
How to Construct Random Unitaries

Fermi Ma
joint work with Hsin-Yuan Huang

1

2

Haar measure: unique unitarily invariant measure on SU(2!)

3

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

4

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

5

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

6

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

generate
entanglement

7

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

generate
entanglement

complexity
theory

8

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

model
black holes

generate
entanglement

complexity
theory

9

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

model
black holes

generate
entanglement

complexity
theory

uncloneable
crypto

10

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

model
black holes

generate
entanglement

complexity
theory

uncloneable
crypto

complexity
growth

11

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

model
black holes

generate
entanglement

complexity
theory

uncloneable
crypto

quantum
Shannon theory

complexity
growth

12

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

model
black holes

generate
entanglement

complexity
theory

randomized
benchmarking

uncloneable
crypto

quantum
Shannon theory

complexity
growth

13

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

commit
to a state

model
black holes

generate
entanglement

complexity
theory

randomized
benchmarking

uncloneable
crypto

quantum
Shannon theory

complexity
growth

14

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

commit
to a state

model
black holes

generate
entanglement

complexity
theory

…randomized
benchmarking

uncloneable
crypto

quantum
Shannon theory

complexity
growth

15

Haar-random unitaries show up everywhere:

Haar measure: unique unitarily invariant measure on SU(2!)
i.e., for any unitary 𝑊, if 𝑈 ∼ Haar, then 𝑊 ⋅ 𝑈 ∼ Haar

learn a
state

commit
to a state

model
black holes

generate
entanglement

complexity
theory

…randomized
benchmarking

uncloneable
crypto

quantum
Shannon theory

complexity
growth

Philosophy: “When good choices abound, guessing
randomly can be surprisingly fruitful” (Quanta Magazine)

16

Challenge: Haar-random unitaries are exponentially complex

17

𝑈

SU(2!)

𝑈 ∼ Haar

Challenge: Haar-random unitaries are exponentially complex

…

18

minimal circuit for 𝑈

𝑈

SU(2!)

𝑈 ∼ Haar

Challenge: Haar-random unitaries are exponentially complex

…

19

exp 𝑛 depth

minimal circuit for 𝑈

𝑈

SU(2!)

𝑈 ∼ Haar

Challenge: Haar-random unitaries are exponentially complex

…

20

exp 𝑛 depth

minimal circuit for 𝑈

𝑈

SU(2!)

𝑈 ∼ Haar

So even if a Haar-random unitary “solves” your problem,
this often isn’t good enough!

Challenge: Haar-random unitaries are exponentially complex

21

This motivates pseudorandom unitaries (PRUs).

22

This motivates pseudorandom unitaries (PRUs).

Pseudorandom unitaries (PRUs): efficient quantum
circuits {𝑈"} s.t. no poly-time alg 𝐴 can distinguish

[JLS18]

23

This motivates pseudorandom unitaries (PRUs).

Pseudorandom unitaries (PRUs): efficient quantum
circuits {𝑈"} s.t. no poly-time alg 𝐴 can distinguish

• 𝑈 ← {𝑈"}

[JLS18]

24

This motivates pseudorandom unitaries (PRUs).

Pseudorandom unitaries (PRUs): efficient quantum
circuits {𝑈"} s.t. no poly-time alg 𝐴 can distinguish

• 𝑈 ← {𝑈"}
• 𝑈 ← Haar

[JLS18]

25

This motivates pseudorandom unitaries (PRUs).

Pseudorandom unitaries (PRUs): efficient quantum
circuits {𝑈"} s.t. no poly-time alg 𝐴 can distinguish

• 𝑈 ← {𝑈"}
• 𝑈 ← Haar 𝐴

|𝜓⟩

𝑈|𝜓⟩
unitary
𝑈

[JLS18]

26

This motivates pseudorandom unitaries (PRUs).

Pseudorandom unitaries (PRUs): efficient quantum
circuits {𝑈"} s.t. no poly-time alg 𝐴 can distinguish

• 𝑈 ← {𝑈"}
• 𝑈 ← Haar 𝐴

|𝜓⟩

𝑈|𝜓⟩
unitary
𝑈

[JLS18]

Classical analogue: pseudorandom functions (PRFs)
or pseudorandom permutations (PRPs)

27

Obtaining provably-secure PRUs has been
a central open question.

28

Obtaining provably-secure PRUs has been
a central open question.

Many candidate constructions:

29

Obtaining provably-secure PRUs has been
a central open question.

Many candidate constructions:

𝐹 ⋅ 𝐻⋯𝐹 ⋅ 𝐻
function

[JLS18]

Hadamard

30

Obtaining provably-secure PRUs has been
a central open question.

Many candidate constructions:

𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

𝐹 ⋅ 𝐻⋯𝐹 ⋅ 𝐻
function

[JLS18]

Hadamard

31

Obtaining provably-secure PRUs has been
a central open question.

