1) Our simulator works

Up next:

Prove two claims simultaneously

- 1) Our simulator works
- 2) "PFC" ensemble is a secure PRU.

Definition: $P \cdot F \cdot C$ ensemble [MPSY24]

Definition: $P \cdot F \cdot C$ ensemble [MPSY24] $P: |x\rangle \mapsto |\pi(x)\rangle$ for random **permutation** $\pi: [N] \mapsto [N]$ **Definition:** $P \cdot F \cdot C$ ensemble[MPSY24] $P: |x\rangle \mapsto |\pi(x)\rangle$ $F: |x\rangle \mapsto (-1)^{f(x)}|x\rangle$ for random permutation
 $\pi: [N] \mapsto [N]$ $f: [N] \to \{0,1\}$

C sampled from a unitary 2-design \mathfrak{D} .

Definition: $P \cdot F \cdot C$ ensemble
[MPSY24] $P: |x\rangle \mapsto |\pi(x)\rangle$ $P: |x\rangle \mapsto |\pi(x)\rangle$ $F: |x\rangle \mapsto (-1)^{f(x)}|x\rangle$ for random permutation
 $\pi: [N] \mapsto [N]$ $f: [N] \to \{0,1\}$

C sampled from a Example: $\mathfrak{D} = random Clifford$ unitary 2-design D. **Definition: P** · **F** · **C** ensemble [MPSY24] $F: |x\rangle \mapsto (-1)^{f(x)} |x\rangle$ $P: |x\rangle \mapsto |\pi(x)\rangle$ for random permutation for random function $\pi: [N] \mapsto [N]$ $f:[N] \rightarrow \{0,1\}$

Claim: prO simulates *PFC*.

Claim: prO simulates PFC.

Claim: prO simulates PFC.

 ρ is independent of the choice of $\mathfrak{D}!$

 ρ is independent of the choice of $\mathfrak{D}!$

 ρ is independent of the choice of $\mathfrak{D}!$

Implies: 1) prO simulates Haar-random $U(\mathfrak{D} = \text{Haar})$

 ρ is independent of the choice of $\mathfrak{D}!$

Implies: 1) prO simulates Haar-random U ($\mathfrak{D} =$ Haar)2) PRUs exist ($\mathfrak{D} =$ Clifford, pseudorandom P, F)

Up next: proof of this claim

Claim: prO simulates *PFC*. For **any** 2-design
$$\mathfrak{D}$$
,
 $\mathbf{TD}(\mathbb{E}_{P,F,\mathcal{C}\leftarrow\mathfrak{D}} |A^{PFC})\langle A^{PFC}|, \rho) \leq \frac{t^2}{2^n}$

Part 1: prO simulates $P \cdot F$ (random permutation and function) assuming A doesn't query on "bad" inputs.

Part 1: prO simulates $P \cdot F$ (random permutation and function) assuming A doesn't query on "bad" inputs.

For restricted algorithms A:

Part 1: prO simulates $P \cdot F$ (random permutation and function) assuming A doesn't query on "bad" inputs.

For restricted algorithms *A*:

Part 2: Insert a random *C* (sampled from any 2 design) to prevent *A* from querying on "bad" inputs.

Idea: *purify* the randomness of the permutation + function.

Idea: *purify* the randomness of the permutation + function.

standard implementation

(random π ,f)

Idea: *purify* the randomness of the permutation + function.

standard implementation

(random π ,f)

Idea: *purify* the randomness of the permutation + function.

standard implementation

(random π ,f)

$$|x\rangle - PF - (-1)^{f(x)} |\pi(x)\rangle$$

Idea: *purify* the randomness of the permutation + function.

Idea: *purify* the randomness of the permutation + function.

In the *PF*-purification, each query corresponds to controlled-*PF*: $|x\rangle \otimes |\pi, f\rangle \mapsto (-1)^{f(x)} |\pi(x)\rangle \otimes |\pi, f\rangle$

In the *PF*-purification, each query corresponds to

controlled *PF*: $|x\rangle \otimes |\pi, f\rangle \mapsto (-1)^{f(x)} |\pi(x)\rangle \otimes |\pi, f\rangle$

Rewrite the right-hand side:

In the *PF*-purification, each query corresponds to

controlled *PF*: $|x\rangle \otimes |\pi, f\rangle \mapsto (-1)^{f(x)} |\pi(x)\rangle \otimes |\pi, f\rangle$

Rewrite the right-hand side:

(1) Plug in $|\pi(x)\rangle = \sum_{y} \delta_{\pi(x)=y} |y\rangle.$

In the *PF*-purification, each query corresponds to controlled-*PF*: $|x\rangle \otimes |\pi, f\rangle \mapsto (-1)^{f(x)} |\pi(x)\rangle \otimes |\pi, f\rangle$ **Rewrite the right-hand side:** (1) Plug in $(-1)^{f(x)}\sum \delta_{\pi(x)=y}|y\rangle\otimes|\pi,f\rangle$ $|\pi(x)\rangle = \sum_{y} \delta_{\pi(x)=y} |y\rangle.$

