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Philosophy: “When good choices abound, guessing 
randomly can be surprisingly fruitful” (Quanta Magazine) 
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exp 𝑛 depth

minimal circuit for 𝑈

𝑈

SU(2!)

𝑈 ∼ Haar

So even if a Haar-random unitary “solves” your problem, 
this often isn’t good enough!

Challenge: Haar-random unitaries are exponentially complex
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Classical analogue: pseudorandom functions (PRFs) 
or pseudorandom permutations (PRPs)
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Obtaining provably-secure PRUs has been 
a central open question.

Many candidate constructions:  

𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

𝐹 ⋅ 𝐻⋯𝐹 ⋅ 𝐻
function

[JLS18]

Hadamard

Also: 
[LQSYZ23]
[CBBDHX24]
… 

State of the art: 
[MPSY24, CBBDHX23] obtain PRUs 
secure against non-adaptive algorithms 

𝑈

𝑈
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Plan:

(1) efficiently simulating a random function

(2) efficiently simulating a Haar-random unitary

(3) two proofs at once: 
• our simulator works 
• PRUs exist

Key technical idea: a new way to efficiently 
simulate Haar-random unitaries
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|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
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|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

Intuition: think of cO as 
“recording” 𝑥 onto the 
𝑅 register
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cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation
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|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time) 
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cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time) 

𝑂,|𝑥⟩ −1 ,(.)|𝑥⟩
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cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time) 

𝑂,|𝑥⟩ −1 ,(.)|𝑥⟩

|𝐴#⟩ 𝜌
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cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time) 

𝑂,|𝑥⟩ −1 ,(.)|𝑥⟩

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌

|𝐴#⟩
cO

𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝜌
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cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

How [Z18] proves it: 

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌
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cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

How [Z18] proves it: Replace random function 𝑓 with purification

?
,

|𝐴,⟩ ⊗ 𝑓 ,

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌
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cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

How [Z18] proves it: Replace random function 𝑓 with purification

?
,

|𝐴,⟩ ⊗ 𝑓 ,

and view 𝑓 in the Fourier basis.

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌
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Another perspective: 
[Z18] simulates queries to 
random diagonal unitaries
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This work: 
Simulate queries to 
Haar-random unitaries
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Another perspective: 
[Z18] simulates queries to 
random diagonal unitaries

𝑂, =
+1

−1
⋱

−1

𝑈 =

𝑈!! 𝑈!" ⋯ 𝑈!2
𝑈"! 𝑈""
⋮ ⋱

𝑈2! 𝑈22

This work: 
Simulate queries to 
Haar-random unitaries
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Another perspective: 
[Z18] simulates queries to 
random diagonal unitaries

𝑂, =
+1

−1
⋱

−1

𝑈 =

𝑈!! 𝑈!" ⋯ 𝑈!2
𝑈"! 𝑈""
⋮ ⋱

𝑈2! 𝑈22

This work: 
Simulate queries to 
Haar-random unitaries

independent

not independent!
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Up next: the path-recording oracle

(our simulator for Haar-random unitaries)
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The path-recording oracle prO

prO
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The path-recording oracle prO

|𝑥⟩
|𝑅⟩

prO
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The path-recording oracle prO

|𝑥⟩
|𝑅⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

prO
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The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

prO
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The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}
prO
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The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

(actually, we should have a !
26|5|

in front)

prO
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The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

(actually, we should have a !
26|5|

in front)

Note: prO is an isometry.

prO
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The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

(actually, we should have a !
26|5|

in front)

Note: prO is an isometry.
Intuition: 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩ uniquely determines 𝑥 |𝑅⟩.

prO
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The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}
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Standard (exp-time) 

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}
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Efficient simulationStandard (exp-time) 

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}
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The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

Efficient simulationStandard (exp-time) 

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

|𝐴$⟩ 𝜌
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The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

Efficient simulationStandard (exp-time) 

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is 
a set of ordered pairs 

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

|𝐴$⟩ 𝜌

We show: 𝔼!←#$$% |𝐴!⟩⟨𝐴!| and 𝜌 have trace distance ≤ 𝑡&/2'.
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Up next: a few examples
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Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈
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Average over 𝑈 ← Haar: 𝑈 0 becomes the 
maximally mixed state.

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈
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Average over 𝑈 ← Haar: 𝑈 0 becomes the 
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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Average over 𝑈 ← Haar: 𝑈 0 becomes the 
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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∑3 𝑦 ⊗ | 0, 𝑦 ⟩

Average over 𝑈 ← Haar: 𝑈 0 becomes the 
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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∑3 𝑦 ⊗ | 0, 𝑦 ⟩

Average over 𝑈 ← Haar: 𝑈 0 becomes the 
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

trace out/measure

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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∑3 𝑦 ⊗ | 0, 𝑦 ⟩

Average over 𝑈 ← Haar: 𝑈 0 becomes the 
maximally mixed state.

|0⟩

|∅⟩

After tracing out: uniform mixture over |𝑦⟩, 
which is the maximally mixed state.

|0⟩ 𝑈|0⟩𝑈

prO

Example 1: one query on |0⟩

trace out/measure



126

Example 2: two queries on |0⟩
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Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈
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Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is 
maximally mixed on the symmetric subspace.