Many candidate constructions:

𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

𝐹 ⋅ 𝐻⋯𝐹 ⋅ 𝐻
function

[JLS18]

Hadamard

Also:
[LQSYZ23]
[CBBDHX24]
…

32

Obtaining provably-secure PRUs has been
a central open question.

Many candidate constructions:

𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

𝐹 ⋅ 𝐻⋯𝐹 ⋅ 𝐻
function

[JLS18]

Hadamard

State of the art:

Also:
[LQSYZ23]
[CBBDHX24]
…

33

Obtaining provably-secure PRUs has been
a central open question.

Many candidate constructions:

𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

𝐹 ⋅ 𝐻⋯𝐹 ⋅ 𝐻
function

[JLS18]

Hadamard

State of the art:
[MPSY24, CBBDHX23] obtain PRUs
secure against non-adaptive algorithms

Also:
[LQSYZ23]
[CBBDHX24]
…

34

Obtaining provably-secure PRUs has been
a central open question.

Many candidate constructions:

𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

𝐹 ⋅ 𝐻⋯𝐹 ⋅ 𝐻
function

[JLS18]

Hadamard

Also:
[LQSYZ23]
[CBBDHX24]
…

State of the art:
[MPSY24, CBBDHX23] obtain PRUs
secure against non-adaptive algorithms

𝑈

𝑈
⋮𝐴! 𝐴"

35

Why has it been hard to prove PRU security?

36

Possible reason: we lack “user-friendly” techniques for
analyzing Haar-random unitaries.

Why has it been hard to prove PRU security?

37

Possible reason: we lack “user-friendly” techniques for
analyzing Haar-random unitaries.

Why has it been hard to prove PRU security?

≔ |𝐴#⟩
𝑈

𝐴! ⋯𝐴"|0⟩
𝔼#←%&' 𝐴# 𝐴#

≈
𝔼#←())* 𝐴# 𝐴#

Goal:

38

Possible reason: we lack “user-friendly” techniques for
analyzing Haar-random unitaries.

Why has it been hard to prove PRU security?

≔ |𝐴#⟩
𝑈

𝐴! ⋯𝐴"|0⟩
𝔼#←%&' 𝐴# 𝐴#

≈
𝔼#←())* 𝐴# 𝐴#

bounding moments of
Haar-random 𝑈 is often
quite involved!

Goal:

39

Possible reason: we lack “user-friendly” techniques for
analyzing Haar-random unitaries.

Why has it been hard to prove PRU security?

≔ |𝐴#⟩
𝑈

𝐴! ⋯𝐴"|0⟩
𝔼#←%&' 𝐴# 𝐴#

≈
𝔼#←())* 𝐴# 𝐴#

bounding moments of
Haar-random 𝑈 is often
quite involved!
e.g., Weingarten calculus

Goal:

40

Possible reason: we lack “user-friendly” techniques for
analyzing Haar-random unitaries.

Why has it been hard to prove PRU security?

≔ |𝐴#⟩
𝑈

𝐴! ⋯𝐴"|0⟩
𝔼#←%&' 𝐴# 𝐴#

≈
𝔼#←())* 𝐴# 𝐴#

bounding moments of
Haar-random 𝑈 is often
quite involved!
e.g., Weingarten calculus

Goal:

41

This work

42

This work

Theorem: PRUs exist
(assuming one-way functions)

𝑈 = 𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

43

This work

We prove this via a new technique: the path-recording oracle.

Theorem: PRUs exist
(assuming one-way functions)

𝑈 = 𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

44

This work

We prove this via a new technique: the path-recording oracle.

• analyze random unitaries using purification

Theorem: PRUs exist
(assuming one-way functions)

𝑈 = 𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

45

This work

We prove this via a new technique: the path-recording oracle.

• analyze random unitaries using purification

• we also show: any algorithm that queries a Haar-random 𝑈 can
be efficiently implemented (to inverse-exp error)

Theorem: PRUs exist
(assuming one-way functions)

𝑈 = 𝑃 ⋅ 𝐹 ⋅ 𝐶
permutation function Clifford

[MPSY24]

46

This work

In fact, we go a step further.

47

This work

In fact, we go a step further. In the [JLS18] PRU definition, the
distinguisher can only query 𝑈.

48

This work

In fact, we go a step further. In the [JLS18] PRU definition, the
distinguisher can only query 𝑈. What if it queries both 𝑈 and 𝑈+?

49

This work

𝑈𝑈
𝐴! 𝐴" ⋯

Standard PRU distinguisher

In fact, we go a step further. In the [JLS18] PRU definition, the
distinguisher can only query 𝑈. What if it queries both 𝑈 and 𝑈+?