In the *PF*-purification, each query corresponds to controlled-*PF*: $|x\rangle \otimes |\pi, f\rangle \mapsto (-1)^{f(x)} |\pi(x)\rangle \otimes |\pi, f\rangle$ **Rewrite the right-hand side:** (1) Plug in $(-1)^{f(x)} \sum \delta_{\pi(x)=y} |y\rangle \otimes |\pi, f\rangle$ $|\pi(x)\rangle = \sum_{y} \delta_{\pi(x)=y} |y\rangle.$

(2) Rearrange coefficients:

In the *PF*-purification, each query corresponds to controlled-*PF*: $|x\rangle \otimes |\pi, f\rangle \mapsto (-1)^{f(x)} |\pi(x)\rangle \otimes |\pi, f\rangle$ **Rewrite the right-hand side:** (1) Plug in $(-1)^{f(x)} \sum_{y} \delta_{\pi(x)=y} |y\rangle \otimes |\pi, f\rangle$ $|\pi(x)\rangle = \sum_{\gamma} \delta_{\pi(x)=\gamma} |\gamma\rangle.$ (2) Rearrange $\sum |y\rangle \otimes (-1)^{f(x)} \cdot \delta_{\pi(x)=y} |\pi, f\rangle$ coefficients:

$$\sum_{y} |y\rangle \otimes (-1)^{f(x)} \cdot \delta_{\pi(x)=y} |\pi, f\rangle$$

$$\sum_{y} |y\rangle \otimes (-1)^{f(x)} \cdot \delta_{\pi(x)=y} |\pi, f\rangle$$

171

path-recording oracle prO:

$|x\rangle \otimes |R\rangle \mapsto \sum_{y \notin R} |y\rangle \otimes |R \cup \{(x,y)\}\rangle$

path-recording oracle prO:

$|x\rangle \otimes |R\rangle \mapsto \sum_{y \notin R} |y\rangle \otimes |R \cup \{(x, y)\}\rangle$

Intuition: prO creates a superposition over y and simultaneously "records" (x, y)

path-recording oracle prO:

$|x\rangle \otimes |R\rangle \mapsto \sum_{y \notin R} |y\rangle \otimes |R \cup \{(x, y)\}\rangle$

Intuition: prO creates a superposition over y and simultaneously "records" (x, y)

We'll show that controlled-PF does (almost) the same thing.

Initial state: purifying register begins as $\sum_{\pi,f} |\pi, f\rangle$.

Initial state: purifying register begins as $\sum_{\pi,f} |\pi, f\rangle$.

After 1 query: purifying register is a superposition of

$$\sum_{\pi,f} (-1)^{f(x)} \cdot \delta_{\pi(x)=y} |\pi,f\rangle$$

Initial state: purifying register begins as $\sum_{\pi,f} |\pi, f\rangle$.

After 1 query: purifying register is a superposition of

$$\sum_{\pi,f} (-1)^{f(x)} \cdot \delta_{\pi(x)=y} |\pi,f\rangle$$

After t queries: purifying register is a superposition of

$$\sum_{\pi,f} (-1)^{f(x_1)+\dots+f(x_t)} \cdot \delta_{\pi(x_1)=y_1} \cdots \delta_{\pi(x_t)=y_t} |\pi, f\rangle$$

Definition: for
$$R = \{(x_1, y_1), \dots, (x_t, y_t)\}$$
, let
 $|pf_R\rangle \coloneqq \sum_{\pi, f} (-1)^{f(x_1) + \dots + f(x_t)} \cdot \delta_{\pi(x_1) = y_1} \cdots \delta_{\pi(x_t) = y_t} |\pi, f\rangle$

After t queries: purifying register is a superposition of

$$\sum_{\pi,f} (-1)^{f(x_1)+\dots+f(x_t)} \cdot \delta_{\pi(x_1)=y_1} \cdots \delta_{\pi(x_t)=y_t} |\pi, f\rangle$$

Definition: for
$$R = \{(x_1, y_1), \dots, (x_t, y_t)\}$$
, let
 $|pf_R\rangle \coloneqq \sum_{\pi, f} (-1)^{f(x_1) + \dots + f(x_t)} \cdot \delta_{\pi(x_1) = y_1} \cdots \delta_{\pi(x_t) = y_t} |\pi, f\rangle$

controlled-*PF*:
$$|x\rangle \otimes |pf_R\rangle \mapsto \sum_{y \notin R} |y\rangle \otimes |pf_{R\cup\{(x,y)\}}\rangle$$
Definition: for
$$R = \{(x_1, y_1), \dots, (x_t, y_t)\}$$
, let
 $|pf_R\rangle \coloneqq \sum_{\pi, f} (-1)^{f(x_1) + \dots + f(x_t)} \cdot \delta_{\pi(x_1) = y_1} \cdots \delta_{\pi(x_t) = y_t} |\pi, f\rangle$