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈
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Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is 
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is 
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈
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∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is 
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is 
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

trace out/measure

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
133

∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is 
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

After tracing out: mixture of 𝑦!, 𝑦" + 𝑦", 𝑦!
for random distinct 𝑦!, 𝑦". 

|0⟩ prO

prO

Example 2: two queries on |0⟩

trace out/measure

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈



prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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|0⟩ 𝑈|0⟩𝑈

∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is 
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

After tracing out: mixture of 𝑦!, 𝑦" + 𝑦", 𝑦!
for random distinct 𝑦!, 𝑦". This is almost 
maximally mixed on the symmetric subspace.

|0⟩ 𝑈|0⟩𝑈

|0⟩ prO

prO

Example 2: two queries on |0⟩

trace out/measure
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Up next: 
Prove two claims simultaneously
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Up next: 
Prove two claims simultaneously
1) Our simulator works
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Up next: 
Prove two claims simultaneously
1) Our simulator works
2) “PFC” ensemble is a secure PRU.
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Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]
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Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation 

𝜋: 𝑁 ↦ [𝑁]
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Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation 

𝜋: 𝑁 ↦ [𝑁]

𝐹: 𝑥 ↦ −1 #(&)|𝑥⟩
for random function

𝑓: 𝑁 → {0,1}
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Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝐶 sampled from a 
unitary 2-design 𝔇.

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation 

𝜋: 𝑁 ↦ [𝑁]

𝐹: 𝑥 ↦ −1 #(&)|𝑥⟩
for random function

𝑓: 𝑁 → {0,1}
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Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝐶 sampled from a 
unitary 2-design 𝔇.

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation 

𝜋: 𝑁 ↦ [𝑁]

𝐹: 𝑥 ↦ −1 #(&)|𝑥⟩
for random function

𝑓: 𝑁 → {0,1}

Example: 
𝔇 = random Clifford



Claim: prO simulates 𝑃𝐹𝐶. 
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Claim: prO simulates 𝑃𝐹𝐶. 
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𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1

|𝐴()*⟩



Claim: prO simulates 𝑃𝐹𝐶. 
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𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

|𝐴()*⟩

𝜌



Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌 ) ≤

.!

/"
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𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

|𝐴()*⟩

𝜌



Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌 ) ≤

.!

/"

147

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

|𝐴()*⟩

𝜌

𝜌 is independent of the choice of𝔇!



Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌 ) ≤

.!

/"

148

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

Implies:

|𝐴()*⟩

𝜌

𝜌 is independent of the choice of𝔇!



Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌 ) ≤

.!

/"

149

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

1) prO simulates Haar-random 𝑈 (𝔇 = Haar)Implies:

|𝐴()*⟩

𝜌

𝜌 is independent of the choice of𝔇!



Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌 ) ≤

.!

/"

150

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

1) prO simulates Haar-random 𝑈 (𝔇 = Haar)
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Up next: proof of this claim
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Proof overview



Part 1: prO simulates 𝑃 ⋅ 𝐹 (random permutation and 
function) assuming 𝐴 doesn’t query on “bad” inputs.
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𝑃𝐹𝐴! ⋯|0⟩ ≈𝑃𝐹𝐴1

Proof overview

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

Part 2: Insert a random 𝐶 (sampled from any 2 design) to 
prevent 𝐴 from querying on “bad” inputs.

For restricted algorithms 𝐴: 



157

Analyzing queries to 𝑃𝐹



158

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.



159

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1

standard implementation

(random 𝜋,𝑓)



160

Analyzing queries to 𝑃𝐹
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Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1 𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

standard implementation purification

|𝑥⟩ −1 ,(.)|𝜋(𝑥)⟩𝑃𝐹

∑9,, |𝜋, 𝑓⟩(random 𝜋,𝑓)

purify
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Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1 𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

standard implementation purification

|𝑥⟩ −1 ,(.)|𝜋(𝑥)⟩𝑃𝐹
𝑃𝐹|𝑥⟩

|𝜋, 𝑓⟩ |𝜋, 𝑓⟩

−1 ,(.)|𝜋(𝑥)⟩

∑9,, |𝜋, 𝑓⟩(random 𝜋,𝑓)

purify
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In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓
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In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓
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In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓
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In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:
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3
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(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

(2) Rearrange 
coefficients:
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In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓
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coefficients:

?
3

𝑦 ⊗ −1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩
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In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

(2) Rearrange 
coefficients:

?
3

𝑦 ⊗ −1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩
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controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

path-recording 
oracle prO: 𝑥 ⊗ 𝑅 ↦ Z

0∉4

𝑦 ⊗ |𝑅 ∪ { 𝑥, 𝑦 }⟩
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controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

path-recording 
oracle prO: 𝑥 ⊗ 𝑅 ↦ Z

0∉4

𝑦 ⊗ |𝑅 ∪ { 𝑥, 𝑦 }⟩

Intuition: prO creates a superposition over 
𝑦 and simultaneously “records” (𝑥, 𝑦)
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controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

path-recording 
oracle prO: 𝑥 ⊗ 𝑅 ↦ Z

0∉4

𝑦 ⊗ |𝑅 ∪ { 𝑥, 𝑦 }⟩

We’ll show that controlled-𝑃𝐹 does (almost) the same thing.