50

This work

𝑈𝑈
𝐴! 𝐴" ⋯

𝑈+𝑈
𝐴! 𝐴" ⋯

Standard PRU distinguisher Strong PRU distinguisher

In fact, we go a step further. In the [JLS18] PRU definition, the
distinguisher can only query 𝑈. What if it queries both 𝑈 and 𝑈+?

51

This work

𝑈𝑈
𝐴! 𝐴" ⋯

𝑈+𝑈
𝐴! 𝐴" ⋯

Theorem: Strong PRUs exist
(assuming one-way functions) 𝑈 = 𝐶! ⋅ 𝑃 ⋅ 𝐹 ⋅ 𝐶"

In fact, we go a step further. In the [JLS18] PRU definition, the
distinguisher can only query 𝑈. What if it queries both 𝑈 and 𝑈+?

Standard PRU distinguisher Strong PRU distinguisher

52

This work

𝑈+𝑈
𝐴! 𝐴" ⋯

Theorem: Strong PRUs exist
(assuming one-way functions) 𝑈 = 𝐶! ⋅ 𝑃 ⋅ 𝐹 ⋅ 𝐶"

In fact, we go a step further. In the [JLS18] PRU definition, the
distinguisher can only query 𝑈. What if it queries both 𝑈 and 𝑈+?

Strong PRU distinguisher

𝑈𝑈
𝐴! 𝐴" ⋯

Standard PRU distinguisher

This talk

53

Key technical idea: a new way to efficiently
simulate Haar-random unitaries

54

Plan:

Key technical idea: a new way to efficiently
simulate Haar-random unitaries

55

Plan:

(1) efficiently simulating a random function

Key technical idea: a new way to efficiently
simulate Haar-random unitaries

56

Plan:

(1) efficiently simulating a random function

(2) efficiently simulating a Haar-random unitary

Key technical idea: a new way to efficiently
simulate Haar-random unitaries

57

Plan:

(1) efficiently simulating a random function

(2) efficiently simulating a Haar-random unitary

(3) two proofs at once:
• our simulator works
• PRUs exist

Key technical idea: a new way to efficiently
simulate Haar-random unitaries

58

Up next:
How to simulate a random function

59

Simulating a random function

60

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

61

Standard

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

62

Standard

𝐴 𝑓

random 𝑓

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

63

Standard

𝐴
𝑥

𝑓

random 𝑓

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

64

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓

random 𝑓

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

65

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓

random 𝑓

(exponential time)

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

66

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓

Simulation

random 𝑓

(exponential time)

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

67

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴

Simulation

random 𝑓

(exponential time)

Initialization: 𝑅 = ∅

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

68

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴
𝑥

Simulation

random 𝑓

(exponential time)

Initialization: 𝑅 = ∅

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

69

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴
𝑥

Simulation

random 𝑓

(exponential time)

Initialization: 𝑅 = ∅
If 𝑥 was not queried before:

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

70

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴
𝑥

Simulation

random 𝑓

(exponential time)

Initialization: 𝑅 = ∅
If 𝑥 was not queried before:
• sample 𝑦 ← {0,1}

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

71

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴
𝑥

𝑦

Simulation

random 𝑓

(exponential time)

Initialization: 𝑅 = ∅
If 𝑥 was not queried before:
• sample 𝑦 ← {0,1}
• insert (𝑥, 𝑦) into 𝑅

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

72

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴
𝑥

𝑦

Simulation

random 𝑓

(exponential time)

Initialization: 𝑅 = ∅
If 𝑥 was not queried before:
• sample 𝑦 ← {0,1}
• insert (𝑥, 𝑦) into 𝑅

If 𝑥 was queried before:

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

73

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴
𝑥

𝑦

Simulation

random 𝑓

(exponential time)

Initialization: 𝑅 = ∅
If 𝑥 was not queried before:
• sample 𝑦 ← {0,1}
• insert (𝑥, 𝑦) into 𝑅

If 𝑥 was queried before:
• look up (𝑥, 𝑦), return 𝑦

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Simulating a random function

74

Standard

𝐴
𝑥

𝑓(𝑥) 𝑓 𝐴
𝑥

𝑦

Simulation

random 𝑓

(exponential time)

Warmup: 𝐴, is a classical alg querying a random 𝑓: 0,1 - → {0,1}.

Initialization: 𝑅 = ∅
If 𝑥 was not queried before:
• sample 𝑦 ← {0,1}
• insert (𝑥, 𝑦) into 𝑅

If 𝑥 was queried before:
• look up (𝑥, 𝑦), return 𝑦

(polynomial-time + stateful)

Simulating a random function

75

Simulating a random function

76

What if 𝐴! is quantum and queries 𝑓 in superposition?

Simulating a random function

77

𝑓

random 𝑓
𝐴

Simulating a random function
What if 𝐴! is quantum and queries 𝑓 in superposition?

78

?
.