Definition: for
$$R = \{(x_1, y_1), \dots, (x_t, y_t)\}$$
, let
 $|pf_R\rangle \coloneqq \sum_{\pi, f} (-1)^{f(x_1) + \dots + f(x_t)} \cdot \delta_{\pi(x_1) = y_1} \cdots \delta_{\pi(x_t) = y_t} |\pi, f\rangle$

controlled-*PF*:
$$|x\rangle \otimes |pf_R\rangle \mapsto \sum_{y \notin R} |y\rangle \otimes |pf_{R\cup\{(x,y)\}}\rangle$$

prO: $|x\rangle \otimes |R\rangle \mapsto \sum_{y \notin R} |y\rangle \otimes |R \cup \{(x,y)\}\rangle$

...unless $R = \{(x_1, y_1), ..., (x_t, y_t)\}$ has **colliding** x_i 's.

...unless $R = \{(x_1, y_1), ..., (x_t, y_t)\}$ has **colliding** x_i 's.

This is where the 2-design comes in!

...unless $R = \{(x_1, y_1), ..., (x_t, y_t)\}$ has **colliding** x_i 's.

This is where the 2-design comes in! **Claim:** inserting *C* before each query prevents collisions.

1) We defined the path-recording oracle:

prO:
$$|x\rangle|R\rangle \mapsto \sum_{y\notin R} |y\rangle|R \cup \{(x,y)\}\rangle$$

1) We defined the path-recording oracle:

prO:
$$|x\rangle|R\rangle \mapsto \sum_{y\notin R} |y\rangle|R \cup \{(x,y)\}\rangle$$

1) We defined the path-recording oracle:

prO:
$$|x\rangle|R\rangle \mapsto \sum_{y\notin R} |y\rangle|R \cup \{(x,y)\}\rangle$$

Consequence: prO simulates Haar-random unitaries + PRU exist

The path-recording oracle gives us a new way to study random unitaries.

The path-recording oracle gives us a new way to study random unitaries.

Let's see an example.

Gluing lemma [SSH24]:

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:

(1) replace each U_i with prO_i

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:(1) replace each U_i with prO_i

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:(1) replace each U_i with prO_i

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:

(1) replace each U_i with prO_i

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:(1) replace each U_i with prO_i

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:

(1) replace each U_i with prO_i (2) construct isometry Glue that maps $|R_1\rangle|R_2\rangle$ to $|R_3\rangle$

Gluing lemma [SSH24]:

If U_1 and U_2 overlap on $|B| = \omega(\log n)$ qubits, then $U_2 \cdot U_1 \approx U_3$.

Proof via path-recording:

(1) replace each U_i with prO_i (2) construct isometry Glue that maps $|R_1\rangle|R_2\rangle$ to $|R_3\rangle$

Today, we considered algorithms that query U but not U^{\dagger} .

Today, we considered algorithms that query U but not U^{\dagger} .

In the paper:

• "symmetrized" prO that simulates forward + inverse queries

Today, we considered algorithms that query U but not U^{\dagger} .

In the paper:

- "symmetrized" prO that simulates forward + inverse queries
- PRUs secure against forward + inverse queries

Today, we considered algorithms that query U but not U^{\dagger} .

In the paper:

- "symmetrized" prO that simulates forward + inverse queries
- PRUs secure against forward + inverse queries

Today, we considered algorithms that query U but not U^{\dagger} .

In the paper:

- "symmetrized" prO that simulates forward + inverse queries
- PRUs secure against forward + inverse queries

Challenge: recording the path isn't enough; also need to **erase**!

(physics) do we have the right notions of pseudorandomness?

(physics) do we have the right notions of pseudorandomness?(physics) physical interpretation of the path-recording oracle prO?

(physics) do we have the right notions of pseudorandomness?
(physics) physical interpretation of the path-recording oracle prO?
(math) consequences for random matrix theory or rep theory?

(physics) do we have the right notions of pseudorandomness?
(physics) physical interpretation of the path-recording oracle prO?
(math) consequences for random matrix theory or rep theory?
(quantum computing) use path-recording to study quantum algs?

(physics) do we have the right notions of pseudorandomness?
(physics) physical interpretation of the path-recording oracle prO?
(math) consequences for random matrix theory or rep theory?
(quantum computing) use path-recording to study quantum algs?
(crypto) PRUs without one-way functions? other applications?
Future directions

(physics) do we have the right notions of pseudorandomness? (physics) physical interpretation of the path-recording oracle prO? (math) consequences for random matrix theory or rep theory? (quantum computing) use path-recording to study quantum algs? (crypto) PRUs without one-way functions? other applications?

Thanks for listening!

arXiv: 2410.10116