Intuition: prO creates a superposition over 
𝑦 and simultaneously “records” (𝑥, 𝑦)
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controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩
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controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

Initial state: purifying register begins as ∑1,# |𝜋, 𝑓⟩.
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controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

Initial state: purifying register begins as ∑1,# |𝜋, 𝑓⟩.

?
9,,

−1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

After 𝟏 query: purifying register is a superposition of
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controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

Initial state: purifying register begins as ∑1,# |𝜋, 𝑓⟩.

?
9,,

−1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

After 𝒕 queries: purifying register is a superposition of

?
9,,

−1 , .! <⋯<, .# ⋅ 𝛿9 .! ;3!⋯𝛿9 .# ;3# |𝜋, 𝑓⟩

After 𝟏 query: purifying register is a superposition of
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After 𝒕 queries: purifying register is a superposition of

?
9,,

−1 , .! <⋯<, .# ⋅ 𝛿9 .! ;3!⋯𝛿9 .# ;3# |𝜋, 𝑓⟩

pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let
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pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let

𝑥 ⊗ pf4 ↦ Z
0∉4

𝑦 ⊗ pf4∪{ &,0 }controlled-𝑃𝐹:
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pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let

𝑥 ⊗ pf4 ↦ Z
0∉4

𝑦 ⊗ pf4∪{ &,0 }controlled-𝑃𝐹:

𝑥 ⊗ 𝑅 ↦ Z
0∉4

𝑦 ⊗ 𝑅 ∪ { 𝑥, 𝑦 }prO:
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pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let

𝑥 ⊗ pf4 ↦ Z
0∉4

𝑦 ⊗ pf4∪{ &,0 }controlled-𝑃𝐹:

𝑥 ⊗ 𝑅 ↦ Z
0∉4

𝑦 ⊗ 𝑅 ∪ { 𝑥, 𝑦 }prO:

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.
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Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:



184

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:



185

path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:
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path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

…unless 𝑅 = { 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. } has colliding 𝑥; ’s.

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:
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path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

This is where the 2-design comes in! 

…unless 𝑅 = { 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. } has colliding 𝑥; ’s.

So these are equivalent from the algorithm’s point of view:
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path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

This is where the 2-design comes in! 
Claim: inserting 𝐶 before each query prevents collisions.

…unless 𝑅 = { 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. } has colliding 𝑥; ’s.

So these are equivalent from the algorithm’s point of view:
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Recap
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Recap
1) We defined the path-recording oracle: 

prO: 𝑥 𝑅 ↦ ?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
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Recap
1) We defined the path-recording oracle: 

prO: 𝑥 𝑅 ↦ ?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

2) Using purification, we showed:

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

≈
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Recap
1) We defined the path-recording oracle: 

prO: 𝑥 𝑅 ↦ ?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

2) Using purification, we showed:

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

≈

Consequence: prO simulates Haar-random unitaries + PRU exist
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The path-recording oracle gives us a 
new way to study random unitaries. 
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The path-recording oracle gives us a 
new way to study random unitaries. 

Let’s see an example.
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𝑈!
≈

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]: 

Application: a simpler proof of the “gluing” lemma
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𝑈!
≈

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]: 
If 𝑈! and 𝑈" overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma
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𝑈!
≈

Proof via path-recording:

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]: 
If 𝑈! and 𝑈" overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma
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𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]: 
If 𝑈! and 𝑈" overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma
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𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

𝐶

𝐴
𝐵 prO!

prO"

|∅⟩
|∅⟩

Gluing lemma [SSH24]: 
If 𝑈! and 𝑈" overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma
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𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

𝐶

𝐴
𝐵 prO!

prO"

|∅⟩
|∅⟩

Gluing lemma [SSH24]: 
If 𝑈! and 𝑈" overlap on 
𝐵 = 𝜔(log 𝑛) qubits, then 

𝑈" ⋅ 𝑈! ≈ 𝑈>.
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What about inverse queries?
Today, we considered algorithms that query 𝑈 but not 𝑈+. 

Challenge: recording the path isn’t enough; also need to erase!

In the paper:
• “symmetrized” prO that simulates forward + inverse queries
• PRUs secure against forward + inverse queries
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