𝛼.|𝑥⟩

𝑓

random 𝑓
𝐴

Simulating a random function
What if 𝐴! is quantum and queries 𝑓 in superposition?

79

?
.

𝛼.|𝑥⟩

?
.

𝛼. −1 ,(.)|𝑥⟩

𝑓

random 𝑓
𝐴

Simulating a random function
What if 𝐴! is quantum and queries 𝑓 in superposition?

80

?
.

𝛼.|𝑥⟩

?
.

𝛼. −1 ,(.)|𝑥⟩

𝑓

random 𝑓
𝐴

Simulating a random function
What if 𝐴! is quantum and queries 𝑓 in superposition?

Unclear how to sample
𝑓(𝑥) “on the fly.”

81

?
.

𝛼.|𝑥⟩

?
.

𝛼. −1 ,(.)|𝑥⟩

𝑓

random 𝑓
𝐴

Simulating a random function
What if 𝐴! is quantum and queries 𝑓 in superposition?

Unclear how to sample
𝑓(𝑥) “on the fly.”

Simulation seems to
require knowing 𝑥, but
measuring 𝑥 destroys
the superposition!

82

?
.

𝛼.|𝑥⟩

?
.

𝛼. −1 ,(.)|𝑥⟩

𝑓

random 𝑓
𝐴

Solution: the compressed oracle [Zhandry18]

Simulating a random function
What if 𝐴! is quantum and queries 𝑓 in superposition?

Unclear how to sample
𝑓(𝑥) “on the fly.”

Simulation seems to
require knowing 𝑥, but
measuring 𝑥 destroys
the superposition!

83

Compressed oracle [Z18]:

84

cO
|𝑥⟩
|𝑅⟩

Compressed oracle [Z18]:

85

cO
|𝑥⟩
|𝑅⟩

Compressed oracle [Z18]: • 𝑅 = {𝑥!, … , 𝑥1} is a set

86

cO
|𝑥⟩
|𝑅⟩

Compressed oracle [Z18]: • 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅

87

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

Compressed oracle [Z18]: • 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅

88

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

89

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Intuition: think of cO as
“recording” 𝑥 onto the
𝑅 register

Compressed oracle [Z18]:

90

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

Intuition: think of cO as
“recording” 𝑥 onto the
𝑅 register

91

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

92

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time)

93

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time)

𝑂,|𝑥⟩ −1 ,(.)|𝑥⟩

94

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

cO
𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time)

𝑂,|𝑥⟩ −1 ,(.)|𝑥⟩

|𝐴#⟩ 𝜌

95

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

𝑂,𝐴! ⋯|0⟩ 𝑂,𝐴1

Standard (exp-time)

𝑂,|𝑥⟩ −1 ,(.)|𝑥⟩

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌

|𝐴#⟩
cO

𝐴! ⋯|0⟩ 𝐴1

|∅⟩
cO

Efficient simulation

𝜌

96

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

How [Z18] proves it:

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌

97

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

How [Z18] proves it: Replace random function 𝑓 with purification

?
,

|𝐴,⟩ ⊗ 𝑓 ,

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌

98

cO
|𝑥⟩
|𝑅⟩

|𝑥⟩
|𝑅 ⊕ {𝑥}⟩

• 𝑅 = {𝑥!, … , 𝑥1} is a set
• |𝑅⟩ is a unit vector labeled by 𝑅
• ⊕ is symmetric difference

Compressed oracle [Z18]:

How [Z18] proves it: Replace random function 𝑓 with purification

?
,

|𝐴,⟩ ⊗ 𝑓 ,

and view 𝑓 in the Fourier basis.

[Z18] proves cO is a perfect simulation: 𝔼# |𝐴#⟩⟨𝐴#| = 𝜌

99

Another perspective:
[Z18] simulates queries to
random diagonal unitaries

100

Another perspective:
[Z18] simulates queries to
random diagonal unitaries

𝑂, =
+1

−1
⋱

−1

101

Another perspective:
[Z18] simulates queries to
random diagonal unitaries

𝑂, =
+1

−1
⋱

−1

This work:
Simulate queries to
Haar-random unitaries

102

Another perspective:
[Z18] simulates queries to
random diagonal unitaries

𝑂, =
+1

−1
⋱

−1

𝑈 =

𝑈!! 𝑈!" ⋯ 𝑈!2
𝑈"! 𝑈""
⋮ ⋱

𝑈2! 𝑈22

This work:
Simulate queries to
Haar-random unitaries

103

Another perspective:
[Z18] simulates queries to
random diagonal unitaries

𝑂, =
+1

−1
⋱

−1

𝑈 =

𝑈!! 𝑈!" ⋯ 𝑈!2
𝑈"! 𝑈""
⋮ ⋱

𝑈2! 𝑈22

This work:
Simulate queries to
Haar-random unitaries

independent

not independent!

104

Up next: the path-recording oracle

(our simulator for Haar-random unitaries)

105

The path-recording oracle prO

prO

106

The path-recording oracle prO

|𝑥⟩
|𝑅⟩

prO

107

The path-recording oracle prO

|𝑥⟩
|𝑅⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

prO

108

The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

prO

109

The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}
prO

110

The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

(actually, we should have a !
26|5|

in front)

prO

111

The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

(actually, we should have a !
26|5|

in front)

Note: prO is an isometry.

prO

112

The path-recording oracle prO

|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

(actually, we should have a !
26|5|

in front)

Note: prO is an isometry.
Intuition: 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩ uniquely determines 𝑥 |𝑅⟩.

prO

113

The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

114

Standard (exp-time)

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

115

Efficient simulationStandard (exp-time)

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

116

The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

Efficient simulationStandard (exp-time)

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

|𝐴$⟩ 𝜌

117

The path-recording oracle prO

prO
|𝑥⟩
|𝑅⟩

Efficient simulationStandard (exp-time)

?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

• 𝑅 = (𝑥!, 𝑦! , … , (𝑥1 , 𝑦1)} is
a set of ordered pairs

• sum over 𝑦 ∉ {𝑦!, … , 𝑦1}

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

𝐴! ⋯|0⟩ 𝑈 𝐴1
𝑈

|𝐴$⟩ 𝜌

We show: 𝔼!←#$$% |𝐴!⟩⟨𝐴!| and 𝜌 have trace distance ≤ 𝑡&/2'.

118

Up next: a few examples

119

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈

120

Average over 𝑈 ← Haar: 𝑈 0 becomes the
maximally mixed state.

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈

121

Average over 𝑈 ← Haar: 𝑈 0 becomes the
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
122

Average over 𝑈 ← Haar: 𝑈 0 becomes the
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
123

∑3 𝑦 ⊗ | 0, 𝑦 ⟩

Average over 𝑈 ← Haar: 𝑈 0 becomes the
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
124

∑3 𝑦 ⊗ | 0, 𝑦 ⟩

Average over 𝑈 ← Haar: 𝑈 0 becomes the
maximally mixed state.

|0⟩

|∅⟩
prO

Example 1: one query on |0⟩

trace out/measure

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
125

∑3 𝑦 ⊗ | 0, 𝑦 ⟩

Average over 𝑈 ← Haar: 𝑈 0 becomes the
maximally mixed state.

|0⟩

|∅⟩

After tracing out: uniform mixture over |𝑦⟩,
which is the maximally mixed state.

|0⟩ 𝑈|0⟩𝑈

prO

Example 1: one query on |0⟩

trace out/measure

126

Example 2: two queries on |0⟩

127

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

128

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is
maximally mixed on the symmetric subspace.

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

129

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
130

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
131

∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
132

∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

|0⟩ prO

prO

Example 2: two queries on |0⟩

trace out/measure

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
133

∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

After tracing out: mixture of 𝑦!, 𝑦" + 𝑦", 𝑦!
for random distinct 𝑦!, 𝑦".

|0⟩ prO

prO

Example 2: two queries on |0⟩

trace out/measure

|0⟩ 𝑈|0⟩𝑈

|0⟩ 𝑈|0⟩𝑈

prO 𝑥 𝑅 = ∑3∉5 𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩
134

|0⟩ 𝑈|0⟩𝑈

∑3!83" 𝑦!, 𝑦" ⊗ | 0, 𝑦! , (0, 𝑦") ⟩

Average over 𝑈 ← Haar: 𝑈 0 ⊗𝑈|0⟩ is
maximally mixed on the symmetric subspace.

|0⟩

|∅⟩

After tracing out: mixture of 𝑦!, 𝑦" + 𝑦", 𝑦!
for random distinct 𝑦!, 𝑦". This is almost
maximally mixed on the symmetric subspace.

|0⟩ 𝑈|0⟩𝑈

|0⟩ prO

prO

Example 2: two queries on |0⟩

trace out/measure

135

Up next:
Prove two claims simultaneously

136

Up next:
Prove two claims simultaneously
1) Our simulator works

137

Up next:
Prove two claims simultaneously
1) Our simulator works
2) “PFC” ensemble is a secure PRU.

138

Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

139

Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation

𝜋: 𝑁 ↦ [𝑁]

140

Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation

𝜋: 𝑁 ↦ [𝑁]

𝐹: 𝑥 ↦ −1 #(&)|𝑥⟩
for random function

𝑓: 𝑁 → {0,1}

141

Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝐶 sampled from a
unitary 2-design 𝔇.

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation

𝜋: 𝑁 ↦ [𝑁]

𝐹: 𝑥 ↦ −1 #(&)|𝑥⟩
for random function

𝑓: 𝑁 → {0,1}

142

Definition: 𝑃 ⋅ 𝐹 ⋅ 𝐶 ensemble
[MPSY24]

𝐶 sampled from a
unitary 2-design 𝔇.

𝑃: 𝑥 ↦ |𝜋(𝑥)⟩
for random permutation

𝜋: 𝑁 ↦ [𝑁]

𝐹: 𝑥 ↦ −1 #(&)|𝑥⟩
for random function

𝑓: 𝑁 → {0,1}

Example:
𝔇 = random Clifford

Claim: prO simulates 𝑃𝐹𝐶.

143

Claim: prO simulates 𝑃𝐹𝐶.

144

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1

|𝐴()*⟩

Claim: prO simulates 𝑃𝐹𝐶.

145

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

|𝐴()*⟩

𝜌

Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌) ≤

.!

/"

146

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

|𝐴()*⟩

𝜌

Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌) ≤

.!

/"

147

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

|𝐴()*⟩

𝜌

𝜌 is independent of the choice of𝔇!

Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌) ≤

.!

/"

148

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

Implies:

|𝐴()*⟩

𝜌

𝜌 is independent of the choice of𝔇!

Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌) ≤

.!

/"

149

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

1) prO simulates Haar-random 𝑈 (𝔇 = Haar)Implies:

|𝐴()*⟩

𝜌

𝜌 is independent of the choice of𝔇!

Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌) ≤

.!

/"

150

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

1) prO simulates Haar-random 𝑈 (𝔇 = Haar)
2) PRUs exist (𝔇 = Clifford, pseudorandom 𝑃, 𝐹)

Implies:

|𝐴()*⟩

𝜌

𝜌 is independent of the choice of𝔇!

Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌) ≤

.!

/"

151

Claim: prO simulates 𝑃𝐹𝐶. For any 2-design 𝔇,
𝐓𝐃(𝔼(,),*←𝔇 |𝐴()*⟩⟨𝐴()*|, 𝜌) ≤

.!

/"

152

Up next: proof of this claim

153

Proof overview

Part 1: prO simulates 𝑃 ⋅ 𝐹 (random permutation and
function) assuming 𝐴 doesn’t query on “bad” inputs.

154

Proof overview

Part 1: prO simulates 𝑃 ⋅ 𝐹 (random permutation and
function) assuming 𝐴 doesn’t query on “bad” inputs.

155

𝑃𝐹𝐴! ⋯|0⟩ ≈𝑃𝐹𝐴1

Proof overview

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

For restricted algorithms 𝐴:

Part 1: prO simulates 𝑃 ⋅ 𝐹 (random permutation and
function) assuming 𝐴 doesn’t query on “bad” inputs.

156

𝑃𝐹𝐴! ⋯|0⟩ ≈𝑃𝐹𝐴1

Proof overview

𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

Part 2: Insert a random 𝐶 (sampled from any 2 design) to
prevent 𝐴 from querying on “bad” inputs.

For restricted algorithms 𝐴:

157

Analyzing queries to 𝑃𝐹

158

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

159

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1

standard implementation

(random 𝜋,𝑓)

160

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1

standard implementation

|𝑥⟩ −1 ,(.)|𝜋(𝑥)⟩𝑃𝐹

(random 𝜋,𝑓)

161

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1

standard implementation

|𝑥⟩ −1 ,(.)|𝜋(𝑥)⟩𝑃𝐹

(random 𝜋,𝑓)

purify

162

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1 𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

standard implementation purification

|𝑥⟩ −1 ,(.)|𝜋(𝑥)⟩𝑃𝐹

∑9,, |𝜋, 𝑓⟩(random 𝜋,𝑓)

purify

163

Analyzing queries to 𝑃𝐹

Idea: purify the randomness of the permutation + function.

𝑃𝐹𝐴! ⋯|0⟩ 𝑃𝐹𝐴1 𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

standard implementation purification

|𝑥⟩ −1 ,(.)|𝜋(𝑥)⟩𝑃𝐹
𝑃𝐹|𝑥⟩

|𝜋, 𝑓⟩ |𝜋, 𝑓⟩

−1 ,(.)|𝜋(𝑥)⟩

∑9,, |𝜋, 𝑓⟩(random 𝜋,𝑓)

purify

164

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

165

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

Rewrite the right-hand side:

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

166

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

167

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

168

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

(2) Rearrange
coefficients:

169

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

(2) Rearrange
coefficients:

?
3

𝑦 ⊗ −1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

170

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

(2) Rearrange
coefficients:

?
3

𝑦 ⊗ −1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

171

In the 𝑃𝐹-purification, each query corresponds to

controlled-𝑃𝐹:

−1 , . ?
3

𝛿9 . ;3 𝑦 ⊗ |𝜋, 𝑓⟩

Rewrite the right-hand side:

(1) Plug in
𝜋 𝑥 = ∑0 𝛿1 & 20 𝑦 .

𝑥 ⊗ 𝜋, 𝑓 ↦ −1 # & 𝜋(𝑥) ⊗ 𝜋, 𝑓

(2) Rearrange
coefficients:

?
3

𝑦 ⊗ −1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

172

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

path-recording
oracle prO: 𝑥 ⊗ 𝑅 ↦ Z

0∉4

𝑦 ⊗ |𝑅 ∪ { 𝑥, 𝑦 }⟩

173

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

path-recording
oracle prO: 𝑥 ⊗ 𝑅 ↦ Z

0∉4

𝑦 ⊗ |𝑅 ∪ { 𝑥, 𝑦 }⟩

Intuition: prO creates a superposition over
𝑦 and simultaneously “records” (𝑥, 𝑦)

174

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

path-recording
oracle prO: 𝑥 ⊗ 𝑅 ↦ Z

0∉4

𝑦 ⊗ |𝑅 ∪ { 𝑥, 𝑦 }⟩

We’ll show that controlled-𝑃𝐹 does (almost) the same thing.

Intuition: prO creates a superposition over
𝑦 and simultaneously “records” (𝑥, 𝑦)

175

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

176

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

Initial state: purifying register begins as ∑1,# |𝜋, 𝑓⟩.

177

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

Initial state: purifying register begins as ∑1,# |𝜋, 𝑓⟩.

?
9,,

−1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

After 𝟏 query: purifying register is a superposition of

178

controlled-𝑃𝐹: 𝑥 ⊗ 𝜋, 𝑓 ↦Z
0

𝑦 ⊗ −1 # & ⋅ 𝛿1 & 20 |𝜋, 𝑓⟩

Initial state: purifying register begins as ∑1,# |𝜋, 𝑓⟩.

?
9,,

−1 , . ⋅ 𝛿9 . ;3 |𝜋, 𝑓⟩

After 𝒕 queries: purifying register is a superposition of

?
9,,

−1 , .! <⋯<, .# ⋅ 𝛿9 .! ;3!⋯𝛿9 .# ;3# |𝜋, 𝑓⟩

After 𝟏 query: purifying register is a superposition of

179

After 𝒕 queries: purifying register is a superposition of

?
9,,

−1 , .! <⋯<, .# ⋅ 𝛿9 .! ;3!⋯𝛿9 .# ;3# |𝜋, 𝑓⟩

pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let

180

pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let

𝑥 ⊗ pf4 ↦ Z
0∉4

𝑦 ⊗ pf4∪{ &,0 }controlled-𝑃𝐹:

181

pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let

𝑥 ⊗ pf4 ↦ Z
0∉4

𝑦 ⊗ pf4∪{ &,0 }controlled-𝑃𝐹:

𝑥 ⊗ 𝑅 ↦ Z
0∉4

𝑦 ⊗ 𝑅 ∪ { 𝑥, 𝑦 }prO:

182

pf4 ≔Z
1,#

−1 # &# 5⋯5# &$ ⋅ 𝛿1 &# 20#⋯𝛿1 &$ 20$ |𝜋, 𝑓⟩

Definition: for 𝑅 = 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. , let

𝑥 ⊗ pf4 ↦ Z
0∉4

𝑦 ⊗ pf4∪{ &,0 }controlled-𝑃𝐹:

𝑥 ⊗ 𝑅 ↦ Z
0∉4

𝑦 ⊗ 𝑅 ∪ { 𝑥, 𝑦 }prO:

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

183

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:

184

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:

185

path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:

186

path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

…unless 𝑅 = { 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. } has colliding 𝑥; ’s.

Claim: pf4 are orthogonal for 𝑅 s.t. 𝑥7, … , 𝑥. are distinct.

So these are equivalent from the algorithm’s point of view:

187

path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

This is where the 2-design comes in!

…unless 𝑅 = { 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. } has colliding 𝑥; ’s.

So these are equivalent from the algorithm’s point of view:

188

path-recording oracle

𝐴! ⋯|0⟩
𝑃𝐹

𝐴1
𝑃𝐹

𝑃𝐹 purification
∑9,, |𝜋, 𝑓⟩

𝐴! ⋯|0⟩
prO

𝐴1

prO
|∅⟩

This is where the 2-design comes in!
Claim: inserting 𝐶 before each query prevents collisions.

…unless 𝑅 = { 𝑥7, 𝑦7 , … , 𝑥. , 𝑦. } has colliding 𝑥; ’s.

So these are equivalent from the algorithm’s point of view:

189

Recap

190

Recap
1) We defined the path-recording oracle:

prO: 𝑥 𝑅 ↦ ?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

191

Recap
1) We defined the path-recording oracle:

prO: 𝑥 𝑅 ↦ ?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

2) Using purification, we showed:

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

≈

192

Recap
1) We defined the path-recording oracle:

prO: 𝑥 𝑅 ↦ ?
3∉5

𝑦 |𝑅 ∪ 𝑥, 𝑦 ⟩

2) Using purification, we showed:

𝑃𝐹𝐶𝐴! ⋯|0⟩ 𝑃𝐹𝐶𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO

≈

Consequence: prO simulates Haar-random unitaries + PRU exist

193

The path-recording oracle gives us a
new way to study random unitaries.

194

The path-recording oracle gives us a
new way to study random unitaries.

Let’s see an example.

195

𝑈!
≈

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]:

Application: a simpler proof of the “gluing” lemma

196

𝑈!
≈

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

197

𝑈!
≈

Proof via path-recording:

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

198

𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

199

𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

𝐶

𝐴
𝐵 prO!

prO"

|∅⟩
|∅⟩

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

200

𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

𝐶

𝐴
𝐵 prO!

prO"

|∅⟩
|∅⟩

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

201

𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

𝐶

𝐴
𝐵 prO!

prO" prO>

|∅⟩
|∅⟩

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

202

𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?

𝐶

𝐴
𝐵 𝑈" 𝑈>

𝐶

𝐴
𝐵 prO!

prO" prO>

|∅⟩
|∅⟩

𝑅! |𝑅"⟩ 𝑅>

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

203

𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?
(2) construct isometry Glue
that maps 𝑅! |𝑅"⟩ to |𝑅>⟩

𝐶

𝐴
𝐵 𝑈" 𝑈>

𝐶

𝐴
𝐵 prO!

prO" prO>

|∅⟩
|∅⟩

𝑅! |𝑅"⟩ 𝑅>

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

204

𝑈!
≈

Proof via path-recording:
(1) replace each 𝑈? with prO?
(2) construct isometry Glue
that maps 𝑅! |𝑅"⟩ to |𝑅>⟩

𝐶

𝐴
𝐵 𝑈" 𝑈>

≈
𝐶

𝐴
𝐵 prO!

prO" prO>

|∅⟩
|∅⟩

𝑅! |𝑅"⟩ 𝑅>

Gluing lemma [SSH24]:
If 𝑈! and 𝑈" overlap on
𝐵 = 𝜔(log 𝑛) qubits, then

𝑈" ⋅ 𝑈! ≈ 𝑈>.

Application: a simpler proof of the “gluing” lemma

205

What about inverse queries?

206

What about inverse queries?
Today, we considered algorithms that query 𝑈 but not 𝑈+.

207

What about inverse queries?
Today, we considered algorithms that query 𝑈 but not 𝑈+.

In the paper:
• “symmetrized” prO that simulates forward + inverse queries

208

What about inverse queries?
Today, we considered algorithms that query 𝑈 but not 𝑈+.

In the paper:
• “symmetrized” prO that simulates forward + inverse queries
• PRUs secure against forward + inverse queries

209

What about inverse queries?
Today, we considered algorithms that query 𝑈 but not 𝑈+.

In the paper:
• “symmetrized” prO that simulates forward + inverse queries
• PRUs secure against forward + inverse queries

𝑈𝐴! ⋯|0⟩ 𝑈+𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO+

≈

210

What about inverse queries?
Today, we considered algorithms that query 𝑈 but not 𝑈+.

Challenge: recording the path isn’t enough; also need to erase!

In the paper:
• “symmetrized” prO that simulates forward + inverse queries
• PRUs secure against forward + inverse queries

𝑈𝐴! ⋯|0⟩ 𝑈+𝐴1 𝐴! ⋯|0⟩
prO

|∅⟩

𝐴1
prO+

≈

211

Future directions

212

Future directions

(physics) do we have the right notions of pseudorandomness?

213

Future directions

(physics) do we have the right notions of pseudorandomness?

(physics) physical interpretation of the path-recording oracle prO?

214

Future directions

(physics) do we have the right notions of pseudorandomness?

(physics) physical interpretation of the path-recording oracle prO?

(math) consequences for random matrix theory or rep theory?

215

Future directions

(physics) do we have the right notions of pseudorandomness?

(physics) physical interpretation of the path-recording oracle prO?

(math) consequences for random matrix theory or rep theory?

(quantum computing) use path-recording to study quantum algs?

216

Future directions

(physics) do we have the right notions of pseudorandomness?

(physics) physical interpretation of the path-recording oracle prO?

(math) consequences for random matrix theory or rep theory?

(quantum computing) use path-recording to study quantum algs?

(crypto) PRUs without one-way functions? other applications?

217

Future directions

(physics) do we have the right notions of pseudorandomness?

(physics) physical interpretation of the path-recording oracle prO?

(math) consequences for random matrix theory or rep theory?

(quantum computing) use path-recording to study quantum algs?

(crypto) PRUs without one-way functions? other applications?

Thanks for listening! arXiv: 2410.10116

